Advances in Heisenberg categorification

\[
\begin{array}{ccc}
\text{−} & = & \sum_{b \in B} b \\
\end{array}
\]

Alistair Savage
University of Ottawa

Slides available online: alistairsavage.ca/talks

Outline

Goals:
1. Describe a family of categories that categorify the Heisenberg algebra
2. Explain the relation to previous Heisenberg categories

Overview:
1. Strict monoidal categories and string diagrams
2. The Frobenius Heisenberg category
3. Actions on categories of modules
4. Work in progress: q-deformations
A strict monoidal category is a category C equipped with
- a bifunctor (the tensor product) $\otimes : C \times C \to C$, and
- a unit object 1,

such that
- $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ for all objects A, B, C,
- $1 \otimes A = A = A \otimes 1$ for all objects A.

Remark: Non-strict monoidal categories

In a (not necessarily strict) monoidal category, the equalities above are replaced by isomorphism, and we impose some coherence conditions.

Every monoidal category is monoidally equivalent to a strict one.
k-linear monoidal categories

Fix a commutative ground ring k.

A **strict k-linear monoidal category** is a strict monoidal category such that
- each morphism space is a k-module,
- composition of morphisms is k-bilinear,
- tensor product of morphisms is k-bilinear.

The interchange law

The axioms of a strict monoidal category imply the **interchange law**: For $A_1 \xrightarrow{f} A_2$ and $B_1 \xrightarrow{g} B_2$, the following diagram commutes:

$$
\begin{array}{ccc}
A_1 \otimes B_1 & \xrightarrow{1 \otimes g} & A_1 \otimes B_2 \\
\downarrow f \otimes 1 & & \downarrow f \otimes 1 \\
A_2 \otimes B_1 & \xrightarrow{1 \otimes g} & A_2 \otimes B_2
\end{array}
$$
Categorification via split Grothendieck group

Suppose \(C \) is an additive category (i.e. have \(\oplus \)).

\[\text{Iso}_\mathbb{Z}(C) = \text{free abelian group generated by isom. classes of objects in } C. \]

The split Grothendieck group of \(C \) is

\[K_0(C) = \text{Iso}_\mathbb{Z}(C)/\langle [X \oplus Y] = [X] + [Y] \mid X, Y \in C \rangle. \]

If \(C \) is monoidal, then \(K_0(C) \) is a ring:

\[[X] \cdot [Y] = [X \otimes Y]. \]

Categorification

For our purposes, to categorify a ring \(R \) is to find an additive monoidal category \(C \) such that

\[K_0(C) \cong R \] as rings.
The Heisenberg algebra

Let \mathfrak{h} be the infinite-dimensional Heisenberg Lie algebra.

Thus, \mathfrak{h} is the complex Lie algebra with basis

$$\{c, q_n^\pm : n \geq 1\}$$

and product

$$[q_m^+, q_n^+] = [q_m^-, q_n^-] = [c, q_n^\pm] = 0, \quad [q_m^+, q_n^-] = \delta_{m,n} nc.$$

The associative Heisenberg algebra at central charge $\xi \in \mathbb{Z}$ is

$$U(\mathfrak{h})/\langle c - \xi \rangle.$$

We will describe categories that categorify these algebras.
String diagrams

Fix a strict monoidal category \mathcal{C}.

We will denote a morphism $f: A \to B$ by:

The identity map $\text{id}_A: A \to A$ is a string with no label:

We sometimes omit the object labels when they are clear or unimportant.
String diagrams

Composition is **vertical stacking** and tensor product is **horizontal juxtaposition**:

\[
\begin{array}{c}
\begin{array}{c}
\bullet \quad f \\
\downarrow \\
\bullet \quad g
\end{array}
= \\
\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array} \\
\begin{array}{c}
\bullet \quad \otimes \\
\downarrow \\
\bullet
\end{array} \\
\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}
\end{array}
\]

The **interchange law** then becomes:

\[
\begin{array}{c}
\begin{array}{c}
\bullet \quad f \\
\downarrow \\
\bullet \quad g
\end{array}
= \\
\begin{array}{c}
\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array} \\
\begin{array}{c}
\bullet \quad \otimes \\
\downarrow \\
\bullet
\end{array} \\
\begin{array}{c}
\bullet \\
\downarrow \\
\bullet
\end{array}
\end{array}
\end{array}
\]

A morphism \(f : A_1 \otimes A_2 \to B_1 \otimes B_2 \) can be depicted:

\[
\begin{array}{c}
\begin{array}{c}
B_1 \\
\downarrow \\
\bullet \quad f \\
\downarrow \\
A_1
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
B_2 \\
\downarrow \\
\bullet \quad f \\
\downarrow \\
A_2
\end{array}
\end{array}
\]
Presentations of strict monoidal categories

One can give presentations of some strict \(\mathbb{k} \)-linear monoidal categories, just as for monoids, groups, algebras, etc.

