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Outline

Goal: Develop a simple and intuitive graphical calculus for real
representations of real supergroups

Overview:

1 Background: oriented and unoriented Brauer categories

2 Motivation: Schur’s lemma and division superalgebras

3 Superhermitian forms

4 Real Lie superalgebras

5 Graphical calculus
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The oriented Brauer category

The oriented Brauer category OB(d) is the free rigid symmetric C-linear
monoidal category on a generating object ↑ of dimension d.

Morphisms are linear combinations of oriented Brauer diagrams:

There is a full monoidal functor

OB(m) → GL(m,C)-mod, ↑ 7→ V = Cm.

In particular, there is a surjective algebra homomorphism (half of
Schur–Weyl duality)

CSr
∼= EndOB(m)(↑⊗r) ↠ EndGL(m,C)(V

⊗r).
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The unoriented Brauer category

The unoriented Brauer category B(d) is the free rigid symmetric C-linear
monoidal category on a symmetrically self-dual object I of dimension d.

Morphisms are linear combinations of unoriented Brauer diagrams:

There are full monoidal functors

B(m) → O(m,C)-mod and B(−2m) → Sp(2m,C)-mod.

Here the endomorphism algebras are Brauer algebras.
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Observations

Super unifies

In fact, there are full functors

OB(m− n) → GL(m|n,C)-smod and

B(m− 2n) → OSp(m|2n,C)-smod.

Trivial yet important observation

Functors induce isomorphisms

C ∼= SpanC{ } = EndOB(m−n)(↑)
∼=−→ EndGL(m|n,C)(V )

and
C ∼= SpanC{ } = EndB(m−2n)(I)

∼=−→ EndOSp(m|2n,C)(V )
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Schur’s lemma

Fix a ground field k. All supermodules are assumed to be finite
dimensional over k.

Let R be an associative superalgebra or Lie superalgebra over k.

Schur’s lemma

If V is a simple R-supermodule, then EndR(V ) is a finite-dimensional
division k-superalgebra.

Non-super world

There is one complex division algebra: C.
There are three real division algebras: R, C, and H.
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Complex division superalgebras

If k = C, then there are two complex division superalgebras:

the complex numbers C,
the complex Clifford superalgebra Cl(C) := C⊕ εC, with ε̄ = 1,

ε2 = −1 and zε = εz ∀ z ∈ C.

Consequence

When k = C, there are two types of simple supermodule V over a
superalgebra R:

Type M : EndR(V ) = C,
Type Q: EndR(V ) = Cl(C).
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Real division superalgebras

Theorem (Wall 1964)

Every real division superalgebra is isomorphic to exactly one of the
following, where ε̄ = 1, and ⋆ denotes complex conjugation:

Cl0(R) = R;
Cl1(R) := R⊕ εR, with ε2 = 1;

Cl2(R) := C⊕ εC, with ε2 = 1 and zε = εz⋆ for all z ∈ C;
Cl3(R) := H⊕ εH, with ε2 = −1 and zε = εz for all z ∈ H;

Cl4(R) := H;

Cl5(R) := H⊕ εH, with ε2 = 1 and zε = εz for all z ∈ H;

Cl6(R) := C⊕ εC, with ε2 = −1 and zε = εz⋆ for all z ∈ C;
Cl7(R) := R⊕ εR, with ε2 = −1;

C;
Cl(C).
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Remarks

The Clr(R), 0 ≤ r ≤ 7, are real Clifford superalgebras. They are the only
central real division superalgebras (i.e. with even center R).

The notation Clr(R) is inspired by the fact that (subscripts mod 8)

Clr(R)⊗ Cls(R) is Morita equivalent to Clr+s(R).

The opposite superalgebra of an associative superalgebra A is

Aop := {aop : a ∈ A}

with multiplication
aopbop = (−1)āb̄(ba)op.

We have

Clr(R)op ∼= Cl−r(R), with subscripts considered modulo 8,

Cl(C)op ∼= Cl(C), ε 7→ εi,

Cop ∼= C.
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Motivating idea

The tenfold way

Suppose R is a real associative superalgebra or a real Lie superalgebra.

There are ten types of simple R-supermodule:

EndR(V ) ∈ {Clr(R),C,Cl(C) : 0 ≤ r ≤ 7}.

We want to modify the oriented Brauer category so that

End(↑) is a division superalgebra A.

This amounts to adding morphisms

a , a ∈ A.

