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Outline

Goal: Define an F analogue of the oriented and unoriented Brauer
categories and algebras.

Overview:
@ Centralizers in classical types
@ Diagrammatic categories
© Oriented and unoriented Brauer categories
© The category ¥
© The functor ¥ — f-mod
@ Further directions
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Centralizers in type A

For § € N, let V = C° be the natural gls-module.

The natural permutation action yields a surjective algebra homomorphism
C&, — Endy, (V®").
This is part of Schur—Weyl duality.
If we want to include the dual module V*, we have
OB, s(6) = Endy, (V& @ (V*)®?),

where OB, 4() is the walled Brauer algebra (or oriented Brauer algebra).
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Centralizers in other types

Types BCD
Let G be an orthogonal or symplectic Lie group.
The natural module V is self-dual. Let 6 = dim V.

We have
B,(6) - Enda(V®"),

where B,.(4) is the Brauer algebra.

Exceptional types

Less is known in exceptional types.
We will focus on the Lie algebra § of type Fj.

If V' is the natural f-module, we want

7?7 — End;(V®")
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Bigger picture
In fact, things become much more natural if we describe more.

General idea

Instead of only considering endomorphisms of V", we consider all
morphisms V®" — V®5 (and include dual V* in type A).

Want a “nice” monoidal category C, together with a full and essentially
surjective monoidal functor

C — g-mod.

Desired features

@ C( should be easy to describe, e.g. want a presentation in terms of
generators and relations.

@ Should recover above centralizer statements when restricting to
appropriate morphism spaces.
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Strict monoidal categories

A strict monoidal category is a category C equipped with
@ a bifunctor (the tensor product) ®: C x C — C, and
@ a unit object 1,

such that, for objects A, B, C and morphisms f, g, h,
e (A®B)®(C=A® (B (),
0 I1RA=A=Ax1,
° (feg®h=fo(g®h),
o L f=f=f®.

Remark: Non-strict monoidal categories

In a (not necessarily strict) monoidal category, the equalities above are
replaced by isomorphism, and we impose some coherence conditions.

Every monoidal category is monoidally equivalent to a strict one.
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Linear monoidal categories
For simplicity, we work over the ground field C.

A strict linear monoidal category is a strict monoidal category such that
@ each morphism space is a C-module,
@ composition of morphisms is C-bilinear,
@ tensor product of morphisms is C-bilinear.

The interchange law
The axioms of a strict monoidal category imply the interchange law: For
Ay i) Ao and By ER Bo, the following diagram commutes:

A1®B1&>A1®Bz

f®1L & Lf@l

A2®31WA2®B2
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String diagrams

Fix a strict monoidal category C.

We will denote a morphism f: A — B by:

B

b

A
The identity map 14: A — A is a string with no label:

A

A
We sometimes omit the object labels when they are clear or unimportant.
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String diagrams

Composition is vertical stacking and tensor product is horizontal

T 0 debed

The interchange law then becomes:

fa-99-f

A morphism f: A1 ® Ay — B1 ® By can be depicted:

By Bs
Aq A
Alistair Savage (Ottawa)
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Presentations of strict monoidal categories
One can give presentations of some strict C-linear monoidal categories,
just as for monoids, groups, algebras, etc.

Objects: If the objects are generated by some collection A;, i € I, then we
have all possible tensor products of these objects:

1, A, A®A A, ®A, et

Morphisms: If the morphisms are generated by some collection f;, j € J,
then we have all possible compositions and tensor products of these
morphisms (whenever these make sense):

La;, [i®(fife)® (fe), etc

We then often impose some relations on these morphism spaces.

String diagrams: We can build complex diagrams out of our simple
generating diagrams.

Alistair Savage (Ottawa) Diagrammatics for Fy July 30, 2021 10/32



Example: monoidally generated symmetric groups

Define a strict monoidal category Sym with one generating object | and
denote

1= |

We have one generating morphism

Xilel=Ilel
We impose the relations:

EndSym (|®n) = Sy

is the symmetric group on n letters.

Then
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Example: monoidally generated symmetric groups

This monoidal presentation of S, is very efficient! We only needed
@ one generating morphism, and
@ two relations,

to get all the symmetric groups.
Note that the “distant braid relation”
8iSj = 8;58i, ‘Z —j’ > 1

for simple transpositions follows for free from the interchange law:

U]

Note: If we define Sym to be linear, then End5ym (1®") = CS,,.
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Oriented Brauer category

For § € C, the oriented Brauer category OB(0) is the linear monoidal
category defined as follows.

