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Abstract

Using the tensor product variety introduced in Malkin (Duke Math. J., to appear) and

Nakajima (Invent. Math. 146 (2001) 399), the complete structure of the tensor product of a

finite number of integrable highest weight modules of Uqðsl2Þ is recovered. In particular, the

elementary basis, Lusztig’s canonical basis, and the basis adapted to the decomposition of the

tensor product into simple modules are all exhibited as distinguished elements of certain

spaces of invariant functions on the tensor product variety. For the latter two bases, these

distinguished elements are closely related to the irreducible components of the tensor product

variety. The space of intertwiners is also interpreted geometrically.

r 2003 Elsevier Science (USA). All rights reserved.

0. Introduction

The purpose of this paper is to obtain a geometric description of the tensor
product of a finite number of integrable highest weight representations of Uqðsl2Þ
using quiver varieties. The definition of a tensor product variety corresponding to the
tensor product of a finite number of integrable highest weight representations of a
Lie algebra g of ADE type was introduced in [6,9] (see also [10] for a geometric
description of the tensor product). There it is demonstrated that the set of irreducible
components of the tensor product variety can be equipped with the structure of a
g-crystal isomorphic to the crystal of the canonical basis in the tensor product
representation.
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In this paper, we consider the specific case g ¼ sl2 and recover the entire structure
(as opposed to the crystal structure alone) of Uqðsl2Þ via the tensor product variety.
Our definition of the tensor product variety differs slightly from that of [6,9] in that

we consider our varieties over the finite field Fq2 with q2 elements (or its algebraic

closure %Fq2 ) rather than over C: The reader who is only interested in representations

of sl2; rather than its associated quantum group, may replace Fq2 by C and set q ¼ 1

everywhere. With a few obvious modifications, the arguments of the paper still hold.

Let dAðZX0Þk: We find three distinct spaces, T0ðdÞ; TcðdÞ; and TsðdÞ; of invariant
(with respect to a natural group action) functions on the tensor product variety TðdÞ;
each isomorphic to Vd1#?#Vdk

: In each space we define a natural basis. These

three bases, Be; Bc; and Bs; correspond, respectively, to the elementary basis,
Lusztig’s canonical basis [4], and a basis compatible with the decomposition of
Vd1#?#Vdk

into a direct sum of irreducible modules. The two bases Bc and Bs

are characterized by their relation to the irreducible components of TðdÞ: We define
the irreducible components of TðdÞ (defined over Fq2 ) to be the Fq2 points of the

irreducible components of TðdÞ0 (the corresponding variety defined over %Fq2 ). We

then define the dense points of an irreducible component of TðdÞ to be the Fq2 points

of a certain dense subset of the corresponding irreducible component of TðdÞ0:
Distinct elements of the basis Bc and Bs are supported on distinct irreducible
components of TðdÞ and equal to a non-zero constant on the set of dense points of
that irreducible component (see Theorems 2.6.1 and 3.3.2). However, the supports of
the elements of Bs are disjoint whereas the supports of the elements of Bc are not.

We also find a geometric description of the space of intertwiners H
m
d1;y;dk

¼
HomUqðsl2ÞðVd1#?#Vdk

;VmÞ: A natural basis BI of this space is again

characterized by its relation to the irreducible components of TðdÞ:
An important tool used in the development and proof of the results of this paper is

the graphical calculus of intertwiners of Uqðsl2Þ introduced by Penrose, Kauffman

and others. This graphical calculus is expanded in [1] and used to prove various
results concerning Lusztig’s canonical basis. The present paper can be considered a
‘‘geometrization’’ of these results.
In Section 2.7 we conjecture a characterization of the basis Bc as the image of

certain intersection cohomology sheaves of TðdÞ under a particular functor from the
space of constructible semisimple perverse sheaves on TðdÞ to the space of invariant
functions on TðdÞ: Since the definition of TcðdÞ relies on the graphical calculus of
intertwiners of Uqðsl2Þ (and no such graphical calculus exists for more general Lie

algebras), this conjecture should play a key role in the possible extension of the results
of this paper to a more general set of Lie algebras (for instance, those of type ADE).
This paper is organized as follows. Section 1 contains a review of Uqðsl2Þ and its

representations, Nakajima’s quiver varieties, and the graphical calculus of
intertwiners of Uqðsl2Þ: The tensor product variety is defined in Section 2 where

the spaces T0ðdÞ and TcðdÞ are introduced, an isomorphism between the two is
given, and various results concerning these spaces and their distinguished bases Be

