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Bases of Representations of Type A Affine Lie Algebras

via Quiver Varieties and Statistical Mechanics
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1 Introduction

A remarkable relation between representation theory of affine Lie algebras and models of

statistical mechanics based on the Yang-Baxter equation has been discovered and inten-

sively studied by Date et al. (see [2, 3] and the references therein). One of the important

findings of the above authors is that the one-dimensional configuration sums for these

models give rise to characters of integrable highest weight representations of affine Lie

algebras. This relation yields certain explicit bases in the representations that admit

pure combinatorial descriptions and imply various identities for the characters.

Another astonishing relation between representation theory of affine Lie alge-

bras and moduli spaces of solutions of self-dual Yang-Mills equations has been accom-

plished by Nakajima [8, 10], who observed a profound link between his earlier work with

P. Kronheimer and the results of Lusztig [6, 7]. At the heart of both works that preceded

the Nakajima discovery are quiver varieties associated with extended Dynkin diagrams.

Nakajima introduced a special class of quiver varieties associated with integrable high-

est weight representations of affine Lie algebras and obtained a geometric description

of the action. He also defined certain Lagrangian subvarieties whose irreducible compo-

nents yield a geometric basis of the affine Lie algebra representations.

The central goal of the present paper is to relate the two apparently different

bases in the representations of affine Lie algebras of type A: one arising from statisti-

cal mechanics and the other from gauge theory. We show that the two are governed by
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the same combinatorics that also respects the weight space decomposition of the repre-

sentations. This identification allows one to give a natural conceptual framework to the

intricate structure of statistical mechanical models and also to make explicit calcula-

tions in a seemingly intractable geometric setting. In particular, we are able to give an

alternative and much simpler geometric proof of the main result of [3] on the construc-

tion of a basis of affine Lie algebra representations. At the same time, we give a simple

parametrization of the irreducible components of Nakajima quiver varieties associated

to infinite and cyclic quivers.

The comparison of the two very different theories brings some surprises and sug-

gests interesting new directions. In particular, the Young diagrams that are routinely

used in representation theory of typeA Lie algebras acquire an explicit geometric mean-

ing: they picture precisely representations of the corresponding quivers satisfying a sta-

bility condition for level one (see Figure 5.2 in the text). On the other hand, the algebraic

constructions of [3] involve substantially the highest weight representations of ĝln+1,

which are not directly covered by Nakajima’s theory. We define new varieties by relaxing

the nilpotency condition in the definition of Nakajima’s quiver varieties and show that

the irreducible components of these new varieties are in one-to-one correspondence with

bases of the highest weight representations of ĝln+1. We also mention some interesting

problems that arise as a result of the comparison of geometric and algebraic construc-

tions.

We strongly believe that the main results of the current paper reflect a very gen-

eral principle that asserts the profound geometric or gauge-theoretic origin of various

algebraic and combinatorial structures of integrable models in statistical mechanics.

The relation of both subjects to the representation theory of affine Lie algebras is a nec-

essary prerequisite of this principle. However, we expect much more; namely, that vari-

ous specific constructions appearing in integrable models of statistical mechanics that

include tensor products, fusion products, branching rules, Bethe ansatz, and the Yang-

Baxter equation itself reflect certain geometric facts about Nakajima varieties, Malkin-

Nakajima tensor product varieties, various Lagrangian subvarieties, and corresponding

gauge theories on commutative and, possibly, noncommutative spaces. The present pa-

per is a small but indicative step toward this vast program.

The paper is organized as follows. In Section 2, we recall the definition of

Lusztig’s quiver varieties and characterizations of the irreducible components in types

A∞ and A(1)
n . We also introduce a version of Lusztig’s quiver varieties for the Lie alge-

bra ĝln+1. Section 3 contains the definition of Nakajima’s quiver varieties, and the Lie

algebra action on a suitable space of constructible functions on these varieties is given

in Section 4. In Section 5, we give an enumeration of the irreducible components of the
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quiver varieties for level one in terms of Young diagrams. We also identify the geomet-

ric action of the type A∞ Lie algebra in the basis enumerated by Young diagrams. In

Section 6, we extend the enumeration of the irreducible components of the quiver va-

rieties to arbitrary level, and we establish a match with the indexing of bases of the cor-

responding representations coming from statistical mechanics. Finally, in Section 7, we

compare the weight structure of the bases resulting from quiver varieties and the path

realizations of statistical mechanics and make certain of their complete coincidence.

2 Lusztig’s quiver varieties

In this section, we recount the explicit description, given in [6], of the irreducible com-

ponents of Lusztig’s quiver variety in the case of typesA∞ andA(1)
n ; see this reference for

details including proofs.

Let I be a set of vertices of the Dynkin graph of a Kac-Moody Lie algebra g, and

let H be the set of pairs consisting of an edge, together with an orientation of it. For h ∈
H, let in(h) (resp., out(h)) be the incoming (resp., outgoing) vertex of h. We define the

involution¯ : H → H to be the function which takes h ∈ H to the element of H consisting

of the same edge with opposite orientation. An orientation of our graph is a choice of a

subsetΩ ⊂ H such thatΩ ∪ Ω̄ = H andΩ ∩ Ω̄ = ∅.

Let V be the category of finite-dimensional I-graded vector spaces V = ⊕i∈IVi

over C with morphisms being linear maps respecting the grading. Then V ∈ V shall de-

note that V is an object of V. The dimension of V ∈ V is given by v = dim V = (dim V0, . . . ,

dim Vn). We identify this dimension with the element (dim V0)α0 + · · · + (dim Vn)αn of

the root lattice of g. Here, the αi are the simple roots corresponding to the vertices of our

quiver (graph with orientation) whose underlying graph is the Dynkin graph of g.

Given V ∈ V, let

EV =
⊕
h∈H

Hom
(
Vout(h),Vin(h)

)
. (2.1)

For any subset H ′ of H, let EV,H ′ be the subspace of EV consisting of all vectors x = (xh)

such that xh = 0, whenever h �∈ H ′. The algebraic group GV =
∏

i Aut(Vi) acts on EV and

EV,H ′ by

(g, x) =
((
gi

)
,
(
xh

)) �−→ gx =
(
x ′h

)
=

(
gin(h)xhg

−1
out(h)

)
. (2.2)

Define the function ε : H → {−1, 1} by ε(h) = 1 for all h ∈ Ω and ε(h) = −1 for all

h ∈ Ω̄. Let V ∈ V. The Lie algebra of GV is glV =
∏

i End(Vi) and it acts on EV by
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(a, x) =
((
ai

)
,
(
xh

)) �−→ [a, x] =
(
x ′h

)
=

(
ain(h)xh − xhaout(h)

)
. (2.3)

Let 〈·, ·〉 be the nondegenerate, GV-invariant, symplectic form on EV with values in C de-

fined by

〈x, y〉 =
∑
h∈H

ε(h) tr
(
xhyh̄

)
. (2.4)

Note that EV can be considered as the cotangent space of EV,Ω under this form.

The moment map associated to the Gv-action on the symplectic vector space EV

is the map ψ : EV → glV with i-component ψi : EV → End Vi given by

ψi(x) =
∑

h∈H, in(h)=i

ε(h)xhxh̄. (2.5)

Definition 2.1 (see [6]). An element x ∈ EV is said to be nilpotent if there exists anN ≥ 1

such that for any sequence h ′
1, h

′
2, . . . , h

′
N in H satisfying out(h ′

1) = in(h ′
2) and out(h ′

2) =

in(h ′
3), . . . , out(h ′

N−1) = in(h ′
N), the composition xh ′

1
xh ′

2
· · · xh ′

N
: Vout(h ′

N) → Vin(h ′
1) is

zero.

