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Outline

Goal: Define an F4 analogue of the oriented and unoriented Brauer
categories and algebras.

Overview:

1 Centralizers in classical types

2 Diagrammatic categories

3 Oriented and unoriented Brauer categories

4 The category F
5 The functor F → f-mod

6 Further directions
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Centralizers in type A

For δ ∈ N, let V = Cδ be the natural glδ-module.

The natural permutation action yields a surjective algebra homomorphism

CSr ↠ Endglδ(V
⊗r).

This is part of Schur–Weyl duality.

If we want to include the dual module V ∗, we have

OBr,s(δ) ↠ Endglδ
(
V ⊗r ⊗ (V ∗)⊗s

)
,

where OBr,s(δ) is the walled Brauer algebra (or oriented Brauer algebra).
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Centralizers in other types

Types BCD

Let G be an orthogonal or symplectic Lie group.

The natural module V is self-dual. Let δ = dimV .

We have
Br(δ) ↠ EndG(V

⊗r),

where Br(δ) is the Brauer algebra.

Exceptional types

Less is known in exceptional types.

We will focus on the Lie algebra f of type F4.

If V is the natural f-module, we want

?? ↠ Endf(V
⊗r)
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Bigger picture

In fact, things become much more natural if we describe more.

General idea

Instead of only considering endomorphisms of V ⊗r, we consider all
morphisms V ⊗r → V ⊗s (and include dual V ∗ in type A).

Want a “nice” monoidal category C , together with a full and essentially
surjective monoidal functor

C → g-mod.

Desired features
1 C should be easy to describe, e.g. want a presentation in terms of

generators and relations.

2 Should recover above centralizer statements when restricting to
appropriate morphism spaces.
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Strict monoidal categories

A strict monoidal category is a category C equipped with

a bifunctor (the tensor product) ⊗ : C × C → C , and

a unit object 1,

such that, for objects A, B, C and morphisms f , g, h,

(A⊗B)⊗ C = A⊗ (B ⊗ C),

1⊗A = A = A⊗ 1,

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h),

11 ⊗ f = f = f ⊗ 11.

Remark: Non-strict monoidal categories

In a (not necessarily strict) monoidal category, the equalities above are
replaced by isomorphism, and we impose some coherence conditions.

Every monoidal category is monoidally equivalent to a strict one.
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Linear monoidal categories

For simplicity, we work over the ground field C.

A strict linear monoidal category is a strict monoidal category such that

each morphism space is a C-module,

composition of morphisms is C-bilinear,
tensor product of morphisms is C-bilinear.

The interchange law

The axioms of a strict monoidal category imply the interchange law: For

A1
f−→ A2 and B1

g−→ B2, the following diagram commutes:

A1 ⊗B1
1⊗g //

f⊗1
��

f⊗g

&&

A1 ⊗B2

f⊗1
��

A2 ⊗B1 1⊗g
// A2 ⊗B2
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String diagrams

Fix a strict monoidal category C .

We will denote a morphism f : A → B by:

A

B

f

The identity map 1A : A → A is a string with no label:

A

A

We sometimes omit the object labels when they are clear or unimportant.
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String diagrams

Composition is vertical stacking and tensor product is horizontal
juxtaposition:

f

g
= fg f ⊗ g = f g

The interchange law then becomes:

f

g
= f g =

f

g

A morphism f : A1 ⊗A2 → B1 ⊗B2 can be depicted:

A1

B2

A2

B1

f
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Presentations of strict monoidal categories

One can give presentations of some strict C-linear monoidal categories,
just as for monoids, groups, algebras, etc.

Objects: If the objects are generated by some collection Ai, i ∈ I, then we
have all possible tensor products of these objects:

1, Ai, Ai ⊗Aj ⊗Ak ⊗Aℓ, etc.

Morphisms: If the morphisms are generated by some collection fj , j ∈ J ,
then we have all possible compositions and tensor products of these
morphisms (whenever these make sense):

1Ai , fj ⊗ (fifk)⊗ (fℓ), etc.

We then often impose some relations on these morphism spaces.

String diagrams: We can build complex diagrams out of our simple
generating diagrams.
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Example: monoidally generated symmetric groups

Define a strict monoidal category Sym with one generating object I and
denote

1I =

We have one generating morphism

: I⊗ I → I⊗ I.

We impose the relations:

= , = .

Then
EndSym(I

⊗n) = Sn

is the symmetric group on n letters.
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Example: monoidally generated symmetric groups

This monoidal presentation of Sn is very efficient! We only needed

one generating morphism, and

two relations,

to get all the symmetric groups.

Note that the “distant braid relation”

sisj = sjsi, |i− j| > 1

for simple transpositions follows for free from the interchange law:

· · · = · · ·

Note: If we define Sym to be linear, then EndSym(↑⊗n) = CSn.
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Oriented Brauer category

For δ ∈ C, the oriented Brauer category OB(δ) is the linear monoidal
category defined as follows.

