The representation theory of equivariant map algebras

Alistair Savage

University of Ottawa

March 28, 2011

Slides: www.mathstat.uottawa.ca/~asavag2

Joint work with

- Neher-Senesi (arXiv:0906.5189, to appear in TAMS)
- Neher (arXiv:1103.4367)
- Fourier-Khandai-Kus (to be posted this week)

Outline

Review: Classification of irreducible finite-dimensional representations of equivariant map algebras.

Goal: Describe extensions and block decompositions.

Overview:

- Equivariant map algebras
- 2 Examples
- Second Second
- Classification of finite-dimensional irreducibles
- Section 2 Extensions
- Ilock decompositions
- Weyl modules

Terminology:

small = irreducible finite-dimensional

(Untwisted) Map algebras

Notation

- k algebraically closed field of characteristic zero
- X scheme (or algebraic variety) over k
- $A = A_X = \mathcal{O}_X(X)$ coordinate ring of X
- $\mathfrak g$ finite-dimensional Lie algebra over k

Definition (Untwisted map algebra)

 $M(X, \mathfrak{g}) =$ Lie algebra of regular maps from X to \mathfrak{g}

Pointwise multiplication:

$$[\alpha,\beta]_{\mathcal{M}(X,\mathfrak{g})}(x) = [\alpha(x),\beta(x)]_{\mathfrak{g}} \text{ for } \alpha,\beta \in \mathcal{M}(X,\mathfrak{g})$$

Note: $M(X, \mathfrak{g}) \cong \mathfrak{g} \otimes A_X$

Examples

Discrete spaces

If X is a discrete variety, then

$$M(X,\mathfrak{g})\cong\prod_{x\in X}\mathfrak{g},\quad lpha\mapsto (lpha(x))_{x\in X},\quad lpha\in M(X,\mathfrak{g}).$$

In particular, if $X = \{x\}$ is a point, then

$$M(X,\mathfrak{g})\cong\mathfrak{g},\quad lpha\mapsto(lpha(x)),\quad lpha\in M(X,\mathfrak{g}).$$

The isomorphisms are given by evaluation.

Current algebras

$$X = k^n \implies A_X = k[t_1, \ldots, t_n]$$

Thus, $M(X, \mathfrak{g}) \cong \mathfrak{g} \otimes k[t_1, \ldots, t_n]$ is a current algebra.

Equivariant map algebras

Γ - finite group

• Suppose Γ acts on X and \mathfrak{g} by automorphisms

Definition (equivariant map algebra)

The equivariant map algebra is the Lie algebra of Γ -equivariant maps from X to \mathfrak{g} :

$$M(X,\mathfrak{g})^{\Gamma} = \{ \alpha \in M(X,\mathfrak{g}) : \alpha(\gamma \cdot x) = \gamma \cdot \alpha(x) \ \forall \ x \in X, \ \gamma \in \Gamma \}$$

Note: If X is any scheme, then $M(X, \mathfrak{g})^{\Gamma} \cong M(X_{aff}, \mathfrak{g})^{\Gamma}$ where $X_{aff} = \operatorname{Spec} A_X$ is the affine scheme with the same coordinate ring as X. So we often assume X is affine.

Example: multiloop algebras

$$\Gamma = \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}, \quad X = (k^{\times})^n$$

For i = 1,..., n, let ξ_i be a primitive m_i-th root of unity.
Define action of Γ on X by

$$(a_1,\ldots,a_n)\cdot(z_1,\ldots,z_n)=(\xi_1^{a_1}z_1,\ldots,\xi_n^{a_n}z_n)$$

• Define action of Γ on \mathfrak{g} by specifying commuting automorphisms σ_i , $i = 1, \ldots, n$, such that $\sigma_i^{m_i} = 1$.

Then $M(X, \mathfrak{g})^{\Gamma}$ is the (twisted) multiloop algebra.

If n = 1, this is the (twisted) loop algebra.

