Diagrammatics for F_4

 $\succ + \chi + \chi = \frac{2\alpha}{\delta + 2} \left(\left| + \bigcirc + \chi \right) \right)$

Alistair Savage University of Ottawa

Slides: alistairsavage.ca/talks Preprint: arXiv:2107.12464

Joint with Raj Gandhi and Kirill Zaynullin.

Outline

Goal: Define an F_4 analogue of the oriented and unoriented Brauer categories and algebras.

Overview:

- Centralizers in classical types
- ② Diagrammatic categories
- Oriented and unoriented Brauer categories
- Integes in the second seco
- **5** The functor $\mathcal{F} \to \mathfrak{f}$ -mod
- Further directions

Centralizers in type A

For $\delta \in \mathbb{N}$, let $V = \mathbb{C}^{\delta}$ be the natural \mathfrak{gl}_{δ} -module.

The natural permutation action yields a surjective algebra homomorphism

 $\mathbb{C}\mathfrak{S}_r \twoheadrightarrow \operatorname{End}_{\mathfrak{gl}_{\delta}}(V^{\otimes r}).$

This is part of Schur–Weyl duality.

If we want to include the dual module V^* , we have

$$OB_{r,s}(\delta) \twoheadrightarrow End_{\mathfrak{gl}_{\delta}} \left(V^{\otimes r} \otimes (V^*)^{\otimes s} \right),$$

where $OB_{r,s}(\delta)$ is the walled Brauer algebra (or oriented Brauer algebra).

Centralizers in other types

$\mathsf{Types}\;BCD$

Let ${\cal G}$ be an orthogonal or symplectic Lie group.

```
The natural module V is self-dual. Let \delta = \dim V.
```

We have

$$\mathsf{B}_r(\delta) \twoheadrightarrow \mathrm{End}_G(V^{\otimes r}),$$

where $B_r(\delta)$ is the Brauer algebra.

Exceptional types

Less is known in exceptional types.

We will focus on the Lie algebra \mathfrak{f} of type F_4 .

If V is the natural \mathfrak{f} -module, we want

$$?? \twoheadrightarrow \operatorname{End}_{\mathfrak{f}}(V^{\otimes r})$$

Alistair Savage (Ottawa)

Bigger picture

In fact, things become much more natural if we describe more.

General idea

Instead of only considering endomorphisms of $V^{\otimes r}$, we consider all morphisms $V^{\otimes r} \to V^{\otimes s}$ (and include dual V^* in type A).

Want a "nice" monoidal category C, together with a full and essentially surjective monoidal functor

 $\mathcal{C} \to \mathfrak{g}\text{-}\mathsf{mod}.$

Desired features

- C should be easy to describe, e.g. want a presentation in terms of generators and relations.
- Should recover above centralizer statements when restricting to appropriate morphism spaces.

Alistair Savage (Ottawa)

Diagrammatics for F_4

Strict monoidal categories

A strict monoidal category is a category $\ensuremath{\mathcal{C}}$ equipped with

- a bifunctor (the tensor product) $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, and
- a unit object 1,

such that, for objects A, B, C and morphisms f, g, h,

•
$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$
,

•
$$\mathbb{1} \otimes A = A = A \otimes \mathbb{1}$$
,

•
$$(f \otimes g) \otimes h = f \otimes (g \otimes h)$$
,

• $1_1 \otimes f = f = f \otimes 1_1$.

Remark: Non-strict monoidal categories

In a (not necessarily strict) monoidal category, the equalities above are replaced by isomorphism, and we impose some coherence conditions.

Every monoidal category is monoidally equivalent to a strict one.

Alistair Savage (Ottawa)

Diagrammatics for F_4

Linear monoidal categories

For simplicity, we work over the ground field $\mathbb{C}.$

A strict linear monoidal category is a strict monoidal category such that

- each morphism space is a C-module,
- composition of morphisms is C-bilinear,
- tensor product of morphisms is \mathbb{C} -bilinear.

The interchange law

The axioms of a strict monoidal category imply the interchange law: For $A_1 \xrightarrow{f} A_2$ and $B_1 \xrightarrow{g} B_2$, the following diagram commutes:

$$\begin{array}{c|c} A_1 \otimes B_1 \xrightarrow{1 \otimes g} A_1 \otimes B_2 \\ \hline f \otimes 1 \\ A_2 \otimes B_1 \xrightarrow{f \otimes g} A_2 \otimes B_2 \end{array}$$

String diagrams

Fix a strict monoidal category C.