Two generating objects: 1 and |

Four generating morphisms: |, M, 7, X

DefineX::m, x::bg, U::Ej, m::@.
Q-1 K-
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Oriented Brauer category

An arbitrary morphism in OB(J) is a C-linear combination of oriented
Brauer diagrams. E.g.

N

1 1e1P 1o 1.

Composition: vertical “gluing”, replace closed components by a factor of §.

Tensor product: horizontal concatenation.
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Oriented Brauer category

Universal property

Any linear symmetric monoidal category C with dual objects V, V* of
dimension & admits a linear monoidal functor

OB(6) —C, TV, |—=V.

Corollary

We have a linear monoidal functor (V' = natural module)

OB(d) — glg-mod, T—V, | —V"

><»—>(V®2—>V®2, VRW WR),
XK= (V'eV-aVeV', fev—uef),
N= VeV —=C, v®f— f(v)),
UH(C—)V*(@V, 1»—>Zv€va*®v),

where By is a basis for V' and v*, v € By, is the dual basis.
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Oriented Brauer category

In fact, this functor is full. In particular, we recover the surjection
OB,4(6) = Endops) (1" @ 1%°) — Endy, (V" @ (V*)®?),

where OB, 4(6) is the walled Brauer algebra (or oriented Brauer algebra).

Fact: Every f.d. gl-module is a summand of V& © (V*)®* for some r, s.

Philosophy

All homomorphisms between f.d. gls-modules are built from the “flip”
symmetry and the natural pairing of V' and V*.
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Brauer category

Fix 9 € C. The Brauer category B(9) is the linear monoidal category
defined as follows.

One generating object: |

Three generating morphisms: (), N, X

Ge| |- K ) L
W= U=05: O=sh

Relations:

)

Alistair Savage (Ottawa) Diagrammatics for Fy July 30, 2021 17 /32



Brauer category

An arbitrary morphism in B(4) is a linear combination of Brauer diagrams.
Eg.

. |®6 N |®4

Composition: vertical “gluing”, replace closed components by a factor of §.

Tensor product: horizontal concatenation.
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Brauer category

Universal property

Any linear symmetric monoidal category C with self-dual object V' of
dimension ¢ admits a linear monoidal functor

Bo) —=C, | »W

Corollary

We have a linear monoidal functor (V' = natural module)

B(d) — s05-mod, l— V.

X (V2 5V yeuw—wev),
M+ (V®2H(C, v W (v,w)),

= ((C—>V®2, 1»—>Zv€va®vv),

where (, ) is the bilinear form, and V denotes the dual basis.
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Brauer category

In fact, this functor is full. In particular, we recover the surjection
B,(d) = Endg((;)(lw) — Endeo, (VE"),

where B,.() is the Brauer algebra

Fact: Every f.d. s05-module is a summand of V®" for some 7.

Philosophy

All homomorphisms between f.d. sos-modules are built from the “flip”
symmetry and the bilinear pairing.

Similar statements are true in the symplectic case.
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Goal

We want analogous results in type Fj.

Thus, we want a linear monoidal category ¥ and a functor

$: F — f-mod
such that
@ F has a simple presentation,
e & is full (surjective on morphisms)

e & is essentially surjective (surjective on isomorphism classes) after
adding in summands.
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A preliminary category

For o,6 € C, T = 7, is the linear monoidal category defined as follows.

One generating object: | Four generating morphisms: X, >, (U, M

m:m, o

Q=nN, Q A <> al, O=dl, A=0

Relations:

Notes

o Can scale L by a~1/2 to reduce to case a = 1.

o Category is strict pivotal (isotopy invariance), so we can define

oA,
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The category F

Assume 6 # —2. Then ¥ = 7, s is obtained from 7, 5 by imposing three
additional relations:

XK = 55 (| [+2+X)).
(=S8 (| [+) + 22
W =S N+ K N)
;j;’O( HY4Y [ +\Y)
DD+ N
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The Albert algebra

Let
Al T3 T2
Agp = Tz A z1 ]| MER, 2, €0
To T1 A3

denote the set of 3 x 3 self-adjoint matrices over the octonions O,
equipped with the bilinear operation

1
aob:= g(ab—i— ba), a,b€ Ag,
where the juxtaposition ab denotes usual matrix multiplication.