Affine Lie algebras

The affine Lie algebras can be constructed as central extensions of loop algebras plus a differential:

$$\widehat{\mathfrak{g}} = M(X,\mathfrak{g})^{\mathsf{\Gamma}} \oplus kc \oplus kd \qquad (n=1)$$

Example: generalized Onsager algebra

$$\Gamma = \mathbb{Z}_2 = \{1, \sigma\}, \quad X = k^{\times}, \quad \mathfrak{g} = \text{simple Lie algebra}$$

•
$$\Gamma$$
 acts on X by $\sigma \cdot x = x^{-1}$

• Γ acts on \mathfrak{g} by any involution

When Γ acts on \mathfrak{g} by the Chevalley involution, we write

$$\mathcal{O}(\mathfrak{g}) = M(X,\mathfrak{g})^{\mathsf{f}}$$

Remarks

If k = C, O(sl₂) is isomorphic to the Onsager algebra (Roan 1991)
Key ingredient in Onsager's original solution of the 2D Ising model

• For $k = \mathbb{C}$, $\mathbb{O}(\mathfrak{sl}_n)$ was studied by Uglov and Ivanov (1996)

Evaluation

If $\mathbf{x} = \{x_1, \dots, x_n\} \subseteq X$, we have the evaluation map $ev_{\mathbf{x}} : M(X, \mathfrak{g})^{\Gamma} \to \mathfrak{g}^{\oplus n}, \quad \alpha \mapsto (\alpha(x_i))_i$

Important: This map is not surjective in general! For $x \in X$, define

$$\Gamma_{x} = \{ \gamma \in \Gamma : \gamma \cdot x = x \}$$
$$\mathfrak{g}^{x} = \{ u \in \mathfrak{g} : \Gamma_{x} \cdot u = u \}$$

Lemma

For X affine,
$$\mathbf{x} = \{x_1, \dots, x_n\} \subseteq X$$
, $x_i \notin \Gamma \cdot x_j$ for $i \neq j$,

 $\operatorname{im}\operatorname{ev}_{\mathbf{x}}=\oplus_{i}\mathfrak{g}^{x_{i}}.$

Alistair Savage (Ottawa)

Given

• $\mathbf{x} = \{x_1, \dots, x_n\} \subseteq X$, and

• representations $\rho_i : \mathfrak{g}^{\mathbf{x}_i} \to \operatorname{End}_k V_i, i = 1, \dots, n$,

we define the (twisted) evaluation representation as the composition

$$M(X,\mathfrak{g})^{\Gamma} \xrightarrow{\operatorname{ev}_{\mathbf{x}}} \oplus_{i}\mathfrak{g}^{x_{i}} \xrightarrow{\otimes_{i}\rho_{i}} \operatorname{End}_{k}(\otimes_{i}V_{i}).$$

Important remarks

This notion of evaluation representation differs from the classical definition.

- Some authors use the term evaluation representation only for the case when evaluation is at a single point and call the general case a tensor product of evaluation representations.
- To a point x ∈ X, we associate a representation of g^x instead of g. If Γ acts freely, this coincides with the usual definition.
- Recall that (when g^x ⊊ g) not all reps of g^x extend to reps of g so the new definition is more general.

We will see that the more general definition allows for a more uniform classification of representations.

 $\mathcal{R}_x = \{\text{isomorphism classes of small reps of } \mathfrak{g}^x\}$ $\mathcal{R}_X = \bigsqcup_{x \in X} \mathcal{R}_x$

We have an action of Γ on \mathcal{R}_X : if $[\rho] \in \mathcal{R}_x$, then

$$\gamma \cdot [\rho] = [\rho \circ \gamma^{-1}] \in \mathcal{R}_{\gamma \cdot x}.$$

Definition (\mathcal{E})

- \mathcal{E} is set of all $\psi: X \to \mathcal{R}_X$ such that
 - **(**) ψ is Γ -equivariant,

2
$$\psi(x) \in \mathcal{R}_x$$
 for all $x \in X$, and

Supp $\psi = \{x \in X : \psi(x) \neq 0\}$ is finite.

We think of $\psi \in \mathcal{E}$ as assigning a finite number of (isom classes of) reps of \mathfrak{g}^x to points $x \in X$ in a Γ -equivariant way.

For each $\psi \in \mathcal{E}$, define

$$\mathrm{ev}_{\psi} = \mathrm{ev}_{\mathbf{x}}(\psi(x_i))_{i=1}^n = \mathrm{ev}_{x_1} \psi(x_1) \otimes \cdots \otimes \mathrm{ev}_{x_n} \psi(x_n)$$

where $\mathbf{x} = (x_1, \dots, x_n)$ is an *n*-tuple of points of X containing one point from each Γ -orbit in supp ψ (the isom class is independent of this choice).