and Bc are proved. Section 3 is concerned with a geometric realization of the space
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of intertwiners and the decomposition of the tensor product representation into a
direct sum of irreducible modules (via the space TsðdÞ and the distinguished basis
Bs). It is concluded with the discussion of an isomorphism between the spaces TcðdÞ
and TsðdÞ:
The notation used in the description of quiver varities is not standardized. Lusztig

denotes the fixed vector space by D and the subspace by V while Nakajima denotes
these objects by W and V ; respectively. Since we wish to use the notation Vn for
certain Uqðsl2Þ modules (to agree with the notation of [1]), we denote the fixed vector
space by D and the subspace by W : We hope that this will not cause confusion
among those readers familiar with the work of Lusztig and Nakajima.
Throughout this paper the topology is the Zariski topology and the ground field is

%Fq2 unless otherwise specified. However, we will usually deal with varieties defined

over Fq2 and consider the corresponding set of Fq2 -rational points. Thus, for

instance, Pn ¼ PnFq2 and a vector space is an Fq2 vector space. A function on an

algebraic variety is a function into CðqÞ; the field of rational functions in an
indeterminate q: The span of a set of such functions is their CðqÞ-span. The support
of a function f is defined to be the set fx j f ðxÞa0g and not the closure of this set.

1. The quantum group Uqðsl2Þ and its representations

1.1. The Hopf algebra structure of Uqðsl2Þ

Let CðqÞ be the field of rational functions in an indeterminate q and define

% :CðqÞ-CðqÞ to be the C-algebra involution such that qn ¼ q�n for all n: The
quantum group Uqðsl2Þ (which we will denote by Uq) is the associative algebra over

CðqÞ with generators E;F ;K;K�1 and relations

KK�1 ¼ K�1K ;

KE ¼ q2EK ;

KF ¼ q�2FK ;

EF � FE ¼ K � K�1

q � q�1 :

The comultiplication and counit of the Hopf algebra structure of Uq are given by

DK71 ¼ K71#K71;

DE ¼ E#1þ K#E;

DF ¼ F#K�1 þ 1#F
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and

ZðK71Þ ¼ 1;

ZðEÞ ¼ ZðFÞ ¼ 0;

respectively. Although an explicit expression for the antipode exists, we will not need
it in this paper.
Let us introduce two involutions of Uq: The first one is the Cartan involution,

denoted by o; which acts as follows:

oðEÞ ¼ F ; oðFÞ ¼ E; oðK71Þ ¼ K71; oðq71Þ ¼ q71;

oðxyÞ ¼ oðyÞoðxÞ; x; yAUq:

The second, denoted by s; is called the ‘‘bar’’ involution and is defined by

sðEÞ ¼ E; sðFÞ ¼ F ; sðK71Þ ¼ K81; sðq71Þ ¼ q81;

sðxyÞ ¼ sðxÞsðyÞ; x; yAUq:

Using s we can define a second comultiplication %D by

%DðxÞ ¼ ðs#sÞDðsðxÞÞ; xAUq

which implies

%DK71 ¼K71#K71;

%DE ¼E#1þ K�1#E;

%DF ¼F#K þ 1#F :

1.2. Irreducible representations of Uqðsl2Þ

Any finite-dimensional irreducible Uq-module V is generated by a highest weight

vector, v; of weight eqd where e ¼ 71 and d ¼ dimðVÞ � 1 [2]. In this paper we

consider those representations with e ¼ þ1: Let vd�2k ¼ Fkv=½k�! where

½k� ¼ ðqk � q�kÞ=ðq � q�1Þ ¼ q�kþ1 þ q�kþ3 þ?þ qk�1;

½k�! ¼ ½1�½2�?½k�:
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Then vd�2k ¼ 0 for k4d and fv ¼ vd ; vd�2;y; v�dg is a basis of V : We denote this
representation by Vd : The action of Uq on Vd is given by

K71vm ¼ q7mvm;

Evm ¼ d þ m

2
þ 1

� �
vmþ2;

Fvm ¼ d � m

2
þ 1

� �
vm�2: ð1Þ

Define a bilinear symmetric pairing on Vd by requiring

/xu; vS ¼ /u;oðxÞvS; /vd ; vdS ¼ 1; u; vAVd and xAUq:

It follows that

/vd�2k; vd�2lS ¼ dk;l

d

k

" #
;

where

d

k

" #
¼ ½d�!