Definition 2.2 (see [6]). LetΛV be the set of all nilpotent elements x∈EV such thatψi(x) =

0 for all i ∈ I.

2.1 Type A∞

Let g be the simple Lie algebra of typeA∞ . Let I = Z be the set of vertices of a graph with

the set of oriented edges given by

H =
{
i −→ j | i, j ∈ I, i− j = 1

} ∪ {i←− j | i, j ∈ I, i− j = 1
}
. (2.6)

We define the involution ¯ : H → H as the function that interchanges i → j and

i← j. For h = (i→ j), we set out(h) = i and in(h) = j, and for h = (i← j), we set out(h) = j

and in(h) = i. LetΩ be the subset ofH consisting of the arrows i→ j.

Proposition 2.3 (see[6]). The irreducible components ofΛV are the closures of the conor-

mal bundles of the various GV-orbits in EV,Ω. �

Proof. The case where g is of type An is proven in [6]. The A∞ case follows by passing to

the direct limit. �

For two integers k ′ ≤ k, define V∞ (k ′, k) ∈ V to be the vector space with ba-

sis {er | k ′ ≤ r ≤ k}. We require that er has degree r ∈ I. Let x∞ (k ′, k) ∈ EV∞ (k ′,k),Ω
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be defined by x∞ (k ′, k) : er �→ er−1 for k ′ ≤ r ≤ k, where ek ′−1 = 0. It is clear that

(V∞ (k ′, k), x∞ (k ′, k)) is an indecomposable representation of our quiver. Conversely, any

indecomposable finite-dimensional representation (V, x) of our quiver is isomorphic to

some (V∞ (k ′, k), x∞ (k ′, k)).

Let Z∞ be the set of all pairs (k ′ ≤ k) of integers, and let Z̃∞ be the set of all

functions Z∞ → N with finite support.

It is easy to see that for V ∈ V, the set of GV-orbits in EV,Ω is naturally indexed

by the subset Z̃∞V of Z̃∞ consisting of those f ∈ Z̃∞ such that

∑
k ′≤i≤k

f(k ′, k) = dim Vi, (2.7)

for all i ∈ I. Here, the sum is over all k ′ ≤ k such that k ′ ≤ i ≤ k. Corresponding to a given

f is the orbit consisting of all representations isomorphic to a sum of the indecomposable

representations x∞ (k ′, k), each occuring with multiplicity f(k ′, k). Denote by Of the GV-

orbit corresponding to f ∈ Z̃∞V . Let Cf be the conormal bundle to Of and let C̄f be its

closure. We then have the following proposition.

Proposition 2.4. The map f→ C̄f is a one-to-one correspondence between the set Z̃∞V and

the set of irreducible components of ΛV . �

Proof. This follows immediately from Proposition 2.3. �

2.2 Type A(1)
n

Let g be the affine Lie algebra of type A(1)
n , that is, the Lie algebra generated by the set of

elements Ek, Fk,Hk (k = 0, 1, . . . , n), and d satisfying the following relations:

[
Ek, Fl

]
= δklHk,

[
Hk, El

]
= aklEl,

[
Hk, Fl

]
= −aklFl,[

d, Ek

]
= δk0Ek,

[
d, Fk

]
= −δk0Fk,(

adEk

)1−akl
El = 0,

(
ad Fk

)1−akl
Fl = 0 for k �= l.

(2.8)

Here

akl = 2δ(k, l) − δ(k, l+ 1) − δ(k, l− 1), (2.9)

where δ(k, l) = 1 if k ≡ lmod(n+ 1) and is equal to zero otherwise.
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Let I = Z/(n + 1)Z be the set of vertices of a graph with the set of oriented edges

given by

H =
{
i −→ j | i, j ∈ I, i− j = 1

} ∪ {i←− j | i, j ∈ I, i− j = 1
}
. (2.10)

For two integers k ′ ≤ k, define V(k ′, k) ∈ V to be the vector space with basis

{er | k ′ ≤ r ≤ k}. We require that er has degree i ∈ I, where r ≡ i(modn + 1). Let

x(k ′, k) ∈ EV(k ′,k),Ω be defined by x(k ′, k) : er �→ er−1 for k ′ ≤ r ≤ k, where ek ′−1 = 0. It is

clear that (V(k ′, k), x(k ′, k)) is an indecomposable representation of our quiver and that

x(k ′, k) is nilpotent. Also, the isomorphism class of this representation does not change

when k ′ and k are simultaneously translated by a multiple of n + 1. Conversely, any in-

decomposable finite-dimensional representation (V, x) of our quiver, with x nilpotent, is

isomorphic to some (V(k ′, k), x(k ′, k)), where k ′ and k are uniquely defined up to a simul-

taneous translation by a multiple of n+ 1.

Let Z be the set of all pairs (k ′ ≤ k) of integers defined up to simultaneous trans-

lation by a multiple ofn+1, and let Z̃ be the set of all functionsZ→ N with finite support.

It is easy to see that for V ∈ V, the set ofGV-orbits on the set of nilpotent elements

in EV,Ω is naturally indexed by the subset Z̃V of Z̃ consisting of those f ∈ Z̃ such that

∑
k ′≤k

f(k ′, k)#
{
r | k ′ ≤ r ≤ k, r ≡ i(modn+ 1)

}
= dim Vi, (2.11)

for all i ∈ I. Here, the sum is taken over all k ′ ≤ k, up to simultaneous translation by a

multiple of n+ 1. Corresponding to a given f is the orbit consisting of all representations

isomorphic to a sum of the indecomposable representations x(k ′, k), each occuring with

multiplicity f(k ′, k). Denote by Of the GV-orbit corresponding to f ∈ Z̃V .

We say that f ∈ Z̃V is aperiodic if for any k ′ ≤ k, not all f(k ′, k) and f(k ′ + 1,

k + 1), . . . , f(k ′ + n, k + n) are greater than zero. For any f ∈ Z̃V , let Cf be the conormal

bundle of Of and let C̄f be its closure.

Proposition 2.5 (see [6]). Let f ∈ Z̃V . The following two conditions are equivalent:

(1) Cf consists entirely of nilpotent elements;

(2) f is aperiodic. �

Proposition 2.6 (see [6]). The map f → C̄f is a one-to-one correspondence between the

set of aperiodic elements in Z̃V and the set of irreducible components ofΛV . �

Proposition 2.7 (see[6]). Let x ′ ∈ EV,Ω and x ′′ ∈ EV,Ω̄. Then, ψi(x ′ + x ′′) = 0 for all i ∈ I
if and only if x ′′ is orthogonal with respect to 〈·, ·〉 to the tangent space to the GV-orbit of

x ′, regarded as a vector subspace of EV,Ω. �
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2.3 ĝln+1 case

Since ĝln+1 is not a Kac-Moody algebra in a strict sense, this case is not covered by

Lusztig’s theory and requires certain modifications. We preserve the notation of the pre-

vious subsection.

Definition 2.8. Let Λ̃V be the set of all elements x = x ′ + x ′′, where x ′ ∈ EV,Ω and x ′′ ∈
EV,Ω̄, such that x ′ is nilpotent and ψi(x) = 0 for all i ∈ I.