Lemma

For $\psi \in \mathcal{E}$, ev_{ψ} is the isomorphism class of a small representation of $M(X, \mathfrak{g})^{\Gamma}$.

Proposition

The map

 $\mathcal{E} \longrightarrow \{ \text{isom classes of small reps of } M(X, \mathfrak{g})^{\Gamma} \}, \quad \psi \mapsto ev_{\psi},$

is injective. In other words, \mathcal{E} enumerates the small evaluation representations.

Alistair Savage (Ottawa)

Representation theory of EMAs

One-dimensional representations

Recall: Any 1-dimensional rep of a Lie algebra *L* corresponds to a linear map $\lambda : L \to k$ such that $\lambda([L, L]) = 0$.

We identify such 1-dimensional reps with elements

 $\lambda \in (L/[L,L])^*.$

Two 1-dimensional reps are isomorphic if and only if they are equal as elements of $(L/[L, L])^*$.

Classification Theorem

Theorem (Neher-S.-Senesi 2009)

Suppose Γ is a finite group acting on an affine scheme (or variety) X and a finite-dimensional Lie algebra \mathfrak{g} . Let $\mathfrak{M} = M(X, \mathfrak{g})^{\Gamma}$.

Then the map

 $(\lambda,\psi)\mapsto\lambda\otimes {\operatorname{ev}}_\psi,\quad\lambda\in({\mathfrak M}/[{\mathfrak M},{\mathfrak M}])^*,\quad\psi\in{\mathcal E}$

gives a surjection

 $(\mathfrak{M}/[\mathfrak{M},\mathfrak{M}])^* \times \mathcal{E} \twoheadrightarrow \{ \text{isom classes of small representations of } \mathfrak{M} \}$.

In particular, all small representations are of the form

 $(1-dim rep) \otimes (evaluation rep).$

Classification – Remarks

 $(\lambda,\psi)\mapsto\lambda\otimes {\operatorname{ev}}_\psi,\quad\lambda\in({\mathfrak M}/[{\mathfrak M},{\mathfrak M}])^*,\quad\psi\in{\mathcal E}$

This map is not injective in general since we can have nontrivial evaluation reps which are 1-dimensional. This happens when g^x is not perfect (e.g. reductive but not semisimple).

Example: $\mathfrak{g} = \mathfrak{sl}_2$, $\Gamma = \mathbb{Z}_2$, $X = k = \mathbb{C}$

- Γ acts on \mathfrak{g} by the Chevalley involution.
- Γ acts on X by multiplication by -1.
- Then $\mathfrak{g}^0 = \mathfrak{g}^{\Gamma}$ is one-dimensional and so has nontrivial 1-dim reps.

2 However, we can specify precisely when $\lambda \otimes ev_{\psi} \cong \lambda' \otimes ev_{\psi'}$.

• The restriction of the map to either factor is injective.

Classification

$$(\lambda,\psi)\mapsto\lambda\otimes\mathrm{ev}_\psi,\quad\lambda\in(\mathfrak{M}/[\mathfrak{M},\mathfrak{M}])^*,\quad\psi\in\mathcal{E}$$

Corollary

• If \mathfrak{M} is perfect (i.e. $\mathfrak{M} = [\mathfrak{M}, \mathfrak{M}]$), then we have a bijection

 $\mathcal{E} \leftrightarrow \{\text{isom classes of small reps}\}, \quad \psi \mapsto ev_{\psi}.$

In particular, all small reps are evaluation reps.

- 2 If $[\mathfrak{g}^{\Gamma},\mathfrak{g}] = \mathfrak{g}$, then \mathfrak{M} is perfect and the above bijection holds.
- **3** If Γ acts on \mathfrak{g} by diagram automorphisms, then $[\mathfrak{g}^{\Gamma},\mathfrak{g}] = \mathfrak{g}$ and the above bijection holds.
- If Γ is abelian and acts freely, then \mathfrak{M} is perfect and the above bijection holds.

Note: Being perfect is not a necessary condition for all small reps to be evaluation reps (as we will see). Alistair Savage (Ottawa)

Application: untwisted map algebras

If Γ is trivial, then

$$M(X,\mathfrak{g})^{\Gamma}=M(X,\mathfrak{g}), \quad \mathfrak{g}^{\Gamma}=\mathfrak{g}.$$

Thus, if \mathfrak{g} is perfect,

$$[\mathfrak{g}^{\mathsf{\Gamma}},\mathfrak{g}]=[\mathfrak{g},\mathfrak{g}]=\mathfrak{g}$$

and so all small reps are evaluation reps.

