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Categories (Definition)

A (small) category C consists of

a set of objects Ob C,

a set of morphisms MorC(X ,Y ) for all X ,Y ∈ Ob C,

together with a composition

MorC(Y ,Z )×MorC(X ,Y )→ MorC(X ,Z ), (f , g) 7→ f ◦ g ,

and an identity morphism 1X ∈ MorC(X ,X ) for all objects X ∈ Ob C.

The composition must be associative:

(f ◦ g) ◦ h = f ◦ (g ◦ h)

whenever f ◦ g and g ◦ h are defined.

The identity morphism has the property that

1Y ◦ f = f = f ◦ 1X for all f ∈ MorC(X ,Y ).
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Categories (Examples)

Example (Sets)

Objects: sets

Morphisms: set maps

Example (Vector spaces)

Objects: vector spaces over a fixed field

Morphisms: linear maps

Example (Groups)

Objects: groups

Morphisms: group homomorphisms
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Categories (Examples)

Example (Rings)

Objects: rings

Morphisms: ring homomorphisms

Example (Topological spaces)

Objects: topological spaces

Morphisms: continuous maps

Other examples

modules over a fixed ring

smooth manifolds

algebraic varieties

...
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Categories with one object

Suppose C is a category with one object X .

Then we only have one set of morphisms:

MorC(X ,X )

Composition gives an associative operation on MorC(X ,X ).

The identity 1X is a identity element for this operation.

So MorC(X ,X ) is a monoid!

Conclusion

Monoids are one-object categories.
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Categories with one object

Definition (Isomorphism)

An isomorphism in a category C is an element f ∈ MorC(X ,Y ) such that
there exists a g ∈ MorC(Y ,X ) satisfying

f ◦ g = 1Y , g ◦ f = 1X .

Suppose C is a category with one object X and such that all morphisms
are isomorphisms.

As before, MorC(X ,X ) is a monoid. But now all elements are invertible!
So it is a group!

Conclusion

Groups are one-object categories in which all morphisms are isomorphisms.
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Preadditive categories

A category is preadditive if

MorC(X ,Y ) is an abelian group for all X ,Y ∈ Ob C (we write the
group operation as addition), and

composition is distributive:

f ◦ (g + h) = f ◦ g + f ◦ h, (g + h) ◦ f = g ◦ f + h ◦ f ,

whenever the above compositions are defined.

Example (Category of abelian groups)

The category of abelian groups is preadditive.

We can add two group homomorphisms pointwise and composition is
distributive over this addition.
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Preadditive categories with one object

Suppose C is a preadditive category with one object X .

Then
MorC(X ,X )

has

an associative operation (composition),

an abelian group structure (addition), and

composition is distributive over addition.

Thus, MorC(X ,X ) is a ring, with multiplication given by composition!

Conclusion

Rings are one-object preadditive categories.
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C-linear categories

A category is C-linear if

MorC(X ,Y ) is a complex vector space for all X ,Y ∈ Ob C, and

composition is bilinear: for all f , g , h ∈ Mor C, α, β ∈ C,

f ◦ (αg + βh) = α(f ◦ g) + β(f ◦ h),

(αg + βh) ◦ f = α(g ◦ f ) + β(h ◦ f ),

whenever the above compositions are defined.

Example (Category of vector spaces)

The category of complex vector spaces is C-linear.

The space of linear maps between two vector spaces is itself a vector
space, and composition of linear maps is bilinear.
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C-linear categories with one object

Suppose C is a C-linear category with one object X .

Then
MorC(X ,X )

has

an associative operation (composition),

a C-vector space structure, and

composition is bilinear.

Thus, MorC(X ,X ) is a C-algebra, with multiplication given by
composition!

Conclusion

C-algebras are one-object C-linear categories.
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Rings with idempotents

The above observations can be generalized to categories with several
objects. Here’s one example:

Suppose R is a ring.

An element e ∈ R is called an idempotent if e2 = e.

Let’s call a set {e1, . . . , en} of idempotents of R a system of idempotents
if

eiej = 0 when i 6= j ,

e1 + e2 + · · ·+ en = 1.
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Example: Ring of matrices

Let R = Mn×n(C).