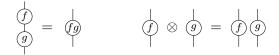
We will denote a morphism $f \colon A \to B$ by:

The identity map $1_A: A \to A$ is a string with no label:

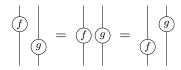
We sometimes omit the object labels when they are clear or unimportant.

String diagrams

Composition is vertical stacking and tensor product is horizontal juxtaposition:



The interchange law then becomes:



A morphism $f: A_1 \otimes A_2 \rightarrow B_1 \otimes B_2$ can be depicted:

Presentations of strict monoidal categories

One can give presentations of some strict $\mathbb C\text{-linear}$ monoidal categories, just as for monoids, groups, algebras, etc.

Objects: If the objects are generated by some collection A_i , $i \in I$, then we have all possible tensor products of these objects:

$$1, A_i, A_i \otimes A_j \otimes A_k \otimes A_\ell$$
, etc.

Morphisms: If the morphisms are generated by some collection f_j , $j \in J$, then we have all possible compositions and tensor products of these morphisms (whenever these make sense):

$$1_{A_i}, \quad f_j \otimes (f_i f_k) \otimes (f_\ell), \quad \text{etc.}$$

We then often impose some relations on these morphism spaces.

String diagrams: We can build complex diagrams out of our simple generating diagrams.

Alistair Savage (Ottawa)

Example: monoidally generated symmetric groups

Define a strict monoidal category $\underline{\mathit{Sym}}$ with one generating object I and denote

$$1_{||} =$$

We have one generating morphism

$$X : I \otimes I \to I \otimes I.$$

We impose the relations:

$$\left| \begin{array}{c} \\ \end{array} \right| = \left| \begin{array}{c} \\ \end{array} \right| , \quad \left| \begin{array}{c} \\ \end{array} \right| = \left| \begin{array}{c} \\ \end{array} \right| .$$

Then

$$\operatorname{End}_{\operatorname{Sym}}(\mathsf{I}^{\otimes n}) = S_n$$

is the symmetric group on n letters.

Example: monoidally generated symmetric groups

This monoidal presentation of S_n is very efficient! We only needed

- one generating morphism, and
- two relations,

to get all the symmetric groups.

Note that the "distant braid relation"

$$s_i s_j = s_j s_i, \qquad |i - j| > 1$$

for simple transpositions follows for free from the interchange law:

Note: If we define Sym to be linear, then $End_{Sym}(\uparrow^{\otimes n}) = \mathbb{C}S_n$.

For $\delta \in \mathbb{C}$, the oriented Brauer category $O\mathcal{B}(\delta)$ is the linear monoidal category defined as follows.

Two generating objects: \uparrow and \downarrow

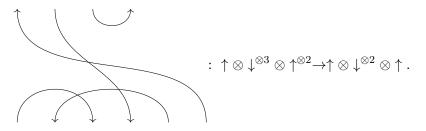
Four generating morphisms: \bigcirc , \bigcap , \swarrow , \swarrow

$$\mathsf{Define}\,\,\swarrow\,:=\,\bigvee\,,\quad \swarrow\,:=\,\bigvee\,,\quad \bigtriangledown\,:=\,\bigvee\,,\quad \land\,:=\,\bigvee\,,\quad \land\,:=\,\bigvee\,,\quad \land\,:=\,\bigvee\,.$$

Relations:

$$\begin{split} & \bigotimes = \bigcap \uparrow , \quad \bigotimes = \bigotimes , \quad \bigotimes = \bigotimes , \quad \bigotimes = \downarrow \uparrow , \quad \bigotimes = \uparrow \downarrow , \\ & \bigcap = \uparrow , \quad \bigcup = \downarrow , \quad \bigotimes = \delta 1_{1}. \end{split}$$

An arbitrary morphism in $OB(\delta)$ is a \mathbb{C} -linear combination of oriented Brauer diagrams. E.g.



Composition: vertical "gluing", replace closed components by a factor of δ .

Tensor product: horizontal concatenation.