Application: multiloop algebras

Corollary

If ${\mathfrak M}$ is a (twisted) multiloop algebra, then ${\mathfrak M}$ is perfect and so we have a bijection

```
\mathcal{E} \leftrightarrow \{ \textit{isom classes of small reps} \}, \quad \psi \mapsto \mathsf{ev}_{\psi} \,.
```

In particular, all small reps are evaluation reps.

Remarks

- This recovers results of Chari-Pressley (for loop algebras) and Batra, Lau (multiloop algebras), but with a different description.
- The description given above (in terms of *E*) gives a simple and uniform description of the somewhat technical conditions appearing in previous classifications.
- Solution of Γ on X is free and so g^x = g for all x ∈ X. So the more general notion of evaluation rep does not play a role.

Application: generalized Onsager algebra

$$\Gamma = \mathbb{Z}_2 = \{1, \sigma\}, \quad X = k^{\times}, \quad \mathfrak{g} = \text{simple Lie algebra}$$

•
$$\Gamma$$
 acts on X by $\sigma \cdot x = x^{-1}$

• Γ acts on \mathfrak{g} by any involution

Corollary

With Γ , X, g as above, we have a bijection

 $\mathcal{E} \leftrightarrow \{ \text{isom classes of small reps} \}, \quad \psi \mapsto ev_{\psi} .$

In particular, all small reps are evaluation reps.

Remarks - generalized Onsager algebra

• There are two types of points of X:

$$\begin{array}{l} \bullet \quad x \in \{\pm 1\} \implies \mathsf{\Gamma}_x = \mathsf{\Gamma} = \mathbb{Z}_2, \ \mathfrak{g}^x = \mathfrak{g}^{\mathsf{\Gamma}} \\ \bullet \quad x \notin \{\pm 1\} \implies \mathsf{\Gamma}_x = \{1\}, \ \mathfrak{g}^x = \mathfrak{g} \end{array}$$

 $\bullet \ \mathfrak{g}^{\Gamma}$ can be semisimple or reductive with one-dimensional center

When \mathfrak{g}^{Γ} has a one-dimensional center:

- the generalized Onsager algebra is not perfect
- \bullet we can place (nontrivial) one-dim reps of \mathfrak{g}^{Γ} at the points ± 1
- under our more general definition of evaluation rep, all small reps are evaluation reps
- under classical notion of evaluation rep, there are small reps which are not evaluation reps

Moral: The more general definition of evaluation rep allows for a more uniform classification.

Alistair Savage (Ottawa)

Special case: Onsager algebra

• When $k = \mathbb{C}$ and Γ acts on $\mathfrak{g} = \mathfrak{sl}_2$ by the Chevalley involution, then

$$\mathfrak{O}(\mathfrak{sl}_2) \stackrel{\mathsf{def}}{=} M(X, \mathfrak{sl}_2)^{\Gamma}$$

is the Onsager algebra.

- $\mathfrak{g}^{\{\pm 1\}}$ is one-dimensional abelian and $\mathfrak{O}(\mathfrak{sl}_2)$ is not perfect.
- Small reps of $O(\mathfrak{sl}_2)$ were classified previously (Date-Roan 2000)
 - classical definition of evaluation rep was used
 - not all small reps were evaluation reps
 - this necessitated the introduction of the type of a representation

Note: For the other cases, the classification seems to be new.

Extensions

Suppose L is an arbitrary Lie algebra.

Definition (Extension)

An extension of an *L*-module V_1 by an *L*-module V_2 is a short exact sequence of *L*-modules

$$0 \rightarrow V_2 \rightarrow U \rightarrow V_1 \rightarrow 0.$$

Two extensions are equivalent if there is a map ϕ such that

is commutative.

Alistair Savage (Ottawa)

Extensions

 $\operatorname{Ext}_{L}^{1}(V_{1}, V_{2}) =$ the set of equivalence classes of extensions.

L semisimple

When L is semisimple, all finite-dimensional representations are completely reducible and hence

$$\operatorname{Ext}_{L}^{1}(V_{1}, V_{2}) = \{0\}.$$

Here (and always) 0 is the equivalence class of the trivial extension $V_1 \oplus V_2$.