Objects: If the objects are generated by some collection \(A_i, i \in I \), then we have all possible tensor products of these objects:

\[
\mathbf{1}, \quad A_i, \quad A_i \otimes A_j \otimes A_k \otimes A_\ell, \quad \text{etc.}
\]

Morphisms: If the morphisms are generated by some collection \(f_j, j \in J \), then we have all possible compositions and tensor products of these morphisms (whenever these make sense):

\[
\text{id}_{A_i}, \quad f_j \otimes (f_if_k) \otimes (f_\ell), \quad \text{etc.}
\]

We then often impose some relations on these morphism spaces.

String diagrams: We can build complex diagrams out of our simple generating diagrams.
Monoidally generated symmetric groups

Define a strict \mathbb{k}-linear monoidal category S with one generating object \uparrow and denote

$$\text{id}_\uparrow = \uparrow$$

We have one generating morphism

$$\begin{array}{c}
\uparrow \otimes \uparrow \\
\Downarrow\\
\uparrow \otimes \uparrow.
\end{array}$$

We impose the relations:

$$
\begin{array}{c}
\uparrow \otimes \uparrow = \uparrow \\
\Downarrow\\
\uparrow \otimes \uparrow
\end{array},
\begin{array}{c}
\uparrow \otimes \uparrow = \uparrow \otimes \uparrow \\
\Downarrow\\
\uparrow \otimes \uparrow
\end{array}.
$$

Then

$$\text{End}_S(\uparrow \otimes^n) = \mathbb{k}S_n$$

is the group algebra of the symmetric group on n letters.
The degenerate affine Hecke category

Start again with the strict \mathbb{k}-linear monoidal category S, but add a morphism:

$$\begin{array}{c}
\uparrow \\
\circ
\end{array} : \uparrow \rightarrow \uparrow$$

We impose the additional relation:

$$\begin{array}{c}
\circ \\
\circ
\end{array} \rightarrow \begin{array}{c}
\circ \\
\circ
\end{array} = \begin{array}{c}
\uparrow \\
\uparrow \\
\uparrow
\end{array}.$$

Now

$$\text{End}(\uparrow \otimes n)$$

is the degenerate affine Hecke algebra (of type A).
Fix an associative k-algebra F. We add an endomorphism of \uparrow for each element of F.

More precisely, let $\mathcal{W}(F)$ be the strict k-linear monoidal category obtained from S by adding morphisms such that we have an algebra homomorphism:

$$F \rightarrow \text{End } \uparrow, \quad f \mapsto \uparrow f$$

We impose the additional relations:

$$f \times f = f, \quad f \in F$$
The wreath product category

\[\text{End}_{\mathcal{W}(F)}(\uparrow \otimes n) = F \otimes n \rtimes S_n \]

is a wreath product algebra.

As a vector space,

\[F \otimes n \rtimes S_n = F \otimes n \otimes_k kS_n. \]

Multiplication is determined by

\[(f_1 \otimes \pi_1)(f_2 \otimes \pi_2) = f_1(\pi_1 \cdot f_2) \otimes \pi_1 \pi_2, \quad f_1, f_2 \in F \otimes n, \; \pi_1, \pi_2 \in S_n, \]

where \(\pi_1 \cdot f_2 \) denotes the natural action of \(S_n \) on \(F \otimes n \) by permutation of the factors.

Note: \(\mathcal{W}(k) = S \), the symmetric group category.

Want: An affine version of the wreath product category. \(F = k \) should recover the degenerate affine Hecke category.
A Frobenius algebra is a f.d. associative algebra F together with a linear trace map

$$\text{tr}: F \to k$$

such that the induced map

$$F \to \text{Hom}_k(F, k), \quad f \mapsto (g \mapsto \text{tr}(gf)),$$

is an isomorphism.

For simplicity, we assume that the trace is symmetric:

$$\text{tr}(fg) = \text{tr}(gf), \quad \text{for all } f, g \in F.$$
Frobenius algebras: Examples

Example (\mathbb{k})

\mathbb{k} is a Frobenius algebra with $\text{tr} = \text{id}_\mathbb{k}$.

Example (Matrix algebra)

Any matrix algebra over a field is a Frobenius algebra with the usual trace.