For the unoriented Brauer category, we’ll need an anti-involution on A
corresponding to

a 7→ a .
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Real general linear Lie superalgebras

Let’s look at gl(m|n,D) for D a real division superalgebra.

Simplification

If D1 ̸= 0, then gl(m|n,D) ∼= gl(m+ n,D).
We have gl(m|n,D) ∼= gl(m|n,Dop).

Thus, the general linear Lie superalgebras over real division superalgebras
are:

gl(m,Cl1(R)) = q(m,R) is the split real isomeric Lie superalgebra
(a.k.a. the split real queer Lie superalgebra),

gl(m,Cl(C)) = q(m,C) is the complex isomeric Lie superalgebra,

gl(m,Cl2(R)),
gl(m,Cl3(R)),
gl(m|n,R), gl(m|n,C), gl(m|n,H).
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Complexification of general linear Lie superalgebras

The complexifications of all central real division superalgebras are

RC ∼= C, HC ∼= Mat2(C),
Cl1(R)C ∼= Cl7(R)C ∼= Cl(C),

Cl2(R)C ∼= Cl6(R)C ∼= Mat1|1(C),
Cl3(R)C ∼= Cl5(R)C ∼= Mat2(Cl(C)).

If D is a real division superalgebra, we have

gl(m|n,D)C ∼= gl(m|n,DC).

Hence

gl(m|n,R)C ∼= gl(m|n,C),
gl(m|n,H)C ∼= gl(2m|2n,C),
gl(m,Cl1(R))C ∼= gl(m,Cl7(R))C ∼= gl(m,Cl(C)) = q(m,C),
gl(m,Cl2(R))C ∼= gl(m,Cl6(R))C ∼= gl(m|m,C),
gl(m,Cl3(R))C ∼= gl(m,Cl5(R))C ∼= gl(2m,Cl(C)) = q(2m,C).
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Motivation for anti-involutions

Fix an associative R-superalgebra A and a right A-supermodule V .

Then the dual V ∗ = HomR(V,R) is a left A-supermodule, with action

(af)(v) = (−1)āf̄+āv̄f(va), a ∈ A, f ∈ V ∗, v ∈ V.

We want to examine the situation where V is self dual:

V ∼= V ∗ as right A-supermodules.

In order for this to make sense, we need to turn V ∗ into a right
A-supermodule.

Recall that a right A-supermodule is the same as a left Aop-supermodule.

So, if we have an isomorphism Aop ∼= A, we can convert left
A-supermodules into right A-supermodules.
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Involutive superalgebras

Definition

An involutive superalegbra is a pair (A, ⋆), where

A is an associative superalgebra, and

⋆ : A → A, a 7→ a⋆, is an anti-involution:

(a⋆)⋆ = a, (ab)⋆ = (−1)āb̄b⋆a⋆.

An anti-involution ⋆ gives an isomorphism Aop ∼= A.

So, if V is a right supermodule over an involutive superalgebra (A, ⋆),
then V ∗ is a right A-supermodule via

(fa)(v) = (−1)āv̄f(va⋆), a ∈ A, f ∈ V ∗, v ∈ V.
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Involutive real division superalgebras

Recall that

Cop ∼= C, Cl(C)op ∼= Cl(C), Clr(R)op ∼= Cl−r(R).

So the real division superalgebras admitting anti-involutions are R, C, H,
and Cl(C).

In particular, we have

(R, id),
(C, id),
(C, ⋆), where ⋆ is complex conjugation,

(H, ⋆), where ⋆ is quaternionic conjugation,

(Cl(C), ⋆), where

(a+ εbi)⋆ = a⋆ + εb⋆i, a, b ∈ C.
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Superhermitian forms

Let V be a right supermodule over an involutive real division superalgebra
(D, ⋆).

Definition

Let ν ∈ {±1}. A (ν, ⋆)-superhermitian form on V is a homogeneous
R-bilinear map

φ : V × V → D

such that

φ(va, wb) = (−1)ā(φ̄+v̄)a⋆φ(v, w)b for all a, b ∈ A, v, w ∈ V ,

φ(v, w) = ν(−1)v̄w̄φ(w, v)⋆ for all v, w ∈ V .

Remarks

A superhermitian form gives an isomorphism V ∼= V ∗.

A superhermitian form can be even (φ̄ = 0) or odd (φ̄ = 1).
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Examples

Assume everything is even (i.e., all odd parts are zero).