Let Eij be the matrix with a 1 in position (i , j) and a 0 in every other
position.

Then

EiiEjj = δijEii , and

1 = E11 + E22 + · · ·+ Enn, where 1 ∈ R is the identity matrix.

So {E11,E22, . . . ,Enn} is a system of idempotents.

It is easy to check that

EiiREjj = CEij is the set of matrices that are zero outside of position
(i , j),

R =
⊕

i ,j EiiREjj , and

(EiiREjj)(EkkRE``) ⊆ δjk EiiRE``.
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Example: Ring of matrices

Since
(EiiREjj)(EkkRE``) ⊆ δjk EiiRE``,

the only “interesting” multiplication is when j = k .

So we can think of R = Mn×n(C) as a category with

objects {E11, . . . ,Enn},
Mor(Eii ,Ejj) = EjjREii = CEji ,

composition given by matrix multiplication.

Generalization

A preadditive category with finitely many objects is equivalent to a ring
together with a system of idempotents.
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Groupoids

For preadditive categories, we had:

one object category

||
ring

 multiple object category

||
 ring with idempotents

For categories in which all morphisms are isomorphisms, we have:

one object category

||
group

 multiple object category

||
 groupoid
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Functors

Suppose C and D are categories.

A functor F from C to D consists of

a map F : Ob C → ObD,

for all X ,Y ∈ Ob C, a map F : MorC(X ,Y )→ MorD(F (X ),F (Y )).

We require that the map on morphisms respects composition:

F (f ◦ g) = F (f ) ◦ F (g),

whenever the composition of f , g ∈ Mor C is defined.

We also require it to preserve identities:

F (1X ) = 1F (X ).
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Functors

Example (Forgetful functors)

We can define a functor

F : category of groups→ category of sets

as follows:

for a group G , we define F (G ) to be the underlying set of G ,

for a group homomorphism f : G1 → G2, we define F (f ) to be the
underlying set map.

So F just forgets the group structure.

There are many other examples of forgetful functors.
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Functors

Example (Double dual)

There is a functor from the category of complex vector spaces to itself
that

maps any vector space to its double dual (the dual of its dual space),

maps any linear map to its double dual.

Example (Fundamental group)

Suppose

Top is the category of pointed topological spaces (topological spaces
together with a distinguished point),

Group is the category of groups.

We have a functor Top→ Group that maps a pointed topological space
to its fundamental group.
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Group actions

Recall, from group theory, that one is often interested in actions of groups
on sets.

Example: The group Sn acts on a set with n elements by permuting the
elements.

Suppose C is a group, thought of as a one-element category.

Question

What is a functor C → Set? (Set = category of sets)

The single object of C must be sent to an object of Set, i.e. to a set A.

Each morphism of C (i.e. element of the group) must be sent to a map
from A to itself in a way that respects composition.

Answer

So a functor C → Set is just an action of the group on a set!
Alistair Savage (Ottawa) Categorification February 2015 19 / 40



Other examples

As before, suppose C is a group, thought of as a one-element category.

Example

A functor from C to the category of topological spaces is an action of a
group on a topological space.

Example

A functor from C to the category of vector spaces is a representation of
the group.

Using this idea, one can define representations of various algebraic objects
(monoids, groups, rings, algebras) in any appropriate category.
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Structure on sets of isomorphism classes

Given a category C, define

Iso C = set of isomorphism classes of objects of C.

Extra structure on the category (e.g. direct sums, tensor products)
becomes extra structure on Iso C.

Example (Finite sets)

Let C be the category of finite sets.

Iso C ∼= N since every finite set is determined, up to isomorphism, by
its cardinality,

disjoint union on C becomes addition on N since |A t B| = |A|+ |B|,
cartesian product in C becomes multiplication on N since
|A× B| = |A| · |B|,
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Structure on sets of isomorphism classes

Example (Vector spaces)

Let C be the category of finite dimensional vector spaces over C.