Example ($\mathbb{k}[x]/(x^k)$)

$\mathbb{k}[x]/(x^k)$ is a Frobenius algebra with

$$\text{tr}(x^\ell) = \delta_{\ell,k-1}.$$
Frobenius algebras: Examples

Example (Group algebra)
Suppose G is a finite group.

The group algebra kG is a Frobenius algebra with

$$\text{tr}(g) = \delta_{g,1_G}, \quad g \in G.$$

Example (Zigzag algebra)
Associated to every quiver is a zigzag algebra. These are Frobenius algebras.

Example (Hopf algebras)
Every f.d. Hopf algebra is a Frobenius algebra.

From now on: F is a Frobenius algebra with trace tr.
Fix a basis B of F. The dual basis is

$$B^\vee = \{ b^\vee \mid b \in B \}$$

defined by

$$\operatorname{tr} (b^\vee c) = \delta_{b,c}, \quad b, c \in B.$$

It is easy to check that

$$\sum_{b \in B} b \otimes b^\vee \in F \otimes F$$

is independent of the basis B.
Affine wreath product category

Start with the wreath product category $\mathcal{W}(F)$, but add a morphism:

$$\uparrow : \uparrow \rightarrow \uparrow$$

We impose the additional relations:

$$- \bigtriangleup = \sum_{b \in B} b \uparrow \uparrow b^\vee , \quad f \uparrow = \uparrow f , \quad f \in F$$

Call the resulting category $\mathcal{AW}(F)$ the affine wreath product category.

Now

$$\text{End}_{\mathcal{AW}(F)}(\uparrow \otimes n)$$

is an affine wreath product algebra.

Note: $\mathcal{AW}(\mathbb{K})$ is the degenerate affine Hecke category.
Suppose a strict monoidal category C has two objects \uparrow and \downarrow, with

$$\text{id}_\uparrow = \uparrow, \quad \text{id}_\downarrow = \downarrow.$$

A morphism $\mathbf{1} \to \downarrow \otimes \uparrow$ would have string diagram

$$\begin{array}{c}
\quad \\
\quad \\
\quad \\
\end{array}$$

where $\quad = \text{id}_\mathbf{1}$.

We typically omit the dotted line and draw:

$$
\begin{array}{c}
\quad \\
\quad \\
\quad \\
\end{array}
: \mathbf{1} \to \downarrow \otimes \uparrow.
$$

Similarly, we can have

$$
\begin{array}{c}
\quad \\
\quad \\
\quad \\
\end{array}
: \uparrow \otimes \downarrow \to \mathbf{1}.$$
Adjunction

We say that \(\downarrow \) is right adjoint to \(\uparrow \) (and \(\uparrow \) is left adjoint to \(\downarrow \)) if there exist morphisms

\[
\begin{align*}
\begin{array}{c}
\cup : & 1 \rightarrow \downarrow \otimes \uparrow, \\
& \text{and} \\
\cap : & \uparrow \otimes \downarrow \rightarrow 1
\end{array}
\end{align*}
\]

such that

\[
\begin{align*}
\begin{array}{c}
\cup \cap = 1 \\
& \text{and} \\
\cap \cup = \uparrow
\end{array}
\end{align*}
\]

(This is analogous to the unit-counit formulation of adjunction of functors.)

We say \(\uparrow \) and \(\downarrow \) are biadjoint if they are both left and right adjoint to each other. So we also have

\[
\begin{align*}
\begin{array}{c}
\cap : & 1 \rightarrow \uparrow \otimes \downarrow, \\
& \text{and} \\
\cup : & \downarrow \otimes \uparrow \rightarrow 1
\end{array}
\end{align*}
\]

such that

\[
\begin{align*}
\begin{array}{c}
\cap \cup = \uparrow \\
& \text{and} \\
\cup \cap = \downarrow
\end{array}
\end{align*}
\]
The Frobenius Heisenberg category

Recall the affine wreath product category $\mathcal{AW}(F)$. It is the strict \mathbb{k}-linear monoidal category with:

Objects: Generated by object \uparrow.

Morphisms: Generated by

- $\uparrow \otimes \uparrow \rightarrow \uparrow \otimes \uparrow$,
- $\uparrow \rightarrow \uparrow$,
- $\bullet f : \uparrow \rightarrow \uparrow$, $f \in F$,

with relations

- $\uparrow \uparrow = \uparrow \uparrow$, $\uparrow \uparrow \rightarrow \uparrow \otimes \uparrow$, $f \uparrow \uparrow = \uparrow f$, $f \in F$,
- $\uparrow \otimes \uparrow - \uparrow \otimes \uparrow = \sum_{b \in B} b \uparrow \uparrow b \uparrow \rightarrow \uparrow \otimes \uparrow$, $f \otimes \uparrow = \uparrow \otimes f$, $f \in F$.