Example

If (D, ⋆) = (C, id), then
an (1, id)-superhermitian form is a symmetric form,

an (−1, id)-superhermitian form is skew-symmetric form.

Example

If (D, ⋆) = (C, ⋆), where ⋆ is complex conjugation, then

a (1, ⋆)-superhermitian form is a hermitian form in the usual sense,

a (−1, ⋆)-superhermitian form is a skew-hermitian form.
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Lie superalgebras associated to a superhermitian form

Suppose

(D, ⋆) is an involutive real division superalgebra,

φ is a (ν, ⋆)-superhermitian form.

Let

g(φ) = {X ∈ gl(V ) : φ(Xv,w) = −(−1)X̄v̄φ(v,Xw) ∀ v, w ∈ V }.

be the Lie sub-superalgebra of gl(V ) preserving φ.

Let G(φ) be the supergroup preserving φ.
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Real forms

A real Lie superalgebra g is a real form of the complex Lie superalgebra gC.

Example (k = C)
The Lie superalgebras of the form g(φ) are:

the orthosymplectic Lie superalgebras osp(m|2n,C) (when φ is even),

the periplectic Lie superalgebras p(m,C) (when φ is odd).

Now suppose k = R. We have

the Lie superalgebras gl(m|n,D) for a real division superalgebra D,
the Lie superalgebras g(φ) for φ a (ν, ⋆)-superhermitian form for an
involutive real division superalgebra (D, ⋆).

These correspond to all real forms of the complex Lie superalgebras

gl(m|n,C), osp(m|2n,C), p(m,C), q(m,C).

Alistair Savage (Ottawa) Diagrammatics for real supergroups February 13, 2023 19 / 31



Strict monoidal supercategories

Fix a ground field k.

A strict monoidal supercategory is a category C enriched in the category of
vector superspaces:

each morphism space is a k-supermodule,

composition of morphisms is k-bilinear and parity preserving,

together with

a bifunctor (the tensor product) ⊗ : C × C → C , and

a unit object 1,

such that, for objects A, B, C and morphisms f , g, h,

(A⊗B)⊗ C = A⊗ (B ⊗ C),

1⊗A = A = A⊗ 1,

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h),

11 ⊗ f = f = f ⊗ 11,

tensor product of morphisms is k-bilinear and parity preserving.
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String diagrams

Fix a strict monoidal supercategory C .

We will denote a morphism f : A → B by:

A

B

f

The identity map 1A : A → A is a string with no label:

A

A

We sometimes omit the object labels when they are clear.
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String diagrams

Composition is vertical stacking and tensor product is horizontal
juxtaposition:

f

g
= fg f ⊗ g = f g

The super interchange law is:

f

g
= f g = (−1)f̄ ḡ

f

g

A morphism f : A1 ⊗A2 → B1 ⊗B2 can be depicted:

A1

B2

A2

B1

f
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The oriented supercategory

For an associative superalgebra A, we define OBk(A) to be the strict
monoidal supercategory generated by objects ↑ and ↓ and morphisms

: ↑ ⊗ ↑ → ↑ ⊗ ↑ , a : ↑ → ↑ , a ∈ A,

: ↓ ⊗ ↑ → 1, : 1 → ↑⊗ ↓, : ↑ ⊗ ↓ → 1, : 1 → ↓⊗ ↑,

subject to the relations

1 = , λ a + µ b = λa+µb ,
b
a = ab ,

= , = ,
a

=
a

,

= , = , = = , = , = ,

for all a, b ∈ A and λ, µ ∈ k. In the above, the left and right crossings are
defined by

:= , := .

The parity of a is ā, and all the other generating morphisms are even.
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The oriented supercategory

Morphisms in OBk(A) are k-linear combinations of diagrams such as

a

b c

a, b, c ∈ A.

Composition is vertical stacking; tensor product is horizontal juxtaposition.

Example

OBk(k) is the oriented Brauer category.

OBC(Cl(C)) is the oriented Brauer–Clifford supercategory
(Brundan–Comes–Kujawa).
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The oriented incarnation superfunctor

Suppose that D is a real division superalgebra. Let V = Dm|n.

Theorem (Samchuck–Schnarch–S.)