Universal property

Any linear symmetric monoidal category ${\cal C}$ with dual objects V,V^* of dimension δ admits a linear monoidal functor

$$\mathcal{OB}(\delta) \to \mathcal{C}, \quad \uparrow \mapsto V, \quad \downarrow \mapsto V^*.$$

Corollary

We have a linear monoidal functor (V = natural module)

$$\mathcal{OB}(\delta) \to \mathfrak{gl}_{\delta}\text{-}\mathrm{mod}, \quad \uparrow \mapsto V, \quad \downarrow \mapsto V^*.$$

$$\begin{split} &\stackrel{\scriptstyle \swarrow}{\searrow} \mapsto \left(V^{\otimes 2} \to V^{\otimes 2}, \quad v \otimes w \mapsto w \otimes v \right), \\ &\stackrel{\scriptstyle \longleftarrow}{\boxtimes} \mapsto \left(V^* \otimes V \to V \otimes V^*, \quad f \otimes v \mapsto v \otimes f \right), \\ &\stackrel{\scriptstyle \bigcirc}{\longrightarrow} \left(V \otimes V^* \to \mathbb{C}, \quad v \otimes f \mapsto f(v) \right), \\ &\stackrel{\scriptstyle \bigcirc}{\cup} \mapsto \left(\mathbb{C} \to V^* \otimes V, \quad 1 \mapsto \sum_{v \in \mathbf{B}_V} v^* \otimes v \right), \end{split}$$

where \mathbf{B}_V is a basis for V and v^* , $v \in \mathbf{B}_V$, is the dual basis.

In fact, this functor is full. In particular, we recover the surjection

$$\operatorname{OB}_{r,s}(\delta) \cong \operatorname{End}_{\mathcal{OB}(\delta)}(\uparrow^{\otimes r} \otimes \downarrow^{\otimes s}) \twoheadrightarrow \operatorname{End}_{\mathfrak{gl}_{\delta}}\left(V^{\otimes r} \otimes (V^*)^{\otimes s}\right),$$

where $OB_{r,s}(\delta)$ is the walled Brauer algebra (or oriented Brauer algebra).

Fact: Every f.d. \mathfrak{gl}_{δ} -module is a summand of $V^{\otimes r} \otimes (V^*)^{\otimes s}$ for some r, s.

Philosophy

All homomorphisms between f.d. \mathfrak{gl}_{δ} -modules are built from the "flip" symmetry and the natural pairing of V and V^{*}.

Fix $\delta \in \mathbb{C}$. The Brauer category $\mathcal{B}(\delta)$ is the linear monoidal category defined as follows.

One generating object: I

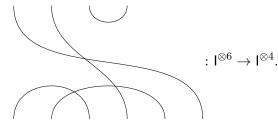
Three generating morphisms: \bigcup , \bigcap , \leftthreetimes

Relations:

$$\begin{array}{c} \left| \begin{array}{c} \left| \right\rangle, \\ \left| \right\rangle \\ \left| \right\rangle$$

Brauer category

An arbitrary morphism in $\mathcal{B}(\delta)$ is a linear combination of Brauer diagrams. E.g.



Composition: vertical "gluing", replace closed components by a factor of δ .

Tensor product: horizontal concatenation.

Brauer category

Universal property

Any linear symmetric monoidal category ${\cal C}$ with self-dual object V of dimension δ admits a linear monoidal functor

$$\mathcal{B}(\delta) \to \mathcal{C}, \quad \mathsf{I} \mapsto V.$$

Corollary

We have a linear monoidal functor (V = natural module)

$$\mathcal{B}(\delta) \to \mathfrak{so}_{\delta}\operatorname{-mod}, \qquad \mathsf{I} \mapsto V.$$

$$\begin{array}{l} \times \mapsto \left(V^{\otimes 2} \to V^{\otimes 2}, \quad v \otimes w \mapsto w \otimes v \right), \\ \cap \mapsto \left(V^{\otimes 2} \to \mathbb{C}, \quad v \otimes w \mapsto \langle v, w \rangle \right), \\ \cup \mapsto \left(\mathbb{C} \to V^{\otimes 2}, \quad 1 \mapsto \sum_{v \in \mathbf{B}_V} v \otimes v^{\vee} \right), \end{array}$$

where $\langle \ , \ \rangle$ is the bilinear form, and $\ ^{\vee}$ denotes the dual basis.

Alistair Savage (Ottawa)

Diagrammatics for F_4

Brauer category

In fact, this functor is full. In particular, we recover the surjection

$$B_r(\delta) \cong \operatorname{End}_{\mathcal{B}(\delta)}(\mathsf{I}^{\otimes r}) \twoheadrightarrow \operatorname{End}_{\mathfrak{so}_{\delta}}(V^{\otimes r}),$$

where $B_r(\delta)$ is the Brauer algebra

Fact: Every f.d. \mathfrak{so}_{δ} -module is a summand of $V^{\otimes r}$ for some r.

Philosophy

All homomorphisms between f.d. \mathfrak{so}_{δ} -modules are built from the "flip" symmetry and the bilinear pairing.

Similar statements are true in the symplectic case.