We have a trace map

A T3 T9
tr: Ag — R, tr | T3 Ao 1] =M+ Ao+ A3
To T1 A3

A := C ®g Ag is the unique simple exceptional Jordan algebra.
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The Lie algebra of type F}

The group G of algebra automorphisms of A is the compact connected

real Lie group of type Fj.
Let | be the complexification of the Lie algebra of G.
The symmetric bilinear form

B:A®A—C, B(a®b):=tr(aob)
is nondegenerate and G-invariant (hence f-invariant).
Thus, we have a decomposition of f-modules

A=Clae@V, V =ker(tr).

V' is the natural f-module, and

dimV = 26.
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The functor

Fix a basis By of V, with dual basis {b¥ : b € By}, and let
T A=ClyaV =V,

be the natural projection.

Theorem (Gandhi-S.—Zaynullin 2021)

There is a unique monoidal functor

D %/3,26 = f—mOd

given on objects by | — V' and on morphisms by

(L) VeV =V, a®b— m(aob),
P0X): VeV VRV, a®b—bR®a,
3():C— VRV, 1 > bbb,
beBy
®(N): VeV —=C, a®b— B(a®b) =tr(aob).
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The functor

Theorem (Gandhi-S.—Zaynullin 2021)
@ The functor @ is full (surjective on morphisms).
© The functor @ factors through #7/3 26, giving

o :7.—7/3,26 — f—mOd.

Remark
The relation 5
_ @ o
XK = 533 (| [FR+X)
corresponds to the Cayley—Hamilton equation for traceless 3 x 3
octonionic matrices.
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Idempotent completion

Additive envelope
The additive envelope Add(7) is a linear monoidal category with:
Objects: Formal finite direct sums @;" | X;, X; € F.

Morphisms: Morphisms
n m
DD
i=1 j=1

are m x n matrices, where the (j,)-entry is a morphism f;;: X; = Yj in
F. Composition is matrix multiplication.

Karoubi envelope

The additive Karoubi envelope Kar(¥) is a linear monoidal category with:
Objects: Pairs (X, e) with X € Add(¥) and e: X — X an idempotent.
Morphisms: Homg () (X,e),(X",¢)) =¢ Hompgq(5) (X, X')e.

Alistair Savage (Ottawa) Diagrammatics for Fy July 30, 2021 28/32



Idempotent completion

Since the category f-mod is idempotent complete (i.e. it contains the
images of idempotents), we have an induced functor

Kar((I)): Kar(f}}/&%) — f-mOd.

Proposition (Gandhi-S.—Zaynullin 2021)

The functor Kar(®) is full and essentially surjective (i.e. every
finite-dimensional f-module is isomorphic to an object in the image of
Kar(®)).

Corollary (Centralizer property)

We have a surjective algebra isomorphism

End¢7/3726(|®’”) —» Endf(V@)T), r € N.
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The upshot

Since
Kar(@): Kar(?}/g’%) — f-mOd

is full and essentially surjective,

f-mod is a quotient of Kar(%7 /3 26).

Philosophy

All homomorphisms between f.d. f-modules are built from the “flip’
symmetry, the bilinear form, and a trilinear form (or the multiplication in
the Albert algebra).

Question

Is the functor Kar(®) faithful, and hence an equivalence of categories, or
are there further relations?
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Summary

@ 7 is a type Fj4 analogue of the unoriented and oriented Brauer
categories.

e Endg (I®") is a type Fy analogue of the oriented (walled) and
unoriented Brauer algebras.

@ We now have diagrammatic tools to study representation theory in
type Fj.
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Further directions

Quantum analogue

There are quantum diagrammatic categories:
@ Type A: framed HOMFLYPT skein category
e Types BC'D: Kauffman skein category
@ Type Go: Kuperberg (1994)

There should exist a quantum analogue of the category .

Webs

@ Webs given a diagrammatic description of the category generated by
the fundamental modules.

o First described in rank 2 by Kuperberg (1994, 1996).

@ Arbitrary type A by Cautis—Kamnizter—Morrison (2014) and type C
by Bodish—Elias—Rose—Tatham (2021).

@ ¥ is a starting point for developing F webs.
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