Iso C ∼= N since every f.d. vector space is determined, up to
isomorphism by its dimension,

direct sum on C becomes addition on N since

dim(V ⊕W ) = dimV + dimW ,

tensor product on C becomes multiplication on N since

dim(V ⊗W ) = dimV · dimW .
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Grothendieck groups

Typically, one is interested in a more sophisticated procedure.

Split Grothendieck group

If C is an additive category (have direct sums), then the split Grothendieck
group K split(C) of C is

the free abelian group generated by isomorphism classes of objects,

modulo the relations

[M ⊕ N] = [M] + [N], M,N objects of C.

Grothendieck group

If C is an abelian category, the Grothendieck group K0(C) of C is

the free abelian group generated by isomorphism classes of objects,

modulo the relations [M2] = [M1] + [M3] for every short exact
sequence

0→ M1 → M2 → M3 → 0.
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Example: Distinguished bases

Suppose A is a finite-dimensional algebra over a field. Let

A-mod be the category of finite-dimensional A-modules, and

A-pmod be the category of finitely-generated projective A-modules.

K0(A-mod) is a free abelian group generated by the classes of the (finitely
many) f.d. irreducible A-modules.

In K0(A-mod), the class of any f.d. module is equal to the sum of the
classes (with multiplicity) appearing in a Jordan-Hölder series.

K split(A-pmod) is a free abelian group generated by the classes of the
indecomposable projective modules.
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Decategorification

The process
C  Iso C or K split(C) or K0(C)

is called decategorification.

In decategorification, one loses information:

category  “algebraic object” (set, group, ring, algebra)
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Categorification

Categorification is the process that is the reverse of decategorification:

Category

decategorification

��
Algebraic object (set, group, ring, algebra)

categorification

OO

In other words, to categorify a set/group/ring/algebra A means to come
up with a category C and some operations on that category such that

Iso C or K split(C) or K0(C) ∼= A (as a set/group/ring/algebra).

Categorification is a much harder than decategorification since one must
come up with an appropriate category.
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Higher categorification

Recall: We can view a ring (with idempotents) as a category.

Question: What is the categorification of a ring, when that ring is itself
viewed as a category?

Answer: A 2-category!

2-categories

A 2-category has

objects,

1-morphisms between objects,

2-morphisms between 1-morphisms.

These are required to satisfy some compatibility axioms.
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Why categorify?

Question: Why do we want to categorify algebraic objects (groups, rings,
etc.)?

Answer:

Uncovers hidden structure in the algebraic object (the category has
much more structure than its decategorification).

Provides tools for studying the categories involved.

Applications to topology and physics.

One obtains distinguished bases with integrality and positivity
properties from categorification (classes of simple or indecomposable
objects).
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Integrality and positivity

Suppose

A is a finite-dimensional algebra over a field,

F is an exact functor (A-mod)k → A-mod for some k ∈ N, k > 0.
Example: tensor product, induction, restriction,... (when they are
exact).

Then K0(A-mod) has a basis given by classes of irreducible modules.

Since it is exact, F induces a map on Grothendieck groups.

If V1, . . . ,Vk are irreducible modules, then

F ([V1], . . . , [Vk ]) = [F (V1, . . . ,Vk)]

is equal to a sum of the classes of the irreducible modules appearing in a
Jordan-Hölder series for F (V1, . . . ,Vk).

So it is a positive integral sum of the (distinguished) basis elements of
K0(A-mod).
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Lie algebras

Lie group

A Lie group is both a group and a manifold. The structures are compatible
(e.g. multiplication is smooth).

Lie algebra

A Lie algebra is a “linearization” of a Lie group.

As a vector space, it is the tangent space to the Lie group at the
identity.

Multiplication in the Lie group induces a Lie bracket operation on the
tangent space.

Universal enveloping algebra

Each Lie algebra has a universal eveloping algebra which:

is an associative algebra,

has the same representation theory as the Lie algebra.
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Lie algebras: Example

The group SL(n,C) of n × n complex matrices with determinant one is a
Lie group. The group operation is matrix multiplication.