Goal: Describe the extensions of small representations of equivariant map algebras.

Evaluation modules with disjoint support

Consider an EMA $\mathfrak{M} = M(X,\mathfrak{g})^{\Gamma}$.

Suppose \mathfrak{g} is reductive and A is finitely generated.

```
Proposition (Neher-S. 2011)

Suppose \psi, \psi' \in \mathcal{E} such that

• supp \psi \cap supp \psi' = \emptyset, and

• ev_{\psi} and ev_{\psi'} are nontrivial.

Then

Ext^{1}_{\mathfrak{M}}(ev_{\psi}, ev_{\psi'}) = 0.
```

Remark

In the case Γ is trivial, this was proven by Kodera (for current algebras, it was proven by Chari-Moura).

Alistair Savage (Ottawa)

Representation theory of EMAs

Extensions between evaluation modules

Theorem (Neher-S. 2011)

Suppose that V, V' are evaluation modules corresponding to $\psi, \psi' \in \mathcal{E}$. Let

$$V = \bigotimes_{x \in \mathbf{x}} V_x, \quad V' = \bigotimes_{x \in \mathbf{x}} V'_x$$

for a finite subset $\mathbf{x} \subseteq X$ that does not contain two points in the same orbit, and V_x , V'_x eval reps at x.

- If ψ, ψ' differ on more than one orbit, then $\operatorname{Ext}^{1}_{\mathfrak{M}}(V, V') = 0$.
- **2** If ψ, ψ' differ on exactly one orbit $\Gamma \cdot x_0$, then

$$\operatorname{Ext}^1_{\mathfrak{M}}(V,V')\cong\operatorname{Ext}^1_{\mathfrak{M}}(V_{x_0},V'_{x_0}).$$

3 If $\psi = \psi'$ (so $V \cong V'$), then

$$\operatorname{Ext}^1_{\mathfrak{M}}(k_0,k_0)^{|\mathbf{x}|-1} \oplus \operatorname{Ext}^1_{\mathfrak{M}}(V,V) \cong \bigoplus_{x \in \mathbf{x}} \operatorname{Ext}^1_{\mathfrak{M}}(V_x,V_x').$$

Conclusion: Reduced to computation of extensions at the same point.

Alistair Savage (Ottawa)

Reductive Lie algebras

For any f.d. reductive Lie algebra L, we set

$$L_{\mathrm{ss}} = [L, L], \quad L_{\mathrm{ab}} = Z(L) \cong L/[L, L],$$

so $L = L_{ss} \oplus L_{ab}$.

Proposition (Modules for reductive Lie algebras) Any small module for a f.d. reductive Lie algebra L is of the form

 $V_{
m ss}\otimes V_{
m ab}$

where $V_{\rm ss}$ is a small $L_{\rm ss}$ -module, and $V_{\rm ab}$ is a small $L_{\rm ab}$ -module.

Lemma (Bourbaki)

Since \mathfrak{g} is reductive, \mathfrak{g}^{x} is reductive for all $x \in X$.

Extensions between evaluation modules at a single point Fix a point $x \in X$ and define

$$\mathfrak{K} = \mathsf{ker}(\mathsf{ev}_{\mathsf{x}}), \quad \mathfrak{Z} = \mathsf{ev}_{\mathsf{x}}^{-1}(\mathfrak{g}_{\mathrm{ab}}^{\mathsf{x}}) = \{\alpha \in \mathfrak{M} \mid [\alpha, \mathfrak{M}] \subseteq \mathfrak{K}\}.$$

Theorem (Neher-S. 2011)

Suppose V and V' are two evaluation modules at the point x. Then

$$\mathsf{Ext}^{1}_{\mathfrak{M}}(V,V') = \begin{cases} \mathsf{Hom}_{\mathfrak{g}^{\mathsf{x}}}(\mathfrak{K}_{\mathrm{ab}},V^{*}\otimes V') & \text{if } V_{\mathrm{ab}} \ncong V'_{\mathrm{ab}}, \\ \mathsf{Hom}_{\mathfrak{g}^{\mathsf{x}}_{\mathrm{ss}}}(\mathfrak{Z}_{\mathrm{ab}},V^{*}\otimes V') & \text{if } V_{\mathrm{ab}} \cong V'_{\mathrm{ab}}. \end{cases}$$