There exists a unique monoidal superfunctor

G : OBR(Dop) → gl(m|n,D)-smod

such that G(↑) = V , G(↓) = V ∗, and

G( ) : V ⊗ V → V ⊗ V, v ⊗ w 7→ (−1)v̄w̄w ⊗ v,

G( ) : V ∗ ⊗ V → R, f ⊗ v 7→ f(v),

G( aop ) : V → V, v 7→ (−1)āv̄va.

The superfunctor G is full.

Remark

When k = C, the analogous theorem was known.
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The unoriented supercategory

Let (D, ⋆) be an involutive division superalgebra over k, and let σ ∈ Z2.

We define Bσ
k (D, ⋆) to be the strict monoidal supercategory generated by

one object I and morphisms

: I⊗2 → I⊗2, : I⊗2 → 1, : 1 → I⊗2, a : I → I, a ∈ D,

subject to the relations

1 = , λ a + µ b = λa+µb ,
b
a = ab ,

= , = , = = (−1)σ ,

= , = ,
a

=
a

, a = (−1)ā a⋆ ,

for all a, b ∈ D and λ, µ ∈ k. The parity of a is ā, the morphisms and
both have parity σ, and is even.
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The unoriented supercategory

Morphisms in Bσ
k (D, ⋆) are k-linear combinations of diagrams such as

a

b c

a, b, c ∈ D.

Composition is vertical stacking; tensor product is horizontal juxtaposition.

Example

B0
k(k, id) is the Brauer category (Lehrer–Zhang).

B1
k(k, id) is the periplectic Brauer supercategory (Kujawa–Tharp).
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The unoriented incarnation superfunctor

Let (D, ⋆) be an involutive real division superalgebra, let V = Dm|n, and
let φ be a nondegenerate (ν, ⋆)-superhermitian form of parity σ on V .

Theorem (Samchuck–Schnarch–S.)

There exists a unique monoidal superfunctor

Fφ : Bσ
R(D, ⋆) → G(φ)-smod

such that Fφ(I) = V and

Fφ
( )

: V ⊗ V → V ⊗ V, v ⊗ w 7→ (−1)v̄w̄w ⊗ v,

Fφ ( ) : V ⊗ V → R, v ⊗ w 7→ Re0(φ(v, w)),

Fφ( a ) : V → V, v 7→ (−1)āv̄va⋆,

where Re0(a) is the real part of the even part of a ∈ D.

The superfunctor Fφ is full.
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The unoriented incarnation superfunctor

Previous results (k = C)
When σ = 0, so G(φ) = OSp(m|2n,C), the result is due to
Lehrer–Zhang, Deligne–Lehrer–Zhang.

When σ = 1, so G(φ) = P(m,C), the result is due to
Coulembier–Ehrig, with key step by Deligne–Lehrer–Zhang.

Over R, the proof of fullness is split into cases and involves mapping the
complexification Bσ

R(D, ⋆)C into other supercategories:

For (D, ⋆) = (R, id), Bσ
R(R, id)C ∼= Bσ

C(C, id),
For (D, ⋆) ∈ {(C, ⋆), (Cl(C), ⋆)}, we embed Bσ

R(D, ⋆)C in the
superadditive envelope of OBC(D).
For (D, ⋆) = (H, ⋆), we embed Bσ

R(H, ⋆)C in the superadditive
envelope of Bσ

C(C, id).
Then we use the known fullness results in the k = C cases.
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Corollary

Corollary of incarnation theorems

If p, p′, q, q′ ∈ N satisfy p+ q = p′ + q′, then we have equivalences of
monoidal categories

O(p, q)-tmodR ≃ O(p′, q′)-tmodR,

U(p, q)-tmodR ≃ U(p′, q′)-tmodR,

Sp(p, q)-tmodR ≃ Sp(p′, q′)-tmodR,

sending the natural supermodule to the natural supermodule, where tmod
denotes the category of tensor modules.

Above corollary is false if we replace O by SO or U by SU. E.g.

SU(1, 1)-tmodR and SU(2)-tmodR

are not equivalent.
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Final remarks

Non-super cases

We obtain a diagrammatic calculus for real forms (including the compact
forms) of the classical Lie groups GLm(C), Om(C), and Sp2m(C).

Schur–Weyl type duality

We obtain Schur–Weyl-type duality statements for real Lie
superalgebras/supergroups.

Quantum versions

There exist quantum versions of the diagrammatic categories introduced
here.

These will provide a diagrammatic calculus for real quantum groups
analogous to the existing diagrammatics for complex quantum groups.
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