For any f ∈ Z̃V , we denote by Of the corresponding GV-orbit and by Cf its conor-

mal bundle.

Proposition 2.9. Let f ∈ Z̃V . Then,

(1) Cf consists entirely of elements of Λ̃V ;

(2) Λ̃V is the union of C̄f for all f ∈ Z̃V . �

Proof. This follows from Proposition 2.7. �

Proposition 2.10. The map f → C̄f is a one-to-one correspondence between the set Z̃V

and the set of irreducible components ofΛV . �

Proof. This follows easily since the conormal bundles Cf are irreducible of the same

dimension. �

3 Nakajima’s quiver varieties

We introduce here a description of the quiver varieties first presented in [8] in the case of

types A∞ and A(1)
n .

Definition 3.1 (see [8]). For v,w ∈ Z
I
≥0, choose I-graded vector spaces V and W of graded

dimensions v and w, respectively. Then, define

Λ ≡ Λ(v,w) = ΛV ×
∑
i∈I

Hom
(
Vi,Wi

)
. (3.1)

Now, suppose that S is an I-graded subspace of V. For x ∈ ΛV , we say that S is

x-stable if x(S) ⊂ S.

Definition 3.2 (see [8]). Let Λst = Λ(v,w)st be the set of all (x, j) ∈ Λ(v,w) satisfying the

following condition: if S = (Si) with Si ⊂ Vi is x-stable and ji(Si) = 0 for i ∈ I, then

Si = 0 for i ∈ I.
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The group GV acts on Λ(v,w) via

(
g, (x, j)

)
=

((
gi

)
,
((
xh

)
,
(
ji

))) �−→ ((
gin(h)xhg

−1
out(h)

)
, jig

−1
i

)
, (3.2)

and the stabilizer of any point ofΛ(v,w)st inGV is trivial (see [10, Lemma 3.10]). We then

make the following definition.

Definition 3.3 (see [8]). Let L ≡ L(v,w) = Λ(v,w)st/GV .

Let Irr L(v,w) (resp., IrrΛ(v,w)) be the set of irreducible components of L(v,w)

(resp., Λ(v,w)). Then, Irr L(v,w) can be identified with

{
Y ∈ IrrΛ(v,w) | Y ∩Λ(v,w)st �= ∅

}
. (3.3)

Specifically, the irreducible components of Irr L(v,w) are precisely those

Xf
def
=

((
C̄f ×

∑
i∈I

Hom
(
Vi,Wi

)) ∩Λ(
v,w)st

)
/GV (3.4)

which are nonempty.

The following lemma will be used in the sequel.

Lemma 3.4. One has

Λst =
{
x ∈ Λ | ker xi→i−1 ∩ ker xi+1←i ∩ ker ji = 0 ∀i}. (3.5)

�

Proof. Since each ker xi→i−1 ∩ ker xi+1←i is x-stable, the left-hand side is obviously con-

tained in the right-hand side. Now, suppose that x is an element of the right-hand side.

Let S = (Si) with Si ⊂ Vi be x-stable and ji(Si) = 0 for i ∈ I. Assume that S �= 0. Since

all elements of Λ are nilpotent, we can find a minimal value of N such that the condi-

tion in Definition 2.1 is satisfied. Then, we can find a v ∈ Si for some i and a sequence

h ′
1, h

′
2, . . . , h

′
N−1 (empty if N = 1) in H such that out(h ′

1) = in(h ′
2), out(h ′

2) = in(h ′
3), . . . ,

out(h ′
N−2) = in(h ′

N−1), and v ′ = xh ′
1
xh ′

2
· · · xh ′

N−1
(v) �= 0. Now, v ′ ∈ Si ′ for some i ′ ∈ I by

the stability of S (hence, ji ′(v ′) = 0) and v ′ ∈ ker xi ′→i ′−1 ∩ ker xi ′+1→i ′ by our choice of

N. This contradicts the fact that x is an element of the right-hand side. �

In the case of ĝln+1, we define the varieties Λ̃(v,w), Λ̃(v,w)st, and L̃(v,w) by re-

placing ΛV by Λ̃V in the above.
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4 The Lie algebra action

We summarize here some results from [8] that will be needed in the sequel; see this ref-

erence for more details including proofs. We keep the notation of Sections 2 and 3 (with

g arbitrary).

Let w, v, v ′, v ′′ ∈ Z
I
≥0 be such that v = v ′ + v ′′. Consider the maps

Λ(v ′′, 0) ×Λ(v ′,w)
p1←−−− F̃(v,w; v ′′)

p2−−−→ F(v,w; v ′′)
p3−−−→ Λ(v,w), (4.1)

where the notation is as follows. A point of F(v,w; v ′′) is a point (x, j) ∈ Λ(v,w) together

with an I-graded, x-stable subspace S of V such that dim S = v ′ = v − v ′′. A point of

F̃(v,w; v ′′) is a point (x, j,S) of F(v,w; v ′′) together with a collection of isomorphisms R ′
i :

V ′
i

∼= Si and R ′′
i : V ′′

i
∼= Vi/Si for each i ∈ I. Then, we define p2(x, j,S, R ′, R ′′) = (x, j,S),

p3(x, j,S) = (x, j), and p1(x, j,S, R ′, R ′′) = (x ′′, x ′, j ′), where x ′′, x ′, and j ′ are determined by

R ′
in(h)x

′
h = xhR

′
out(h) : V ′

out(h) −→ Sin(h),

j ′i = jiR
′
i : V ′

i −→Wi,

R ′′
in(h)x

′′
h = xhR

′′
out(h) : V ′′

out(h) −→ Vin(h)/Sin(h).

(4.2)

It follows that x ′ and x ′′ are nilpotent.

Lemma 4.1 (see [8, Lemma 10.3]). One has

(
p3 ◦ p2

)−1(
Λ(v,w)st

) ⊂ p−1
1

(
Λ(v ′′, 0) ×Λ(v ′,w)st

)
. (4.3)

�

Thus, we can restrict (4.1) toΛst, forget theΛ(v ′′, 0)-factor, and consider the quo-

tient by GV and GV ′ . This yields the diagram

L(v ′,w) π1←−−− F(v,w; v − v ′) π2−−−→ L(v,w), (4.4)

where

F(v,w, v − v ′) def
=
{
(x, j,S) ∈ F(v,w; v − v ′) | (x, j) ∈ Λ(v,w)st

}
/GV . (4.5)

Let M(L(v,w)) be the vector space of all constructible functions on L(v,w). For

a subvariety Y of a variety A, let 1Y denote the function on A which takes the value 1

on Y and 0 elsewhere. Let χ(Y) denote the Euler characteristic of the algebraic variety Y.

Then, for a map π between algebraic varietiesA and B, let π! denote the map between the
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abelian groups of constructible functions on A and B given by

π!

(
1Y

)
(y) = χ

(
π−1(y) ∩ Y)

, Y ⊂ A, (4.6)

and let π∗ be the pullback map from functions on B to functions on A acting as π∗f(y) =

f(π(y)). Then, define

Hi : M
(
L(v,w)

) −→M
(
L(v,w)

)
; Hif = uif,

Ei : M
(
L(v,w)

) −→M
(
L

(
v − ei,w

))
; Eif =

(
π1

)
!

(
π∗2f

)
,

Fi : M
(
L

(
v − ei,w

)) −→M
(
L(v,w)

)
; Fig =

(
π2

)
!