For $n \in \mathbb{N}$, define

$$n \uparrow = \left\{ \begin{array}{c} \uparrow \\ \vdots \end{array} \right\} n \text{ dots.}$$
Fix a central charge $\xi \in \mathbb{Z}$, $\xi \leq 0$.

(Actually, we can take any $\xi \in \mathbb{Z}$, but we choose $\xi \leq 0$ for simplicity of exposition.)

To $\mathcal{AW}(F')$ we add another object \downarrow that is right adjoint to \uparrow:

$$\downarrow \quad =
\quad \downarrow$$

and

$$\circledS \quad =
\quad \uparrow.$$

We can then define right crossings:

$$\begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\uparrow
\end{array}
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\uparrow
\end{array}
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\end{array} =
\downarrow \quad \begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\uparrow
\end{array}
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\uparrow
\end{array}
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\uparrow
\end{array}
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
\begin{array}{c}
\downarrow
\end{array}
\end{array}
\end{array}.$$

(We start denoting tensor product by juxtaposition: $\uparrow\downarrow := \uparrow \otimes \downarrow$.)
The Frobenius Heisenberg category

We then impose the crucial inversion relation:

The following matrix of morphisms is an isomorphism in the additive envelope:

\[
\begin{bmatrix}
\begin{matrix}
\otimes & \bullet \\
\circlearrowleft & b^{\vee} & \circlearrowright
\end{matrix}
\end{bmatrix}, \quad 0 \leq r \leq -\xi - 1, \quad b \in B
\]

: \((\uparrow \otimes \downarrow) \oplus 1^{\oplus (-\xi \dim F)} \rightarrow \downarrow \otimes \uparrow.

More precisely, we add in some other morphisms that are the matrix components of an inverse to the above morphism.

We call the resulting category \(\mathcal{H}_{\text{Heis}} F, \xi\) the Frobenius Heisenberg category.
The Frobenius Heisenberg category

Theorem (S. 2018)

There are unique morphisms

\[↰ \cup : 1 \to \uparrow \downarrow, \quad \downarrow \cup : \downarrow \uparrow \to 1 \] \hspace{1cm} (1)

such that the following relations hold:

\[\overbrace{\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\uparrow \downarrow = \\
\uparrow \\
\downarrow
\end{array}
\end{array}
\end{array}}^{\text{a}} + \sum_{k,s \geq 0} \sum_{a,b \in B}^{\text{b}} \delta_{-k-s-2} \left\langle a \right| \text{tr}(f) \left| b \right\rangle = 0, \]

\[f \circ r = \delta_{r,-\xi-1} \text{tr}(f) \quad \text{if} \quad 0 \leq r < -\xi. \]

In addition, \(\mathcal{H}eis_{F,\xi} \) can be presented equivalently by replacing the inversion relation with the existence of morphisms (1) and above relations.
The Frobenius Heisenberg category

The previous theorem involves left crossings

\[
\begin{array}{c}
\text{left crossing}
\end{array}
\]

and negatively dotted bubbles: for \(r \leq -\xi \),

\[
(r+\xi-1) \circ \bullet f := (-1)^{r+1} \sum_{b_1,\ldots,b_{r-1} \in B} \det \left(\begin{array}{c} b_j \pi_{i-j-\xi} \end{array} \right)_{i,j=1}^r.
\]

Theorem (S. 2018)

1. The objects \(\downarrow \) and \(\uparrow \) are biadjoint.
2. The category \(H e i s_{F,\xi} \) is strictly pivotal (isotopy invariance for morphisms).
3. One can compute an infinite grassmannian relation, curl relations, bubble slide relations, and an alternating braid relation (omitted here).
4. Under a mild assumption on \(F \), the category \(H e i s_{F,\xi} \) categorifies the Heisenberg algebra at central charge \(\xi \dim F \).
Suppose $\xi \leq -1$.

The category $\mathcal{H}eis_{F,\xi}$ acts naturally on modules for cyclotomic wreath product algebras. We have a chain of algebras

$$k = A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots .$$

Then

- \uparrow acts by induction from A_n-mod to A_{n+1}-mod,
- \downarrow acts by restriction from A_n-mod to A_{n-1}-mod.

The morphisms (diagrams) act by certain natural transformations.

Fact that \uparrow and \downarrow are biadjoint corresponds to fact that induction and restriction are biadjoint.

