Quivers and the Euclidean Group

Alistair Savage

Department of Mathematics and Statistics
University of Ottawa

alistair.savage@uottawa.ca

Slides available at www.mathstat.uottawa.ca/~asavag2
Euclidean group

Definition (Euclidean group)

Group of orientation-preserving isometries of n-dim Euclidean space:

$$E(n) = \mathbb{R}^n \rtimes SO(n)$$

Study (at least for $n = 2, 3$) predates even concept of group.

We will focus on $E(2)$ – much still unknown about rep theory.
Representations of the Euclidean group

- $E(2)$ solvable \Rightarrow all finite-dim irreps are 1-dim

- finite-dim unitary reps (of interest in quantum mechanics) are completely reducible \Rightarrow isom to direct sum of one-dim reps

- infinite-dim unitary reps have received considerable attention

- \exists finite-dim nonunitary indecomp reps (not irreducible)
 - much less known about these
 - play important role in math physics and rep theory of Poincaré group
Poincaré Group

Group of isometries of Minkowski spacetime

\[\text{Poincaré group} = \{\text{translations}\} \rtimes \text{Lorentz group} \]

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the four-momentum of a particle

- governs internal space-time symmetries of particle
- **massive particles:** little group locally isom to \(O(3) \)
- **massless particles:** little group locally isom to \(E(2) \)
Gravity

Consider

- Chern-Simons formulation of Einstein gravity
- $2 + 1$ dimensions
- space-time with Euclidean signature
- vanishing cosmological constant

Then phase space of gravity is moduli space of flat $E(2)$-connections
Recall $E(2) = \mathbb{R}^2 \rtimes SO(2)$

The Euclidean Algebra

$\mathfrak{e}(2) = \text{complexification of Lie alg of } E(2)$

Has basis $\{p_+, p_-, l\}$ and relations

$$[p_+, p_-] = 0, \quad [l, p_{\pm}] = \pm p_{\pm}$$

Representation Theory

$SO(2)$ compact \Rightarrow finite-dim $E(2)$-modules equiv to finite-dim $\mathfrak{e}(2)$-modules where l acts semisimply with integer eigenvalues

We use term $\mathfrak{e}(2)$-module to mean such a module
Weight decompositions

V an $\varepsilon(2)$-module

We have weight decomposition into l-eigenspaces

$$V = \bigoplus_{k \in \mathbb{Z}} V_k, \quad V_k = \{ v \in V \mid l \cdot v = kv \}$$

and

$$p_+ V_k \subseteq V_{k+1}, \quad p_- V_k \subseteq V_{k-1}$$

We define

$$\dim V = (\dim V_k)_{k \in \mathbb{Z}} \in (\mathbb{Z}_{\geq 0})^\mathbb{Z}$$
Modified enveloping algebra

\[U = \text{universal enveloping algebra of } \mathfrak{e}(2) \]

\[U^+, U^-, U^0 \text{ subalgebras generated by } p_+, p_-, l \]

Have triangular decomp \(U \cong U^+ \otimes U^0 \otimes U^- \)

Following idea of Lusztig, define \textit{modified enveloping algebra}

\[\tilde{U} = U^+ \otimes \left(\bigoplus_{k \in \mathbb{Z}} \mathbb{C} a_k \right) \otimes U^- \]

with multiplication

\[a_k a_l = \delta_{kl} a_k \]

\[p_+ a_k = a_{k+1} p_+, \quad p_- a_k = a_{k-1} p_-, \]

\[p_+ p_- a_k = p_- p_+ a_k \]
The Euclidean group

Euclidean algebra

Preprojective algebras

Quiver varieties

Conclusion

Representation theory

\[\tilde{U} = U^+ \otimes \left(\bigoplus_{k \in \mathbb{Z}} \mathbb{C} a_k \right) \otimes U^- \]

\(a_k \sim \) projection to \(k \)th weight space

Definition

A \(\tilde{U} \)-module is unital if

1. \(\forall \, v \in V, \ a_k \, v = 0 \) for almost all \(k \in \mathbb{Z} \)
2. \(\forall \, v \in V, \ \sum_{k \in \mathbb{Z}} a_k \, v = v \)

\(\tilde{U} \)-module \(\sim \) \(U \)-module with weight decomp

Proposition

\[\text{Mod} \ \tilde{U} \cong \text{Mod} \ U \cong \text{Mod} \ \varepsilon(2) \]
Quivers

A quiver is a directed graph.

\[Q = (I, H) \]
- \(I \) is the vertex set
- \(H \) is the (directed) edge set

Representations of quivers

- \(I \)-graded vector space \(V = (V_i)_{i \in I} \)
- Linear map \(x_h : V_{\text{out}(h)} \to V_{\text{in}(h)} \) for each \(h \in H \)

\[\text{rep}(Q, V) = \bigoplus_{h \in H} \text{Hom}_\mathbb{C}(V_{\text{out}(h)}, V_{\text{in}(h)}) \]
Quivers