(
π∗1g

)
.

(4.7)

Here

u = t(u0, . . . , un) = w − Cv, (4.8)

where C is the Cartan matrix of g and we are using diagram (4.4) with v ′ = v − ei, where

ei is the vector whose components are given by ei
i ′ = δii ′ .

Now, let ϕ be the constant function on L(0,w) with value 1. Let L(w) be the vec-

tor space of functions generated by acting on ϕ with all possible combinations of the

operators Fi. Then, let L(v,w) = M(L(v,w)) ∩ L(w).

Proposition 4.2 (see [8, Theorem 10.14]). The operators Ei, Fi, and Hi on L(w) provide

the structure of the irreducible highest weight integrable representation of g with high-

est weight w. Each summand of the decomposition L(w) =
⊕

v L(v,w) is a weight space

with weight w − Cv. �

Let X ∈ Irr L(v,w), and define a linear map TX : L(v,w)→ C as in [7]. The map TX

associates to a constructible function f ∈ L(v,w) the (constant) value of f on a suitable

open dense subset of X. The fact that L(v,w) is finite-dimensional allows us to take such

an open set on which any f ∈ L(v,w) is constant. So, we have a linear map

Φ : L(v,w) −→ C
Irr L(v,w). (4.9)

The following proposition is proved in [7] (slightly generalized in [8, Proposition 10.15]).

Proposition 4.3. The mapΦ is an isomorphism; for any X ∈ Irr L(v,w), there is a unique

function gX ∈ L(v,w) such that for some open dense subsetO of X, gX|O = 1 and for some

closedGV-invariant subsetK ⊂ L(v,w) of dimension < dim L(v,w), gX = 0 outsideX∪K.

The functions gX for X ∈ IrrΛ(v,w) form a basis of L(v,w). �
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5 Level-one representations

We now seek to describe the irreducible components of Nakajima’s quiver variety. By

the comment made in Section 3, it suffices to determine which irreducible components of

Λ(v,w) are not killed by the stability condition. By Definition 3.1 and Lemma 3.4, these

are precisely those irreducible components which contain points x such that

dim
(

ker xi→i−1 ∩ ker xi+1←i

) ≤ wi, ∀i. (5.1)

We first consider the basic representation of highest weight Λ0, where Λ0(αi) =

δ0i. This corresponds to w = w0, the vector with zero-component 1 and all other compo-

nents equal to zero.

5.1 Type A∞

Consider the case where g is of type A∞ . Let Y be the set of all Young diagrams, that is,

the set of all weakly decreasing sequences [l1, . . . , ls] of nonnegative integers (lj = 0 for

j > s). For Y = [l1, . . . , ls] ∈ Y, let AY be the set {(1− i, li − i) | 1 ≤ i ≤ s}.

Theorem 5.1. The irreducible components of L(v,w0) are precisely those Xf, where f ∈
Z̃∞V such that

{
(k ′, k) | f(k ′, k) = 1

}
= AY (5.2)

for some Y ∈ Y and f(k ′, k) = 0 for (k ′, k) �∈ AY . Denote the component corresponding to

such an f by XY . Thus, Y ↔ XY is a natural one-to-one correspondence between the set Y

and the irreducible components of ∪vL(v,w0). �

Proof. Consider the two representations (V∞ (k ′
1, k1), x∞ (k ′

1, k1)) and (V∞ (k ′
2, k2), x∞ (k ′

2,

k2)) of our oriented graph as described in Section 2, where the basis of V∞ (k ′
i, ki) is {ei

r |

k ′
i ≤ r ≤ ki}. LetW be the conormal bundle to the GV-orbit through the point

xΩ =
(
xh

)
h∈Ω

= x∞
(
k ′

1, k1

) ⊕ x∞(
k ′

2, k2

) ∈ EV∞ (k ′
1,k1)⊕V∞ (k ′

2,k2),Ω. (5.3)

By Proposition 2.7, x = (xΩ, xΩ̄) = (xh)h∈H is inW if and only if

xi+1→ixi+1←i = xi←i−1xi→i−1, (5.4)

for all i.
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e1
k1

e1
k1−1

· · ·
e1

k2+2e1
k2+1e1

k2· · ·
e1

k ′
1+3e1

k ′
1+2e1

k ′
1+1e1

k ′
1

e2
k2

e2
k2−1

· · ·
e2

k ′
1+2e2

k ′
1+1e2

k ′
1

e2
k ′

1−1e2
k ′

1−2

· · ·
e2

k ′
2+1e2

k ′
2

Figure 5.1 If xr+1←r(e2
r ) �= 0 for some r, the commutativity of this diagram forces k′

2 < k′
1

and k2 < k1 . Vertices represent the spans of the indicated vectors. Those aligned vertically

lie in the same Vi . The arrows indicate the action of the obvious component of x.

Let ei
r = 0 for r < k ′

i or r > ki. Now, xr+1←r(e2
r) = cre

1
r+1 for some cr ∈ C since

xr+1←r(e2
r) can have no e2

r+1-component by nilpotency. Suppose that k ′
1 ≤ r + 1 ≤ k1 and

cr �= 0 (i.e., xr+1←r(e2
r) �= 0). Then, if r+ 1 > k ′

1,

xr←r−1

(
e2

r−1

)
= xr←r−1xr→r−1

(
e2

r

)
= xr+1→rxr+1←r

(
e2

r

)
= cre

1
r �= 0. (5.5)

In particular, e2
r−1 �= 0, and so r − 1 ≥ k ′

2. Continuing in this manner, we see that

xk ′
1←k ′

1−1(e2
k ′

1−1) �= 0 and thus k ′
2 < k

′
1.

Now, if r+ 1 ≤ k2, then

xr+2→r+1xr+2←r+1

(
e2

r+1

)
= xr+1←rxr+1→r

(
e2

r+1

)
= xr+1←r

(
e2

r

) �= 0. (5.6)

Therefore, xr+2←r+1(e2
r+1) �= 0. But xr+2←r+1(e2

r+1) must be a multiple of e1
r+2 as above.

Thus, we must have r+ 2 ≤ k1 and xr+2←r+1(e2
r+1) �= 0. Continuing in this manner, we see

that k2 < k1. Refer to Figure 5.1 for illustration.

Now, let x lie in the conormal bundle to the point

s⊕
i=1

x
(
k ′

i, k
′
i + li − 1

) ∈ E⊕s
i=1V∞ (k ′

i,k ′
i+li−1),Ω. (5.7)

We can assume (by reordering the indices if necessary) that k ′
1 ≥ k ′

2 ≥ · · · ≥ k ′
s. Now, by

the above arguments, xr+1←r(ei
r) must be a linear combination of {e

j
r+1}j<i. Thus,

e1
k ′

1
∈ ker xk ′

1→k ′
1−1 ∩ ker xk ′

1+1←k ′
1
. (5.8)

By the stability condition, we must then have k ′
1 = 0, and there can be no other ei

r in

ker xr→r−1 ∩ ker xr+1←r for any r. Now, by the above considerations, e2
k ′

2
is in ker xk ′

2→k ′
2−1

∩ ker xk ′
2+1←k ′

2
unless k ′

2+1 = k ′
1 and xk ′

1←k ′
2
(e2

k ′
2
) is a nonzero multiple of e1

k ′
1
. Continuing

in this manner, we see that we must have k ′
i+1 + 1 = k ′

i and xk ′
i←k ′

i+1
(ei+1

k ′
i+1

) = cie
i
k ′

i
�= 0
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876543210−1−2−3−4−5· · · · · ·

Figure 5.2 The irreducible components of L(v,w0) are enumerated by

Young diagrams. The top line is the Dynkin graph of type A∞ . The other

horizontal lines represent x∞ (k′,k), where k′ and k are the positions of

the leftmost and rightmost vertices.

for 1 ≤ i ≤ s − 1. Then, by the above, we must have ki+1 < ki for 1 ≤ i ≤ s − 1. Setting

li = ki − k ′
i + 1, the theorem follows. �

The Young diagrams enumerating the irreducible components of L(v,w0) can

be visualized as in Figure 5.2. Note that the vertices in our diagram correspond to the

boxes in the classical Young diagram, and our arrows intersect the classical diagram

edges.