Two generating objects: ↑ and ↓

Four generating morphisms: , , ,

Define := , := , := , := .

Relations:

= , = , = , = ,

= , = , = δ11.
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Oriented Brauer category

An arbitrary morphism in OB(δ) is a C-linear combination of oriented
Brauer diagrams. E.g.

: ↑ ⊗ ↓⊗3 ⊗ ↑⊗2→↑ ⊗ ↓⊗2 ⊗ ↑ .

Composition: vertical “gluing”, replace closed components by a factor of δ.

Tensor product: horizontal concatenation.
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Oriented Brauer category

Universal property

Any linear symmetric monoidal category C with dual objects V, V ∗ of
dimension δ admits a linear monoidal functor

OB(δ) → C, ↑ 7→ V, ↓ 7→ V ∗.

Corollary

We have a linear monoidal functor (V = natural module)

OB(δ) → glδ-mod, ↑ 7→ V, ↓ 7→ V ∗.

7→
(
V ⊗2 → V ⊗2, v ⊗ w 7→ w ⊗ v

)
,

7→ (V ∗ ⊗ V → V ⊗ V ∗, f ⊗ v 7→ v ⊗ f) ,

7→ (V ⊗ V ∗ → C, v ⊗ f 7→ f(v)) ,

7→
(
C → V ∗ ⊗ V, 1 7→

∑
v∈BV

v∗ ⊗ v
)
,

where BV is a basis for V and v∗, v ∈ BV , is the dual basis.
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Oriented Brauer category

In fact, this functor is full. In particular, we recover the surjection

OBr,s(δ) ∼= EndOB(δ)(↑⊗r ⊗ ↓⊗s) ↠ Endglδ
(
V ⊗r ⊗ (V ∗)⊗s

)
,

where OBr,s(δ) is the walled Brauer algebra (or oriented Brauer algebra).

Fact: Every f.d. glδ-module is a summand of V ⊗r ⊗ (V ∗)⊗s for some r, s.

Philosophy

All homomorphisms between f.d. glδ-modules are built from the “flip”
symmetry and the natural pairing of V and V ∗.
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Brauer category

Fix δ ∈ C. The Brauer category B(δ) is the linear monoidal category
defined as follows.

One generating object: I

Three generating morphisms: , ,

Relations:

= , = , = , = ,

= , = , = δ11
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Brauer category

An arbitrary morphism in B(δ) is a linear combination of Brauer diagrams.
E.g.

: I⊗6 → I⊗4.

Composition: vertical “gluing”, replace closed components by a factor of δ.

Tensor product: horizontal concatenation.
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Brauer category

Universal property

Any linear symmetric monoidal category C with self-dual object V of
dimension δ admits a linear monoidal functor

B(δ) → C, I 7→ V.

Corollary

We have a linear monoidal functor (V = natural module)

B(δ) → soδ-mod, I 7→ V.

7→
(
V ⊗2 → V ⊗2, v ⊗ w 7→ w ⊗ v

)
,

7→
(
V ⊗2 → C, v ⊗ w 7→ ⟨v, w⟩

)
,

7→
(
C → V ⊗2, 1 7→

∑
v∈BV

v ⊗ v∨
)
,

where ⟨ , ⟩ is the bilinear form, and ∨ denotes the dual basis.
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Brauer category

In fact, this functor is full. In particular, we recover the surjection

Br(δ) ∼= EndB(δ)(I
⊗r) ↠ Endsoδ(V

⊗r),

where Br(δ) is the Brauer algebra

Fact: Every f.d. soδ-module is a summand of V ⊗r for some r.

Philosophy

All homomorphisms between f.d. soδ-modules are built from the “flip”
symmetry and the bilinear pairing.

Similar statements are true in the symplectic case.
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Goal

We want analogous results in type F4.

Thus, we want a linear monoidal category F and a functor

Φ: F → f-mod

such that

F has a simple presentation,

Φ is full (surjective on morphisms)

Φ is essentially surjective (surjective on isomorphism classes) after
adding in summands.
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A preliminary category

For α, δ ∈ C, T = Tα,δ is the linear monoidal category defined as follows.

One generating object: I Four generating morphisms: , , ,

Relations:

= = , := = , = ,

= , = , = , = ,

= , = , = α , = δ11, = 0.

Notes

Can scale by α−1/2 to reduce to case α = 1.

Category is strict pivotal (isotopy invariance), so we can define

:= = .
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The category F

Assume δ ̸= −2. Then F = Fα,δ is obtained from Tα,δ by imposing three
additional relations:

+ + =
2α

δ + 2

(
+ +

)
,

=
α2(δ + 14)

2(δ + 2)2

(
+

)
+

α(δ − 6)

2(δ + 2)

(
+

)
+

3α2(2− δ)

2(δ + 2)2
,

=
α(10− δ)

4(δ + 2)

(
+ + + +

)
− α2(δ + 30)

8(δ + 2)2

(
+ + + +

)
+

3α2(δ − 2)

8(δ + 2)2

(
+ + + +

)
.