Proposition (Neher-S. 2011, $\Gamma = \{1\}$ case due to Kodera)

If V,V' are evaluation modules at $x,\,\mathfrak{g}$ is semisimple, Γ is abelian, and Γ_x is trivial, then

$$\mathsf{Ext}^{1}_{\mathfrak{M}}(V,V') = \mathsf{Hom}_{\mathfrak{g}}(\mathfrak{g},V^{*}\otimes V')\otimes (I/I^{2})^{\Gamma},$$

where $I = \{f \in A \mid f(\Gamma \cdot x) = 0\}.$

For an arbitrary Lie algebra L, let

 $\mathcal{F} = category of f.d. reps.$

Then

- $\bullet \ \mathcal{F}$ is an abelian tensor category, and
- any object in \mathcal{F} can be written uniquely as a sum of indecomposables.

 ${\mathcal F}$ admits a unique decomposition into a direct sum of indecomposable abelian subcategories

$$\mathcal{F} = \bigoplus_{\beta} \mathcal{F}_{\beta}.$$

The subcategories \mathcal{F}_{β} are the blocks of \mathcal{F} .

Definition (Linked)

Suppose $U, V \in \mathcal{F}$ are indecomposable. We say U and V are linked if there exist indecomposable *L*-modules

$$U=U_1, U_2, \ldots, U_n=V,$$

such that

$$\mathsf{Hom}_L(U_k, U_{k+1})
eq 0 \quad \text{or} \quad \mathsf{Hom}_L(U_{k+1}, U_k)
eq 0 \quad orall \ 1 \leq k < n.$$

We say that arbitrary $U, V \in \mathcal{F}$ are linked if every indecomposable summand of U is linked to every indecomposable summand of V.

Fact: The equivalences classes of linked objects are precisely the blocks of \mathcal{F} .

For $x \in X$, define

$$\mathcal{F}_x$$
 = category of eval reps with support $\Gamma \cdot x$,
 \mathcal{B}_x = blocks of the category \mathcal{F}_x .

For $\gamma \in \Gamma$, the categories \mathcal{F}_x and $\mathcal{F}_{\gamma \cdot x}$ are the same. So we can define an action of Γ on $\mathcal{B}_X = \bigsqcup_{x \in X} \mathcal{B}_x$ by letting

$$\gamma: \mathcal{B}_{x} \to \mathcal{B}_{\gamma \cdot x}, \quad \gamma \in \mathsf{\Gamma},$$

be the identification.

Definition

Let \mathfrak{B}_X be the set of finitely supported equivariant maps $X \to \mathcal{B}_X$ mapping x to \mathcal{B}_x for all $x \in X$.

Definition

Let \mathcal{F}_{eval} be the full subcategory of \mathcal{F} whose objects are those reps whose irreducible constituents are eval reps.

Remark: If all small reps are eval reps, then $\mathcal{F}_{eval} = \mathcal{F}$.

Theorem (Neher-S. 2011)

The blocks of \mathcal{F}_{eval} are naturally parameterized by \mathfrak{B}_X .

For a more explicit description, one needs a more explicit description of

$$\mathcal{B}_x, x \in X.$$

Application: untwisted map algebras If $\Gamma = \{1\}$ and g is semisimple, one can show that

$$\mathcal{B}_x \cong P/Q \quad \forall \ x \in X,$$

where

P = weight lattice of \mathfrak{g} , Q = root lattice of \mathfrak{g} .

We recover a result of Kodera.

Corollary (Neher-S. 2011)

Under the above assumptions, the blocks of the category of finite-dimensional (evaluation) modules are naturally enumerated by finitely-supported maps

$$X \to P/Q$$
.

In the case of the untwisted loop algebra, this is due to Chari-Moura.

Application: free groups actions (multiloop algebras) If Γ acts freely on X and g is semisimple, then

 $\mathcal{B}_x \cong P/Q \quad \forall \ x \in X.$

Multiloop algebras satisfy this condition.

Corollary (Neher-S. 2011)

Under the above assumptions, the blocks of the category of finite-dimensional (evaluation) modules are naturally enumerated by finitely-supported equivariant maps

$$X \to P/Q$$
.

In the special case of the (single, twisted) loop algebra, this recovers a result of Senesi.

Alistair Savage (Ottawa)

Representation theory of EMAs

Application: generalized Onsager algebras

For a generalized Onsager algebra, we know that all small reps are eval reps.