We want analogous results in type F_4 .

Thus, we want a linear monoidal category ${\mathcal F}$ and a functor

 $\Phi\colon \mathcal{F}\to \mathfrak{f}\text{-}\mathsf{mod}$

such that

- $\mathcal F$ has a simple presentation,
- Φ is full (surjective on morphisms)
- Φ is essentially surjective (surjective on isomorphism classes) after adding in summands.

A preliminary category

For $\alpha, \delta \in \mathbb{C}$, $\mathcal{T} = \mathcal{T}_{\alpha,\delta}$ is the linear monoidal category defined as follows. One generating object: I Four generating morphisms: \bigwedge , \bigotimes , \bigcup , \cap Relations:

$$\begin{array}{c} \swarrow = \left| = \bigcup, \quad \Upsilon := \bigcup = \swarrow, \quad \bigwedge = \swarrow, \\ \swarrow = \left| \right|, \quad \swarrow = \varkappa, \quad \swarrow = \varkappa, \quad \swarrow = \varkappa, \quad \bigwedge = \checkmark, \\ Q = \cap, \quad \diamondsuit = \bigstar, \quad \diamondsuit = \alpha \right|, \quad \bigcirc = \delta \mathbf{1}_{\mathbf{1}}, \quad \circlearrowright = \mathbf{0}.$$

Notes

- Can scale \downarrow by $\alpha^{-1/2}$ to reduce to case $\alpha = 1$.
- Category is strict pivotal (isotopy invariance), so we can define

$$\succ := \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right| = \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right|.$$

Alistair Savage (Ottawa)

Diagrammatics for F_4

The category $\mathcal F$

Assume $\delta \neq -2$. Then $\mathcal{F} = \mathcal{F}_{\alpha,\delta}$ is obtained from $\mathcal{T}_{\alpha,\delta}$ by imposing three additional relations:

The Albert algebra

Let

$$A_{\mathbb{R}} = \left\{ \begin{pmatrix} \lambda_1 & x_3 & \bar{x}_2 \\ \bar{x}_3 & \lambda_2 & x_1 \\ x_2 & \bar{x}_1 & \lambda_3 \end{pmatrix} : \lambda_i \in \mathbb{R}, \ x_i \in \mathbb{O} \right\}$$

denote the set of 3×3 self-adjoint matrices over the octonions \mathbb{O} , equipped with the bilinear operation

$$a \circ b := \frac{1}{2}(ab + ba), \quad a, b \in A_{\mathbb{R}},$$

where the juxtaposition ab denotes usual matrix multiplication.

We have a trace map

tr:
$$A_{\mathbb{R}} \to \mathbb{R}$$
, tr $\begin{pmatrix} \lambda_1 & x_3 & \bar{x}_2 \\ \bar{x}_3 & \lambda_2 & x_1 \\ x_2 & \bar{x}_1 & \lambda_3 \end{pmatrix} = \lambda_1 + \lambda_2 + \lambda_3.$

 $A := \mathbb{C} \otimes_{\mathbb{R}} A_{\mathbb{R}}$ is the unique simple exceptional Jordan algebra.

The Lie algebra of type F_4

The group G of algebra automorphisms of $A_{\mathbb{R}}$ is the compact connected real Lie group of type F_4 .

Let f be the complexification of the Lie algebra of G.

The symmetric bilinear form

$$B: A \otimes A \to \mathbb{C}, \quad B(a \otimes b) := \operatorname{tr}(a \circ b)$$

is nondegenerate and G-invariant (hence f-invariant).

Thus, we have a decomposition of \mathfrak{f} -modules

$$A = \mathbb{C}1_A \oplus V, \quad V = \ker(\mathrm{tr}).$$

V is the natural f-module, and

 $\dim V = 26.$

Alistair Savage (Ottawa)

The functor

Fix a basis \mathbf{B}_V of V, with dual basis $\{b^{\vee}: b \in B_V\}$, and let

$$\pi\colon A=\mathbb{C}1_A\oplus V\to V,$$

be the natural projection.