For the level-oneA∞ case, it is relatively easy to compute the geometric action of

the generators Ek and Fk of g. We, first, note that for every v, L(v,w0) is either empty or

is a point. It follows that each XY is equal to L(v,w0) for some unique v, which we will

denote vY .

Lemma 5.2. The function gXY
corresponding to the irreducible component XY , where Y ∈

Y, is simply 1XY
, the function on XY with constant value one. �

Proof. This is obvious since XY is a point. �

Proposition 5.3. One has Fk1XY
= 1XY ′ , where vY ′ = vY + ek if such a Y ′ exists and

Fk1XY
= 0 otherwise. Also Ek1XY

= 1XY ′′ , where vY ′′ = vY − ek if such a Y ′′ exists and

Ek1XY
= 0 otherwise. �

Proof. It is clear from the definitions that Fk1XY
= c11XY ′ and Ek1XY

= c21XY ′′ for some

constants c1 and c2 if Y ′ and Y ′′ exist as described above and that these actions are zero

otherwise. We simply have to compute the constants c1 and c2. Now,

Fk1XY
(x) =

(
π2

)
!
π∗11XY

(x) = χ
({
S | S is x-stable, x|S ∈ XY

})
= χ(pt) = 1 (5.9)
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if x ∈ XY ′ , where vY ′ = vY + ek and zero otherwise. The fact that the above set is simply a

point follows from the fact that Sk must be the sum of the images of xh such that in(h) =

k. Thus, c1 = 1 as desired.

Note that if there exists a Y ′ such that vY ′ = vY + ek, then there cannot exist a Y ′′

such that vY ′′ = vY − ek and vice versa. Therefore, if such a Y ′′ exists, Fk1XY
= 0, and so

Hk1XY
=

[
Ek, Fk

]
1XY

= −FkEk1XY
. (5.10)

One can easily check that Hk1XY
= −1XY

if a Y ′′ exists as described above, and thus

FkEk1XY
= 1XY

. It then follows from the above that we must have c2 = 1. �

The above action of the type A∞ Lie algebra in the space spanned by a basis in-

dexed by Young diagrams, is well known in a purely algebraic context (see, e.g., [5]).

Remark 5.4. All the results of this section can be repeated with minor modifications for

fundamental representations of finite-dimensional Lie algebras of type An. In this case,

the bases of fundamental representations will be enumerated by Young diagrams of size

bounded by anm× (n+ 1−m) rectangle, wherem = 1, 2, . . . , n is the index of the funda-

mental representation. Note that the same Young diagrams also naturally enumerate the

Schubert cells of the Grassmannians Gr(m,n + 1) for type An or the semi-infinite Grass-

mannian for type A∞ .

5.2 Type A(1)
n

Let Yn be the set of all Young diagrams [l1, . . . , ls] satisfying li > li+n for all i = 1, . . . , s

(lj = 0 for j > s). For Y = [l1, . . . , ls] ∈ Yn, let AY be the set {(1− i, li − i) | 1 ≤ i ≤ s}.

Theorem 5.5. The irreducible components of L(v,w0) are precisely those Xf, where f ∈
Z̃V such that

{
(k ′, k) | f(k ′, k) = 1

}
= AY (5.11)

for some Y ∈ Yn and f(k ′, k) = 0 for (k ′, k) �∈ AY (up to simultaneous translation of k ′ and

k by n + 1). Denote the component corresponding to such an f by XY . Thus, Y ↔ XY is a

natural one-to-one correspondence between the set Yn and the irreducible components

of ∪vL(v,w0). �
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Proof. The argument is exactly analogous to that used in the proof of Theorem 5.1. We

need only to note that a point in the conormal bundle to the orbit through the point

s∑
i=1

x
(
k ′

i, k
′
i + li − 1

) ∈ E⊕s
i=1V(k ′

i,k ′
i+li−1),Ω (5.12)

lies in ΛV(v,w0) if and only if li > li+n, for all i = 1, . . . , s (li = 0 for i > s) by the

aperiodicity condition. �

Note that Nakajima’s construction yields an action of the Lie algebra on the basis

{gXY
}Y∈Yn of the basic representation. However, this action is not as straightforward to

compute as in the A∞ case and will be considered in a future work.

5.3 ĝln+1 case

We define AY for Y ∈ Y as in Section 5.1.

Theorem 5.6. The irreducible components of L̃(v,w0) are precisely those Xf, where f ∈
Z̃V such that

{
(k ′, k) | f(k ′, k) = 1

}
= AY (5.13)

for some Y ∈ Y and f(k ′, k) = 0 for (k ′, k) �∈ AY (up to simultaneous translation of k ′ and

k by n + 1). Denote the component corresponding to such an f by XY . Thus, Y ↔ XY is a

natural one-to-one correspondence between the set Y and the irreducible components of

∪vL̃(v,w0). �

Proof. The argument is exactly analogous to that used in the proof of Theorem 5.1. �

As noted in Section 2.3, since ĝln+1 is not a Kac-Moody algebra, we need to mod-

ify Nakajima’s construction of highest weight representations. Note that for any n, the

difference between ĝln+1 and ŝln+1 is the same Heisenberg algebra ĝl1. The representa-

tions of Heisenberg algebras in the context of geometric representation theory were first

constructed by Grojnowski [4] and Nakajima [9] (see [11] for a review). However, it is not

obvious how to adapt this representation theory to the new quiver varieties L̃(v,w0),

obtaining the desired commutation relations with the generators of ŝln+1. This problem

will be considered in a future work.
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6 Arbitrary level representations

6.1 Type A∞

We first recall some definitions from [3]. A Maya diagram is a bijection m : Z → Z such

that (m(j))j<0 and (m(j))j≥0 are both increasing. For each Maya diagram, there exists a

unique γ ∈ Z such thatm(j) − j = γ for |j| � 0. This γ is called the charge ofm. We denote

the set of Maya diagrams of charge γ by M[γ]. Form ∈ M[γ], we let

m[r] =
(
m(j) + r

)
j∈Z

∈ M[γ+ r]. (6.1)

We can visualize a Maya diagram by a Young diagram. Consider a lattice on the

right half plane with lattice points {(i, j) ∈ Z
2 | i ≥ 0}. Each edge on the lattice is oriented,

starting at (i, j) and ending at (i + 1, j) or (i, j + 1) and is numbered by the integer i + j. A

path on the lattice is a map e from Z to the set of edges on the lattice such that e(j) has

number j and the ending site of e(j) is the starting site of e(j + 1). To each Maya diagram

of charge γ, we associate the unique path satisfying the following conditions:

(1) for j� 0, e(j) is the edge from (0, j) to (0, j+ 1);

(2) the edge e(m(j)) is vertical (resp., horizontal) if j < 0 (resp., j ≥ 0).
Note that these conditions imply that for j� 0, e(j) is the edge from (j−γ, γ) to (j−γ+1, γ).