The quiver $Q_{a,b}$

$l = \{ k \in \mathbb{Z} \mid a \leq k \leq b \}$

$H = \{ h_i \mid a \leq i \leq b - 1 \}$, \(\text{out}(h_i) = i, \text{in}(h_i) = i + 1 \)

The quiver Q_{∞}

$l = \mathbb{Z}$

$H = \{ h_i \mid i \in \mathbb{Z} \}$, \(\text{out}(h_i) = i, \text{in}(h_i) = i + 1 \)
Path algebra and double quiver

Path algebra

\(\mathbb{C}Q = \text{algebra spanned by paths with multiplication given by concatenation} \)

\[
\text{cat of reps of } Q \cong \textbf{Mod} \mathbb{C}Q
\]

Double quiver

\(Q^* = \text{double quiver of } Q \)

\[
I_{Q^*} = I_Q, \quad H_{Q^*} = H_Q \cup \bar{H}_Q, \quad \bar{H}_Q = \{ \bar{h} \mid h \in H_Q \}
\]
For \(i \in I \), define

\[
 r_i = \sum_{h \in H, \text{out}(h) = i} \bar{h} h - \sum_{h \in H, \text{in}(h) = i} h \bar{h}
\]

Preprojective algebra

\[P(Q) = \mathbb{C} Q^* / J \]

\(J = \) two-sided ideal generated by \(r_i, \ i \in I \)

Representations of the preprojective algebra

\[\text{mod}(P(Q), V) = \{ P(Q)-\text{modules with underlying v.s. } V \} \]

Equivalent to set of elements of \(\text{rep}(Q^*, V) \) such that

\[
\sum_{h \in H, \text{out}(h) = i} \bar{x}_h x_h - \sum_{h \in H, \text{in}(h) = i} x_h \bar{x}_h = 0 \quad \forall i \in I
\]
Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

1. $P(Q)$ is finite-dimensional
2. All elements of $\text{rep}(P(Q), V)$ are nilpotent
3. Q is a Dynkin quiver (underlying graph of ADE type)

Proposition

If Q is a finite quiver then

1. $P(Q)$ is of **finite rep type** iff Q is of Dynkin type A_n, $n \leq 4$
2. $P(Q)$ is of **tame rep type** iff Q is of Dynkin type A_5 or D_4
3. $P(Q)$ is of **wild rep type** for other types
Corollary

- $Q_{a,b}$ has finite rep type iff $b - a \leq 3$, and all reps are nilpotent
- Q_∞ is of wild rep type and all reps are nilpotent
The Euclidean group
Euclidean algebra
Preprojective algebras
Quiver varieties
Conclusion

Preprojective algebras and the Euclidean algebra

Theorem

The map \(\psi : \mathbb{C}Q^*_\infty \rightarrow \tilde{U} \) given by (\(\epsilon_i = \) trivial path at \(i \))

\[
\begin{align*}
\psi(\epsilon_i) &= a_i, \\
\psi(h_i) &= p_+ a_i = a_{i+1} p_+, \\
\psi(\bar{h}_i) &= a_i p_- = p_- a_{i+1}
\end{align*}
\]

extends to a surjective map of algebras with kernel \(J \). Thus

\[P(Q_\infty) \cong \tilde{U} \]

Corollary

\(\text{Mod} \, \epsilon(2) \cong \text{Mod} \, P(Q_\infty) \)

and

\(\text{Mod}_{a,b} \, \epsilon(2) \cong \text{Mod} \, P(Q_{a,b}) \)

where \(\text{Mod}_{a,b} \, \epsilon(2) \) is category of \(\epsilon(2) \)-modules with weights lying between \(a \) and \(b \).
The Euclidean group
Euclidean algebra
Preprojective algebras
Quiver varieties
Conclusion

Representation theory of the Euclidean algebra

Theorem

- $e(2)$ (and hence $E(2)$) has **wild representation type**
- for $0 \leq b - a \leq 3$, \exists a finite number of isom classes of indecomposable $e(2)$-modules whose weights lie between a and b
Lusztig quiver variety

Definition (Lusztig quiver variety)

\(\Lambda_{V,Q} \) is set of all nilpotent \((x_h) \in \text{mod}(P(Q), V)\)

Recall, for \(Q\) of Dynkin type

\[
\text{mod}(P(Q), V) = \Lambda_{V,Q}
\]

Relation to Kac-Moody algebras

Let \(g_Q = \text{Kac-Moody algebra whose Dynkin graph is underlying graph of } Q\).

\[
\# \text{ irred comps of } \Lambda_{V,Q} = \dim \text{ of } (\ - \sum (\dim V_i)\alpha_i)\text{-weight space of } U(g_Q)^-\]
Nakajima quiver variety

Let Q be Q_∞ or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V, W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \operatorname{Hom}_\mathbb{C}(W_i, V_i)$$