Alistair Savage (Ottawa) Diagrammatics for F4 July 30, 2021 23 / 32



The Albert algebra

Let

AR =


λ1 x3 x̄2
x̄3 λ2 x1
x2 x̄1 λ3

 : λi ∈ R, xi ∈ O


denote the set of 3× 3 self-adjoint matrices over the octonions O,
equipped with the bilinear operation

a ◦ b := 1

2
(ab+ ba), a, b ∈ AR,

where the juxtaposition ab denotes usual matrix multiplication.

We have a trace map

tr : AR → R, tr

λ1 x3 x̄2
x̄3 λ2 x1
x2 x̄1 λ3

 = λ1 + λ2 + λ3.

A := C⊗R AR is the unique simple exceptional Jordan algebra.
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The Lie algebra of type F4

The group G of algebra automorphisms of AR is the compact connected
real Lie group of type F4.

Let f be the complexification of the Lie algebra of G.

The symmetric bilinear form

B : A⊗A → C, B(a⊗ b) := tr(a ◦ b)

is nondegenerate and G-invariant (hence f-invariant).

Thus, we have a decomposition of f-modules

A = C1A ⊕ V, V = ker(tr).

V is the natural f-module, and

dimV = 26.
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The functor

Fix a basis BV of V , with dual basis {b∨ : b ∈ BV }, and let

π : A = C1A ⊕ V → V,

be the natural projection.

Theorem (Gandhi–S.–Zaynullin 2021)

There is a unique monoidal functor

Φ: T7/3,26 → f-mod

given on objects by I 7→ V and on morphisms by

Φ( ): V ⊗ V → V, a⊗ b 7→ π(a ◦ b),
Φ( ): V ⊗ V → V ⊗ V, a⊗ b 7→ b⊗ a,

Φ( ): C → V ⊗ V, 1 7→
∑
b∈BV

b⊗ b∨,

Φ( ): V ⊗ V → C, a⊗ b 7→ B(a⊗ b) = tr(a ◦ b).
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The functor

Theorem (Gandhi–S.–Zaynullin 2021)

1 The functor Φ is full (surjective on morphisms).

2 The functor Φ factors through F7/3,26, giving

Φ: F7/3,26 → f-mod.

Remark

The relation

+ + =
2α

δ + 2

(
+ +

)
corresponds to the Cayley–Hamilton equation for traceless 3× 3
octonionic matrices.
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Idempotent completion

Additive envelope

The additive envelope Add(F ) is a linear monoidal category with:

Objects: Formal finite direct sums
⊕n

i=1Xi, Xi ∈ F .

Morphisms: Morphisms
n⊕

i=1

Xi →
m⊕
j=1

Yj

are m× n matrices, where the (j, i)-entry is a morphism fij : Xi → Yj in
F . Composition is matrix multiplication.

Karoubi envelope

The additive Karoubi envelope Kar(F ) is a linear monoidal category with:

Objects: Pairs (X, e) with X ∈ Add(F ) and e : X → X an idempotent.

Morphisms: HomKar(F )

(
(X, e), (X ′, e′)

)
= e′HomAdd(F )(X,X ′)e.
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Idempotent completion

Since the category f-mod is idempotent complete (i.e. it contains the
images of idempotents), we have an induced functor

Kar(Φ): Kar(F7/3,26) → f-mod.

Proposition (Gandhi–S.–Zaynullin 2021)

The functor Kar(Φ) is full and essentially surjective (i.e. every
finite-dimensional f-module is isomorphic to an object in the image of
Kar(Φ)).

Corollary (Centralizer property)

We have a surjective algebra isomorphism

EndF7/3,26
(I⊗r) ↠ Endf(V

⊗r), r ∈ N.
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The upshot

Since
Kar(Φ): Kar(F7/3,26) → f-mod

is full and essentially surjective,

f-mod is a quotient of Kar(F7/3,26).

Philosophy

All homomorphisms between f.d. f-modules are built from the “flip”
symmetry, the bilinear form, and a trilinear form (or the multiplication in
the Albert algebra).

Question

Is the functor Kar(Φ) faithful, and hence an equivalence of categories, or
are there further relations?
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Summary

F is a type F4 analogue of the unoriented and oriented Brauer
categories.

EndF (I⊗r) is a type F4 analogue of the oriented (walled) and
unoriented Brauer algebras.

We now have diagrammatic tools to study representation theory in
type F4.
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Further directions

Quantum analogue

There are quantum diagrammatic categories:

Type A: framed HOMFLYPT skein category

Types BCD: Kauffman skein category

Type G2: Kuperberg (1994)

There should exist a quantum analogue of the category F .

Webs

Webs given a diagrammatic description of the category generated by
the fundamental modules.

First described in rank 2 by Kuperberg (1994, 1996).

Arbitrary type A by Cautis–Kamnizter–Morrison (2014) and type C
by Bodish–Elias–Rose–Tatham (2021).

F is a starting point for developing F4 webs.
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