Its Lie algebra is sl(n,C), the n × n matrices with trace zero. The Lie
bracket is the commutator:

[A,B] = AB − BA

One can often study the properties (e.g. representations) of a Lie group
via the Lie algebra, using the exponential map:

exp: sl(n,C)→ SL(n,C), exp(A) =
∞∑
i=0

An

n!
.
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Quantum groups

Quantum group: A “deformation” of a universal enveloping algebra.

Suppose:

g is a Lie algebra,

U(g) is its universal enveloping algebra.

The quantum group Uq(g) depends on a parameter q and reduces to U(g)
when q = 1:

Uq(g)
q→1
 U(g).

Applications:

representation theory (Hopf algebras),

physics,

combinatorics (crystals: q → 0),

topology.
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Categorification of quantum groups I

Lusztig slightly modified the quantum group Uq(g) to get an
idempotented version U̇.

As before, we can view U̇ a category, with one object for each idempotent.

Lusztig then categorified U̇ (more precisely, half of U̇):

defined an alegbraic variety (quiver variety) for each idempotent

considered a certain category of perverse sheaves on these varieties

considered a convolution of sheaves (multiplication)

decategorification (Grothendieck group) recovers U̇

This categorification yields canonical bases for quantum groups:

positivity and integrality properties

applications to combinatorics (crystals: q → 0 limit)
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Categorification of quantum groups II

One can extend the notion of Lie algebras to 2-Lie algebras.

2-Lie algebras are 2-categories that categorify quantum groups (themselves
thought of as categories)

algebraic definition (Rouquier)

diagrammatric definition in terms of braid-like diagrams
(Khovanov–Lauda)

Higher representation theory: 2-Functors from 2-Lie algebras into other
2-categories.
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Category of cobordisms

Category of k-cobordisms

Objects: oriented k-manifolds

Morphisms: (k + 1)-manifolds with prescribed boundaries (cobordisms)

Example (k = 1)

Objects: collections of oriented circles

, , etc.

Morphisms:

etc.

Composition is given by gluing along boundaries.
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TQFTS

Definition (TQFT)

A (k + 1)-dimensional topological quantum field theory (TQFT) is a
functor

category of k-cobordisms → category of R-modules (for some ring R).

So, a (k + 1)-dim TQFT

associates an R-module to each oriented k-manifold,

associates an R-module homomorphism to each cobordism.
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Example: Reshetikhin–Turaev invariant

The Reshetikhin–Turaev (RT) invariant is a (0 + 1)-dim TQFT.

Fix a simple Lie algebra g and representation V .

Example: g = sl(2,C) and V = C2 (so g acts on V by matrix
multiplication).

The RT invariant is a functor

category of 0-cobordisms→ category of Uq(g)-modules.

It sends

empty 0-manifold 7→ Z[q, q−1] (the trivial Uq(g)-module).
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Example: Reshetikhin–Turaev invariant

A knot is a cobordism from the empty 0-manifold to itself!

So, the RT invariant associates an endomorphism of Z[q, q−1] to each
knot.

Such an endomorphism must be given by multiplication by some
polynomial in Z[q, q−1].

So the RT invariant associates an element of Z[q, q−1] to each knot!

If g = sl(2,C) and V = C2, this is the Jones polynomial.
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Khovanov homology

Khovanov homology is a functor

category of 0-cobordisms → category of categories.

So it associates

a category to each 0-manifold (i.e. collection of points),

a functor to each 1-cobordism (i.e. tangle).

Decategorifying Khovanov homology recovers the RT invariant.

Conclusion: Khovanov homology categorifies the RT invariant.
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The future

One can go beyond TQFTs to extended TQFTs.

Consider the 2-category with:

objects: 0-dimensional manifolds

1-morphisms: tangles

2-morphisms: cobordisms between tangles

Goal: Construct functors from this 2-category to the 2-category of
representations of a 2-quantum group.

Benefits:

richer invariants of knots: to each knot, one assigns a homology
theory instead of a polynomial

polynomial invariants of surfaces: a surface is a cobordism from the
empty tangle to itself
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