For $(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$ we say

- I-graded $S \subseteq V$ is x-invariant if

$$x_h(S_{\text{out}(h)}) \subseteq S_{\text{in}(h)} \quad \forall h \in H$$

- (x, s) is stable if $\not\exists$ proper x-invariant subspace of V containing $\text{im } s$

Let $L_Q(V, W)^{\text{st}} = \text{set of stable points}$
Nakajima quiver variety

\[G_V = \prod_{i \in I} GL(V_i) \] acts on \(L_Q(V, W) \) by

\[g \cdot (x, s) = \left((g_{\text{in}}(h)x_hg_{\text{out}}^{-1}(h)), (g_is_i) \right) \]

Stabilizer in \(G_V \) of a stable point is trivial

Definition (Nakajima quiver variety)

\[\mathcal{L}_Q(V, W) = L_Q(V, W)^{\text{st}} / G_V \]
Nakajima quiver varieties and Kac-Moody algebras

\[
\bigoplus_{V} H_{\text{top}}(\mathcal{L}_Q(V, W)) \cong \text{irrep of } g_Q \text{ of hw } \sum_{i \in I} (\dim W_i)\omega_i
\]

where \(\omega_i\) are fundamental weights

\[
H_{\text{top}}(\mathcal{L}_Q(V, W)) = \sum_{i \in I} (\dim W_i)\omega_i - \sum_{i \in I} (\dim V_i)\alpha_i \text{ weight space}
\]

\# \text{irred comps of } \mathcal{L}_Q(V, W) = \dim \text{of weight space}
Representation theory of $\varepsilon(2)$

- recall $\varepsilon(2)$ has \textcolor{red}{wild} rep type

- restrict attention to subclasses of modules and attempt a classification

- impose restriction on number of generators of a module

- moduli spaces of such modules related to Nakajima quiver varieties
Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

1. each u_i is a weight vector
2. $\not\exists$ proper submodule of V containing all u_i

Definition

For $v, w \in (\mathbb{Z}_{\geq 0})^\mathbb{Z}$, let $E(v, w)$ be set of all

$$(V, (u^i_k)_{k \in \mathbb{Z}, 1 \leq j \leq w_k})$$

where

- V is an $\mathfrak{e}(2)$-module with $\text{dim } V = v$
- $(u^i_k)_{k \in \mathbb{Z}, 1 \leq j \leq w_k}$ is a set of generators of V with $\text{wt } u^i_k = k$
Moduli spaces of representations of \(\varepsilon(2) \)

Definition

We say

\[
(V, (u^i_j)) \sim (\tilde{V}, (\tilde{u}^i_j))
\]

if \(\exists \varepsilon(2) \)-module isom \(\phi : V \xrightarrow{\sim} \tilde{V} \), \(\phi(u^i_j) = \tilde{u}^i_j \) \(\forall j, k \)

Let

\[
\mathcal{E}(v, w) = E(v, w) / \sim
\]
Moduli spaces of representations of $\varepsilon(2)$

Theorem

There is a natural one-to-one correspondence

$$\mathcal{E}(v, w) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V, W)$$

if $\dim V = v$, $\dim W = w$

Idea of proof

Given $(V, (u^i_k)) \in E(v, w)$, define a point $(x, s) \in L_{Q_{\infty}}(V, W)$ by

$$x_{h_i} = p_+ |v_i|, \quad x_{\bar{h}_i} = p_- |v_{i+1}|, \quad k \in \mathbb{Z}$$

$$s(w^j_k) = u^j_k, \quad k \in \mathbb{Z}, \quad 1 \leq j \leq w_k$$

where $\{w^j_k\}_{1 \leq j \leq w_k}$ is a basis of W_k. Then

generating set \leftrightarrow stability $\sim \leftrightarrow G_V - \text{orbits}$
Remarks

- relationship between rep theory of Euclidean group and rep theory of \mathfrak{sl}_∞ (or groups $SL(n)$)

- moduli space of reps of Euclidean group along with a set of generators closely related to rep theory of \mathfrak{sl}_∞ and $SL(n)$

- although Euclidean group has wild rep type, we have method of approaching classification:
 - fix cardinality and weights of a generating set
 - resulting moduli space enumerated by countable number of varieties – one variety for reps of each graded dimension
Further directions

Positive characteristic

- consider Euclidean group over field of characteristic p
- weights now lie in $\mathbb{Z}/p\mathbb{Z}$ instead of \mathbb{Z}
- category of reps equivalent to category of reps of preprojective algebra of quiver of affine type \hat{A}_{p-1}
- quiver varieties related to moduli spaces of solutions to anti-self-dual Yang-Mills equations and Hilbert schemes of points in \mathbb{C}^2
Further directions

Crystals and Jordan-Hölder decompositions

- can define crystal structure on set of irred comps of Lusztig and Nakajima quiver varieties
- each irred comp can be identified with a sequence of crystal operators
- sequence corresponds to Jordan-Hölder decomposition of $\varepsilon(2)$-modules