Corollary (Neher-S. 2011)

The blocks of the category of f.d. modules of a generalized Onsager algebra are naturally parameterized by finitely-supported equivariant maps

$$X o (P/Q) \sqcup (P_0/Q_0)$$
, such that
 $X \setminus \{\pm 1\} o P/Q, \ \{\pm 1\} o P_0/Q_0,$

where P_0 , Q_0 are the weight and root lattices of \mathfrak{g}^{Γ} .

Local Weyl modules

Assume \mathfrak{g} is semisimple and choose a set of Chevalley generators

$$\{e_i, f_i, h_i\}_{i\in I}.$$

This gives triangular decompositions

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+,$$
$$(\mathfrak{g} \otimes A) = (\mathfrak{n}^- \otimes A) \oplus (\mathfrak{h} \otimes A) \oplus (\mathfrak{n}^+ \otimes A).$$

Definition (Local Weyl module)

For $\psi \in \mathcal{E}$, the (untwisted) local Weyl module $W(\psi)$ is the $(\mathfrak{g} \otimes A)$ -module generated by a nonzero vector w_{ψ} satisfying

$$(\mathfrak{n}^+ \otimes A) \cdot w_{\psi} = 0, \quad (f_i \otimes 1)^{\lambda(h_i)+1} \cdot w_{\psi} = 0, \quad i \in I,$$

 $lpha \cdot w_{\psi} = \left(\sum_{x \in \mathrm{supp } \psi} \psi(x)(lpha(x))\right) w_{\psi}, \quad lpha \in \mathfrak{h} \otimes A,$

where $\lambda = \sum_{x \in \mathbf{x}} \psi(x)$.

Twisting and untwisting functors

Assume Γ acts freely on X (so all small reps are eval reps).

We define the support of a finite-dimensional module to be the union of the supports of its irreducible constituents.

For a finite subset $\mathbf{x} \subseteq X$ which does not contain two points in the same orbit, we have twisting and untwisting functors:

Category of f.d. reps of
$$\mathfrak{g} \otimes A$$
 with support in \mathbf{x}
 $\mathbf{u}_{\mathbf{x}} \uparrow \mathbf{v}_{\mathbf{x}}$
Category of f.d. reps of $(\mathfrak{g} \otimes A)^{\Gamma}$ with support in $\Gamma \cdot \mathbf{x}$

These are isomorphisms of categories.

Use: allows us to move back and forth between the twisted and untwisted settings.

Twisted local Weyl modules: Definition

Definition (Twisted local Weyl module (Fourier-Khandai-Kus-S. '11)) For $\psi \in \mathcal{E}$, let $\mathbf{x} \subseteq \text{supp } \psi$ contains one point in each Γ -orbit. Then define the twisted local Weyl module

$$W_{\Gamma}(\psi) = \mathbf{T}_{x}(W(\psi \cdot 1_{\mathbf{x}})),$$

where 1_x is the characteristic function of x, and $W(\psi \cdot 1_x)$ is the usual (untwisted) Weyl module for $\mathfrak{g} \otimes A$.

Note: The definition is independent of the choice of $\mathbf{x} \subseteq \operatorname{supp} \psi$ (up to isom).

In the case of twisted loop algebras, this coincides with a definition given by Chari-Fourier-Senesi.

Twisted local Weyl modules: properties

The twisted local Weyl module have properties analogous to the usual (untwisted) Weyl modules.

- $W_{\Gamma}(\psi)$ has a unique irreducible quotient corresponding to ψ .
- Every "maximal weight module" of "maximal weight" ψ is a quotient of W_Γ(ψ).
- The W_Γ(ψ) have a characterization in terms of homological properties (a twisted analogue of a characterization given by Chari-Fourier-Khandai in the untwisted case).
- The local Weyl modules have a natural tensor product property:

$$W_{\Gamma}(\psi + \varphi) \cong W_{\Gamma}(\psi) \otimes W_{\Gamma}(\varphi)$$

 $\text{if } \operatorname{supp} \psi \cap \operatorname{supp} \varphi = \varnothing.$

Further directions

Can one describe the finite-dimensional representations (not necessarily irreducible)?

Weyl modules:

- Case where Γ is not abelian or does not act freely?
- Global Weyl modules?
- Weyl functor?

Higher Ext groups?