See Figure 6.1.

Such a path divides the right half plane into two components. The upper half is

an infinite Young diagram Y, which consists of a quadrant and a (finite) Young diagram

Y attached along a horizontal line at height γ. Thus, the set of Maya diagrams are in one-

to-one correspondence with the set of pairs (Y, γ), where Y ∈ Y and γ ∈ Z.

Lemma 6.1 (see [3]). Letm ∈ M[γ] andm ′ ∈ M[γ ′], and let Y and Y ′ be the corresponding

infinite Young diagrams. Then, the following conditions are equivalent:

(1) m(j) ≤ m ′(j) for j ≥ 0;
(2) γ ≤ γ ′ andm(j− γ) ≥ m ′(j− γ ′) for j < γ;

(3) Y ⊃ Y ′. �

We put a partial ordering on the set of Maya diagrams by letting m ≤ m ′ if the

conditions in Lemma 6.1 hold.

Let Λ = Λγ1
+ · · ·Λγl

, where γ1 ≤ · · · ≤ γl and the Λi are fundamental weights

of g. Let w ∈ (Z≥0)Z (i.e., w is a function from Z to Z≥0) be the vector with ith component

equal to the number of γj equal to i. Let

M[Λ] = M
[
γ1

] × · · · × M
[
γl

]
. (6.2)
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765
4

3
2

1

0
−1

−2−3

−5

−4

−3

−2

−1

0

1

2

Figure 6.1 The Maya diagram corresponding to (m(j))j≥0 =

(−3,−2,0,3,5,6,7,...) and (m(j))j<0 = (...,−6,−5,−4,,−1,

1,2,4).

For Y = [l1, . . . , ls] ∈ Y, let Aγ
Y be the set {(γ + 1 − i, γ + li − i) | 1 ≤ i ≤ s}. For M =

((Y1, γ1), . . . , (Yl, γl)) ∈ M[Λ], let AM = ∪l
i=1A

γi

Yi
and let fM ∈ Z̃∞ be the function such

that f(k ′, k) is equal to the number of times (k ′, k) appears in the set AM.

Theorem 6.2. The irreducible components of L(v,w) are precisely those Xf, where f =

fM for some M ∈ M[Λ]. Denote the component XfM
by XM. Then M ↔ XM is a natural

one-to-one correspondence between the set

{(
m1, . . . ,ml

) ∈ M[Λ] | m1 ≤ · · · ≤ ml

}
(6.3)

and the irreducible components of ∪vL(v,w). �

Proof. Recall that irreducible components of L(v,w) are the closures of the GV-orbits

(or isomorphism classes) in EV,Ω and that there is a representative of each orbit of the

form

x =
⊕

(k ′≤k)∈K

x∞ (k ′, k) (6.4)
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543210−1−2−3−4−5

x∞ (1, 4)

x∞ (0, 2)

x∞ (−1, 0)

x∞ (−2,−2)

x∞ (−1, 1)

x∞ (−2,−1)

x∞ (−3,−3)

· · · · · ·

Figure 6.2 The strings associated to some x ∈ EV,Ω . The top line is

the Dynkin diagram of type A∞ .

for some finite set of pairsK. By picturing x∞ (k ′, k) as the string of vertices k ′, k ′+1, . . . , k,

we can represent such an x by a set of finite strings of vertices corresponding to the vari-

ous x∞ (k ′, k) appearing in (6.4). We call the number of vertices in a string its length. Each

vertex of a string represents a basis vector of V with degree given by the location of the

vertex. The action of x maps each of these basis vectors to the basis vector correspond-

ing to the next (one lower) vertex in the string (or to zero if no such vertex exists). See

Figure 6.2.

It is then a straightforward extension of the proof of Theorem 5.1 that the allow-

able sets of strings are precisely those that can be grouped into subsets, one for each γi,

such that the subset corresponding to γi, when ordered by decreasing leftmost vertex,

has weakly decreasing lengths, the first leftmost vertex is γi and the leftmost vertices

decrease by one as we move through the subset in order (by leftmost, we mean the vertex

with the smallest index). This is precisely the first claim of the theorem.

It is easy to see that many different M ∈ M[Λ] may correspond to the same irre-

ducible component. For example, for Λ = Λ−1 +Λ1, both

M =
((

[3, 2, 1],−1
)
,
(
[4, 3, 2, 1], 1

))
,

M ′ =
((

[2, 1],−1
)
,
(
[4, 3, 3, 2, 1], 1

)) (6.5)

belong to M[Λ] and correspond to the set of strings shown in Figure 6.2 (and hence to the

same irreducible component). However, we can associate a uniqueM ∈ M[Λ] to each set

of strings described above as follows. Associate to γ1 the longest string with leftmost

vertex γ1 and remove this string from the set. Now, do the same for γ2 and so forth. Af-

ter we have associated a string to γl, we start again at γ1, but this time we select the

longest string with leftmost vertex γ1 − 1, and so forth. If at any point there is no string
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to associate with a given γi, we remove this γi from further steps. In this way, we asso-

ciate to each γi a sequence of strings of weakly decreasing length (by our condition on

the possible sets of strings) with leftmost vertices decreasing by one. The lengths of the

strings associated to γi give a Young diagram Yi, and we set mi = (Yi, γi). By construc-

tion, the length of any string associated to γi is greater than the length of a string with

the same left end point associated to γj for j > i. This immediately yields the condition

m1 ≤ · · · ≤ ml. Our construction thus gives us the one-to-one correspondence asserted

in the theorem. �

Note that the enumeration of the irreducible components given in Theorem 6.2

matches that of [3, Proposition 4.6].

6.2 Type A(1)
n

We now consider the case where g is of type A(1)
n . For an element M = (m1, . . . ,ml) ∈

M[Λ], let RM be the set (with multiplicity) of pairs (i, li), where li is the length of a row

with top edge having y-coordinate i belonging to one of the mj. We say that M is n-

reduced if

{
(k+ i, l) | 0 ≤ i ≤ n} �⊂ RM, (6.6)

for all k and l.

Define fM for M ∈ M[Λ] as in Section 6.1 (except that now, our pairs are defined

only up to simultaneous translation by n+ 1).

Theorem 6.3. The irreducible components of L(v,w) are precisely those Xf, where f =

fM for some n-reducedM ∈ M[Λ]. Denote the component XfM
by XM. Then,M↔ XM is a

natural one-to-one correspondence between the set

{(
m1, . . . ,ml

) ∈ M[Λ] | m1 ≤ · · · ≤ ml ≤ m1[n+ 1], M is n-reduced
}

(6.7)

and the irreducible components of ∪vL(v,w). �

Proof. Each irreducible component corresponds to a set of strings as in the proof of

Theorem 6.2 with the added condition that we cannot have n+1 strings, each of the same

length, whose left endpoints are the n + 1 vertices of our quiver. That is, we must have

that M is n-reduced. Note that the process described in the proof of Theorem 6.2 yields

mi = (Yi, γi) satisfyingm1 ≤ · · · ≤ ml ≤ m1[n+ 1] as desired. The theorem follows. �
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Again, as noted in Section 5.2, Nakajima’s construction yields an action of the Lie

algebra on the bases {gXM
} of the irreducible representations in both the A∞ and A(1)

n

cases, which is more difficult to directly compute than in the level one A∞ case.