Theorem (Gandhi–S.–Zaynullin 2021) There is a unique monoidal functor

$$\Phi\colon \mathcal{T}_{7/3,26}\to \mathfrak{f}\text{-}\mathsf{mod}$$

given on objects by $\mathsf{I}\mapsto V$ and on morphisms by

$$\begin{split} \Phi(\swarrow) &: V \otimes V \to V, & a \otimes b \mapsto \pi(a \circ b), \\ \Phi(\boxtimes) &: V \otimes V \to V \otimes V, & a \otimes b \mapsto b \otimes a, \\ \Phi(\bigcup) &: \mathbb{C} \to V \otimes V, & 1 \mapsto \sum_{b \in \mathbf{B}_V} b \otimes b^{\vee}, \\ \Phi(\cap) &: V \otimes V \to \mathbb{C}, & a \otimes b \mapsto B(a \otimes b) = \operatorname{tr}(a \circ b). \end{split}$$

The functor

Theorem (Gandhi–S.–Zaynullin 2021)

- **1** The functor Φ is full (surjective on morphisms).
- **2** The functor Φ factors through $\mathcal{F}_{7/3,26}$, giving

 $\Phi\colon \mathcal{F}_{7/3,26}\to \mathfrak{f}\text{-}\mathsf{mod}.$

Remark

The relation

$$\succ + \uparrow + \swarrow + \models = \frac{2\alpha}{\delta + 2} \left(\left| + \bigcirc + \leftthreetimes \right) \right)$$

corresponds to the Cayley–Hamilton equation for traceless 3×3 octonionic matrices.

Idempotent completion

Additive envelope

The additive envelope $Add(\mathcal{F})$ is a linear monoidal category with:

Objects: Formal finite direct sums $\bigoplus_{i=1}^{n} X_i$, $X_i \in \mathcal{F}$.

Morphisms: Morphisms

$$\bigoplus_{i=1}^n X_i \to \bigoplus_{j=1}^m Y_j$$

are $m \times n$ matrices, where the (j, i)-entry is a morphism $f_{ij} \colon X_i \to Y_j$ in \mathcal{F} . Composition is matrix multiplication.

Karoubi envelope

The additive Karoubi envelope $Kar(\mathcal{F})$ is a linear monoidal category with:

Objects: Pairs (X, e) with $X \in Add(\mathcal{F})$ and $e \colon X \to X$ an idempotent.

Morphisms: $\operatorname{Hom}_{\operatorname{Kar}(\mathcal{F})}((X, e), (X', e')) = e' \operatorname{Hom}_{\operatorname{Add}(\mathcal{F})}(X, X')e.$

Idempotent completion

Since the category f-mod is idempotent complete (i.e. it contains the images of idempotents), we have an induced functor

 $\operatorname{Kar}(\Phi) \colon \operatorname{Kar}(\mathcal{F}_{7/3,26}) \to \mathfrak{f}\text{-mod}.$

Proposition (Gandhi–S.–Zaynullin 2021)

The functor $Kar(\Phi)$ is full and essentially surjective (i.e. every finite-dimensional f-module is isomorphic to an object in the image of $Kar(\Phi)$).

Corollary (Centralizer property)

We have a surjective algebra isomorphism

$$\operatorname{End}_{\mathcal{F}_{7/3,26}}(\mathsf{I}^{\otimes r}) \twoheadrightarrow \operatorname{End}_{\mathfrak{f}}(V^{\otimes r}), \quad r \in \mathbb{N}.$$

Alistair Savage (Ottawa)

The upshot

Since

$$\operatorname{Kar}(\Phi) \colon \operatorname{Kar}(\mathcal{F}_{7/3,26}) \to \mathfrak{f}\text{-mod}$$

is full and essentially surjective,

```
\mathfrak{f}-mod is a quotient of \operatorname{Kar}(\mathcal{F}_{7/3,26}).
```

Philosophy

All homomorphisms between f.d. f-modules are built from the "flip" symmetry, the bilinear form, and a trilinear form (or the multiplication in the Albert algebra).

Question

Is the functor ${\rm Kar}(\Phi)$ faithful, and hence an equivalence of categories, or are there further relations?

- \mathcal{F} is a type F_4 analogue of the unoriented and oriented Brauer categories.
- End_𝒯(I^{⊗r}) is a type F₄ analogue of the oriented (walled) and unoriented Brauer algebras.
- We now have diagrammatic tools to study representation theory in type *F*₄.

Further directions

Quantum analogue

There are quantum diagrammatic categories:

- Type A: framed HOMFLYPT skein category
- Types BCD: Kauffman skein category
- Type G_2 : Kuperberg (1994)

There should exist a quantum analogue of the category $\mathcal F.$

Webs

- Webs given a diagrammatic description of the category generated by the fundamental modules.
- First described in rank 2 by Kuperberg (1994, 1996).
- Arbitrary type *A* by Cautis–Kamnizter–Morrison (2014) and type *C* by Bodish–Elias–Rose–Tatham (2021).
- $\mathcal F$ is a starting point for developing F_4 webs.