In other words A_n is a Frobenius extension of A_{n-1}.
Heisenberg categorification and actions ($\xi = 0$)

$F = \mathbb{k}$ case

$\mathcal{H}eis_{\mathbb{k},0}$ is the affine oriented Brauer category of
Brundan– Comes– Nash– Reynolds.

$\mathcal{H}eis_{\mathbb{k},0}$ acts naturally on $\mathfrak{gl}_n(\mathbb{k})$-mod: If V is the natural rep, then

- $\uparrow \mapsto V \otimes -$
- $\downarrow \mapsto V^* \otimes -$

General case: open problem

What does $\mathcal{H}eis_{F,0}$ act naturally on for a general Frobenius algebra F?
Historical remarks

Original Heisenberg category (Khovanov)
- Morphisms were planar diagrams up to isotopy, so strictly pivotal property was part of the definition.
- Central charge $\xi = -1$ and $F = \mathbb{k}$.

Frobenius modification (central charge -1)
- For F the zigzag algebra, defined by Cautis–Licata and studied in relation to geometry of the Hilbert scheme.
- General definition given in joint work with Rosso.
- Still have central charge $\xi = -1$.

Higher central charge (Mackaay–S.)
- Generalized to higher central charge (with $F = \mathbb{k}$).
- Again, pivotal property part of the definition.
Historical remarks

Inversion relation approach, \(F = k \) (Brundan)

- New approach to the definition of higher charge category (Mackaay-S.) using the inversion relation.
- Now, pivotal property is a consequence of the definition.
- Advantage: proof that category acts on modules over degenerate (cyclotomic) affine Hecke algebras is much easier. Uses a well-known Mackey-type theorem.

Current work

- Follows inversion relation approach of Brundan.
- Defines a Frobenius algebra version of higher charge category (Mackaay–S.).
- Defines a higher charge version of previous Frobenius Heisenberg category (Rosso–S.).
Summarizing the relationship between the Heisenberg categories appearing in the literature, we have:
Some remarks

One can actually work in a more general setting than the one described here:

1. F can be a graded Frobenius superalgebra. Then $\mathcal{Heis}_{F,\xi}$ is a strict \mathbb{k}-linear graded monoidal supercategory.

2. The trace need not be symmetric. In general, there exists a Nakayama automorphism $\psi: F \to F$ such that

$$\text{tr}(fg) = (-1)^{\tilde{f}\tilde{g}} \text{tr}(g\psi(f))$$

for all $f, g \in F$.

Then, for instance,

$$f \uparrow \downarrow = \uparrow \downarrow \psi(f), \quad f \in F,$$

3. Above remarks mean we can take F to be the Clifford superalgebra. Then $\mathcal{Heis}_{F,\xi}$ acts on modules for affine Sergeev algebras (a.k.a. degenerate affine Hecke–Clifford algebras).
One can q-deform the Frobenius Heisenberg category. When $F = k$, this corresponds to

deg. affine Hecke algebra \cong affine Hecke algebra.

Generating objects: \uparrow and \downarrow

Generating morphisms:

\[
\begin{align*}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture}, \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture}, \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture}.
\end{align*}
\]

Relations: Fix $z \in k$.

\[
\begin{align*}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture} - \begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture} & = z \begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture} , \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture} & = \begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw (0.5,0.5) circle (0.1);
\end{tikzpicture}.
\end{align*}
\]

+ inversion relation.
Case: $\xi = 0$

When $\xi = 0$, one obtains the **affine oriented skein category**, an affinization of the HOMFLY-PT skein category.

This category acts on modules for $U_q(\mathfrak{gl}_n)$.

Certain closed diagrams correspond to the **Casimir elements** in $U_q(\mathfrak{gl}_n)$.

Relation to previous constructions

When $\xi = -1$, the category contains the previously defined q-deformed Heisenberg category (Licata–S. 2013).

Main difference between two constructions is that, in the previous q-deformed Heisenberg category, the dot was not invertible.

Case $\xi \neq 0$: Action on modules for **cyclotomic Hecke algebras**.
Generally, one can again incorporate a graded Frobenius superalgebra to get a more general quantum Frobenius Heisenberg category.

When \(\xi \neq 0 \), category should act on cyclotomic quotients of quantum affine wreath product algebras. The theory of these algebras is yet to be developed.

When \(\xi = 0 \), the natural action is an open question for general \(F \). Should be some \(F \)-deformation of \(U_q(\mathfrak{gl}_n) \).
WHY I COULD NEVER BE A MATH TEACHER:

TEACHER!
WILL WE EVER USE ANY OF THIS ALGEBRA?

YOU WON'T, BUT ONE OF THE SMART KIDS MIGHT.