6.3 ĝln+1 case

Theorem 6.4. The irreducible components of L̃(v,w) are precisely those Xf, where f =

fM for some M ∈ M[Λ]. Denote the component XfM
by XM. Then,M ↔ XM is a natural

one-to-one correspondence between the set

{(
m1, . . . ,ml

) ∈ M[Λ] | m1 ≤ · · · ≤ ml ≤ m1[n+ 1]
}

(6.8)

and the irreducible components of ∪vL̃(v,w). �

Proof. The argument is the same as the proof of Theorem 6.3 except that we do not have

the aperiodicity condition, and thus do not require thatM is n-reduced. �

Note that the enumeration of the irreducible components of ∪vL̃(v,w) given by

Theorem 6.4 is the same as that given by [3, Proposition 4.7] for a spanning set of the dual

to the irreducible highest weight representation of ĝln+1. In order to extend the geomet-

ric construction of highest weight representations of ŝln+1 to ĝln+1 for an arbitrary level,

one would need a representation of the Heisenberg algebra as discussed in Section 5.3.

Here, one might use the construction of the Heisenberg algebra by Baranovsky [1] that

generalizes the Grojnowski-Nakajima construction to higher levels.

Remark 6.5. One can also give a geometric interpretation of the full Fock space of [3]

with basis indexed by M[Λ] via the “smooth”Ul-instanton moduli space �rM(r, l), which

has the same generating function for cohomology (see, e.g., [11, Chapter 5]) as the full

Fock space with the basis M[Λ]. The types A(1)
n or A∞ are reflected in the respective ac-

tion of the groups Z/(n + 1)Z or C
∗ on the moduli space, and γ1, . . . , γl is the set of one-

dimensional representations of these groups that determine this action.

7 A comparison with the path space representation

The authors in [2] constructed the basic representation of A(1)
n on the space of paths. In

[3], this path realization is generalized to arbitrary level. We now compare the geometric

presentation L(v,w) with theirs. We will slightly modify the definitions of [2] to agree

with the more general definitions of [3].
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7.1 The level one case

A basic path is a sequence p = (λ0, λ1, . . . ) of integers λi ∈ {0, 1, . . . , n}. The basic path

(j)j≥0 = (0, 1, . . . , n, 0, 1, . . . , n, . . . ) (7.1)

is called the ground state. Here, k for k ∈ Z signifies the unique integer such that 0 ≤ k ≤
n and k = kmodn+ 1. Let

Pb =
{
p =

(
λ0, λ1, . . .

)
| λj = j for all but a finite number of j

}
. (7.2)

For a basic path p = (λ0, λ1, . . . ) ∈ Pb, let

ω(p) =

∞∑
i=1

i
(
H

(
λi, λi+1

)
−H(i, i+ 1)

)
, (7.3)

where

H(λ, µ) =



0 if λ < µ,

1 if λ ≥ µ.
(7.4)

Basic paths in Pb can be labeled by Young diagrams as we now describe. The

set M[0] is in one-to-one correspondence with the set of strictly increasing sequences of

integersm = (m(0),m(1), . . . ) such thatm(j) = j for j large and

#
{
j | m(j) < 0

}
= #

(
{0, 1, 2, . . . } −

{
m(j) | m(j) ≥ 0}). (7.5)

Such a sequence represents the Young diagram of signature [· · · 3r32r21r1 ], where rj =

m(j) − m(j − 1) − 1 and vice versa. To a Maya diagram m = (m(0),m(1), . . . ) ∈ Yn, we

associate the basic path p = (m(0),m(1), . . . ) ∈ Pb. Then, the ground state corresponds

to the empty Young diagramφ. In the sequel, we identifyn-reduced Young diagrams (i.e.,

elements of Yn) and basic paths via the above correspondence.

For Y = [l1, . . . , ls] ∈ Yn, let

∆k(Y) = δ(k,−s) +

s∑
i=1

(
δ
(
k, li − i+ 1

)
− δ

(
k, li − i

))
. (7.6)

Proposition 7.1. One hasHkgXY
= ∆k(Y)gXY

. �
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Proof. Let Y = [l1, . . . , ls]. Then, gXY
∈ L(v,w0), where

v = dim
s⊕

i=1

V
(
1− i, li − i

)
=

s∑
i=1

li−i∑
l=1−i

αl̄. (7.7)

Recall that the weight of the space L(v,w0) is

(
u0, . . . , un

)
= w0 − Cv, (7.8)

and thusHkgXY
= ukgXY

with

uk = Λ0

(
αk

)
−

s∑
i=1

li−i∑
l=1−i

〈
αk, αl̄〉

= δ(k, 0) −

s∑
i=1

li−i∑
l=1−i

(
2δ(k, l) − δ(k, l− 1) − δ(k, l+ 1)

)

= δ(k, 0) −

s∑
i=1

(
δ(k, 1− i) − δ(k,−i) + δ

(
k, li − i

)
− δ

(
k, li − i+ 1

))

= δ(k,−s) +

s∑
i=1

(
δ
(
k, li − i+ 1

)
− δ

(
k, li − i

))
= ∆k(Y).

(7.9)

�

Proposition 7.2. One has d(gXY
) = −ω(Y)gXY

. �

Proof. We first compute the left-hand side. It is obvious that

d
(
gXY

)
= −v0gXY

, (7.10)

where XY ⊂ L(v,w0). Consider the representation (V(k ′, k ′ + l− 1), x(k ′, k ′ + l− 1)) where

l = (n+ 1)a+ bwith 0 ≤ b ≤ n. Then,

v0 = dim V(k ′, k ′ + l− 1)0 = a+



1 if k ′ − 1+ b > n,

0 if k ′ − 1+ b ≤ n.
(7.11)

Thus, for Y = [l1, . . . , ls] ∈ Yn, where li = (n+ 1)ai + bi with 0 ≤ bi ≤ n,

v0 =

s∑
i=1


ai +



1 if −i+ bi > n

0 otherwise


 . (7.12)



Affine Lie Algebras, Quiver Varieties, and Statistical Mechanics 1543

We now show that this is equal to ω(Y). Let Yi = [l1, . . . , li] for 0 ≤ i ≤ s, where

Y0 = φ, and let (λi
0, λ

i
1, . . . ) be the corresponding basic path. Then, the first li positions of

the basic path corresponding to Yi−1 are

(
1− i, 1− i+ 1, . . . , n, 0, 1, . . . , n, 0, 1, . . . , n, . . . , 0, 1, . . . , n, 0, 1, . . . , bi − i

)
. (7.13)

Here, there are ai repetitions of 0, 1, . . . , n if i− 1 < bi and ai − 1 repetitions if i− 1 ≥ bi.

The first li positions of the basic path corresponding to Yi are simply obtained

from the above by lowering all the entries by 1 (interpreting −1 as n). The entries of Yi

and Yi−1 numbered li + 1 and above are equal. Then, by considering the cases i− 1 < bi

and i− 1 ≥ bi, we see that

∞∑
j=1

j
(
H

(
λi

j, λ
i
j+1

)
−H

(
λi−1

j , λi−1
j+1

))
= ai +



1 if −i+ bi > n,

0 otherwise,
(7.14)

and the result follows. �

Theorem 7.3. The map gXY
�→ Y is a weight-preserving vector space isomorphism be-

tween the geometric presentation L(w0) of L(Λ0) and the basic path space representation

given in [2]. �

Proof. This follows directly from the previous two propositions and the action of the Hi

and d given in [2]. �

7.2 Arbitrary level

We first recall some definitions from [3]. Let εµ = (0, . . . ,
µth
1 , . . . , 0), for 0 ≤ µ ≤ n, de-

note the standard basis vectors of Z
n+1. We extend the indices to Z by setting εµ+n+1 =

εµ. Fix a positive integer l (the level of our representation). A path is a sequence η =

(η(k))k≥0 consisting of elements η(k) ∈ Z
n+1 of the form εµ1(k)+· · ·+εµl(k) with µ1(k), . . . ,

µl(k) ∈ Z. To a level l dominant integral weight Λ = Λγ1
+ · · ·Λγl

is associated the path

ηΛ =
(
ηΛ(k)

)
k≥0

, ηΛ(k) = εγ1+k + · · · + εγl+k. (7.15)
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We call η aΛ-path if η(k) = ηΛ(k) for k� 0. The set ofΛ-paths is denoted by P(Λ). Define

the weight λη of η by

λη = Λ−
∑
k≥0

π
(
η(k) − ηΛ(k)

)
−ω(η)δ, (7.16)

where

ω(η) =
∑
k≥1

k
(
H

(
η(k− 1), η(k)

)
−H

(
ηΛ(k− 1), ηΛ(k)

))
. (7.17)

Here, δ is the null root and π is the Z-linear map from Z
n+1 to the weight lattice of the

Lie algebra of type A(1)
n such that π(εµ) = Λµ+1 − Λµ (here, Λn+1 = Λ0). The function H

is defined as follows: if α = εµ1
+ · · · + εµl

and β = εν1
+ · · · + ενl

(0 ≤ µi, νi ≤ n), then

H(α,β) = min
σ∈Sl

l∑
i=1

θ
(
µi − νσ(i)

)
, (7.18)

where Sl is the permutation group on l letters, and

θ(µ) =



1 if µ ≥ 0,
0 otherwise.

(7.19)

Note that we have redefined the notation ω and H of Section 7.1. However, our

new definitions reduce to the old ones in the case Λ = Λ0 and so, to avoid a proliferation

of notation, we denote the new functions by the same symbols.

Let η be a Λ-path. An element M = (m1, . . . ,ml) ∈ M[Λ] is called a lift of η if and

only if

m1 ≤ · · · ≤ ml ≤ m1[r], (7.20)

η(k) = εm1(k) + · · · + εml(k). (7.21)

If M = (m1, . . . ,ml) and M ′ = (m ′
1, . . . ,m

′
l) are lifts of a Λ-path η, then we say

M ≥M ′ if and only ifmj ≥ m ′
j for 1 ≤ j ≤ l.

Recall the definition of RM given in Section 6.2. ForM,M ′ ∈ M[Λ], we say thatM

is an n-reduction of M ′ if RM is obtained from RM ′ by the removal of sets of the form

{(k+ i, l) | 0 ≤ i ≤ n} for some k and l.

Proposition 7.4. Suppose thatM = (m1, . . . ,ml) is an n-reduction ofM ′ = (m ′
1, . . . ,m

′
l),

m1 ≤ · · ·≤ml ≤ m1[n+ 1], andm ′
1 ≤ · · · ≤ m ′

l ≤ m ′
1[n+ 1]. Then,M andM ′ are lifts of the

same path andM ≥M ′. �
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Figure 7.1 Removing an (n+ 1)× lsquare from a Maya diagram (here, n = 2and l = 4).

Notice that the enumeration of the horizontal edges does not change mod(n+ 1).

Proof. Recall the construction in the proof of Theorem 6.2. Note that choosing arbitrary

strings instead of the longest string at each step will not change the values of the right-

hand side of (7.21) (for any k). Thus, we formM ′′ = (m ′′
1 , . . . ,m

′′
l ) ∈ M[Λ] from the same

strings comprising M ′, but where one of the m ′′
i contains the entire set of strings of the

form {(k + i, l) | 0 ≤ i ≤ n}, which is removed from RM ′ to obtain RM. Now, removing this

set of strings fromM ′′ simply amounts to removing this set fromm ′′
i . But, this just cuts

an (n+1)×l square out of the Maya diagramm ′′
i and shifts the part of the diagram below

the cut up n+ 1 units. See Figure 7.1.

Since εµ+n+1 = εµ, the values of right-hand sides of (7.21) forM ′ andM ′′ are the

same. However,M is simply obtained fromM ′′ by applying the procedure of Theorem 6.2

to the strings of M ′′, and as mentioned above, this does not change the values of right-

hand sides of (7.21). Thus,M andM ′ are lifts of the same path.

To show thatM ≥ M ′, note that by the construction in the proof of Theorem 6.2,

M is uniquely determined by RM. Now, we obtain RM from RM ′ by removing a set of the

form {(k + i, l) | 0 ≤ i ≤ n} for some k and l. Thus, at each stage in our construction ofM,

we choose a string of length less than or equal to the string chosen in the construction of

M ′. Thus, we have thatM ≥M ′. �

Proposition 7.5 (see [3]). For eachΛ-path η, there exists a unique highest liftM of η such

thatM ≥M ′ for any liftM ′ of η. �

Corollary 7.6. The set

{
M =

(
m1, . . . ,ml

) ∈ M[Λ] | M is n-reduced, m1 ≤ · · · ≤ m1 ≤ m1[n+ 1]
}

(7.22)

is precisely the set of highest lifts of paths in P(Λ). �
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LetMη be the n-reduced element of M[Λ] corresponding to η ∈ P(Λ), and let g be

the affine Lie algebra of type A(1)
n . Define

P(Λ)µ =
{
η ∈ M[Λ] | λη = µ

}
. (7.23)

In [3], the authors introduced a basis {ξη | η ∈ P(Λ)µ} of the µ-weight space of the re-

stricted dual of the highest weight representation of g of highest weight Λ [3, Theorem

5.4]. The weight of ξη is λη [3, Theorem 5.7].

Theorem 7.7. The map gXMη
�→ ξη is a weight-preserving vector space isomorphism be-

tween the geometric presentation L(w) of L(Λ) and the path space representation of [3].

�

Proof. The fact that we have a vector space isomorphism follows from Proposition 7.5

and Corollary 7.6. It remains to show that the map is weight-preserving. The definition

of a path agrees with the definition of a basic path when Λ = Λ0, and the weights are the

same in this case. Thus, we have the result for Λ = Λ0 from Section 7.1. Then, the result

for arbitrary level-one representations follows easily.

Now, if

Mη =
((
Y1, γ1

)
, . . . ,

(
Yl, γl

))
(7.24)

and Vi is the space corresponding to the strings (see the proof of Theorem 6.2) of (Yi, γi)

(i.e., its dimension in degree j is equal to the number of vertices of these strings that are

numbered j), then the weight of gMη is

l∑
i=1

(
Λγi

− dim Vi
)
, (7.25)

where dim Vi is identified with an element of the root lattice as in Section 2. But, this is

equal to
∑l

i=1 ληi
, where (Yi, γi) is a lift of ηi by the level-one result. By [3, Proposition

5.6], this is λη as desired. �
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