½k�!½d � k�!:

Let fvd�2kgd
k¼0 be the basis dual to fvd�2kgd

k¼0 with respect to the form /;S: Then

vd�2k ¼
d

k

" #�1
vd�2k

and the action of Uq in the dual basis is

K71vm ¼ q7mvm;

Evm ¼ d � m

2

� �
vmþ2;

Fvm ¼ d þ m

2

� �
vm�2:

1.3. Geometric realization of irreducible representations of Uqðsl2Þ

We recall here Nakajima’s quiver variety construction of finite-dimensional
irreducible representations of Kac–Moody algebras associated to symmetric Cartan
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matrices [7,8] in the specific case of Uqðsl2Þ: In order to introduce the quantum

parameter q; some of our definitions differ slightly from those in [7,8]. Since the
Dynkin diagram of sl2 consists of a single vertex and no edges, the definition of the
quiver variety simplifies considerably. Fix vector spaces W and D of dimensions w

and d; respectively, and consider the variety

Mðw; dÞ ¼ HomðD;WÞ"HomðW ;DÞ:

The two components of an element of Mðw; dÞ will be denoted by f1 and f2;
respectively. GLðWÞ acts on Mðw; dÞ by

ð f1; f2Þ/gð f1; f2Þ ¼
defðgf1; f2g

�1Þ; gAGLðWÞ:

Define the map m : Mðw; dÞ-End W by

mð f1; f2Þ ¼ f1f2:

Let m�1ð0Þ be the algebraic variety defined as the zero set of m:We say a point ð f1; f2Þ
of m�1ð0Þ is stable if f2 is injective. The quiver variety is then given by

fð f1; f2ÞAm�1ð0Þ j ð f1; f2Þ is stableg=GLðWÞ:

Via the map ð f1; f2Þ/ðim f2; f2f1Þ; this variety is seen to be isomorphic to the variety

Mðw; dÞ ¼ fðW ; tÞ j WCD; dim W ¼ w; tAEnd D; im tCWCker tg

Note that the condition im tCWCker t implies t2 ¼ 0: Let

MðdÞ ¼
[
w

Mðw; dÞ ¼ fðW ; tÞ j WCD; tAEnd D; im tCWCker tg

and

Mðw;w þ 1; dÞ ¼ fðU ;W ; tÞ j tAEndD; im tCUCWCker t; dim U ¼ w; dimW ¼ w þ 1g:

We then have the projections

MðdÞ’p1
[
w

Mðw;w þ 1; dÞ!p2 MðdÞ

given by p1ðU ;W ; tÞ ¼ ðU ; tÞ and p2ðU ;W ; tÞ ¼ ðW ; tÞ:
For a subset Y of a variety A; let 1Y denote the function on A which takes the

value 1 on Y and 0 elsewhere. Note that since our varieties are defined over Fq2 ; they

consist of a finite number of ðFq2 -rational) points. Let wqðY Þ denote the Euler

characteristic of the algebraic variety Y ; which is merely the number of points in Y :
For a map p between algebraic varieties A and B; let p! [5] denote the map between
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the abelian groups of functions on A and B given by

p!ð f ÞðxÞ ¼
X

yAp�1ðxÞ
f ðyÞ ) p!ð1Y ÞðxÞ ¼ wqðp�1ðxÞ-Y Þ; YCA

and let pn be the pullback map from functions on B to functions on A acting as

pnf ðxÞ ¼ f ðpðxÞÞ:
We then define the action of E; F and K71 on the set of functions on MðdÞ by

Ef ¼ q�dimðp�1
1

ð�ÞÞðp1Þ!pn

2 f ;

Ff ¼ q�dimðp�1
2

ð�ÞÞðp2Þ!pn

1 f ;

K71f ¼ q7ðd�2 dimð�ÞÞf ; ð2Þ

where the notation means that for a function f on MðdÞ and ðW ; tÞAMðdÞ;

Ef ðW ; tÞ ¼ q�dimðp�1
1

ðW ;tÞÞðp1Þ!pn

2 f ðW ; tÞ;

Ff ðW ; tÞ ¼ q�dimðp�1
2

ðW ;tÞÞðp2Þ!pn

1 f ðW ; tÞ;

K71f ðW ; tÞ ¼ q7ðd�2 dimW Þf ðW ; tÞ: ð3Þ

Let

MrðdÞ ¼ fðW ; tÞAMðdÞ j rank t ¼ rg;

Mrðw; dÞ ¼ fðW ; tÞAMðw; dÞ j rank t ¼ rg;

Mrðw; dÞ ¼CðqÞ1Mrðw;dÞ;

MrðdÞ ¼ "
w

Mrðw; dÞ;

Mðw; dÞ ¼ "
r

Mrðw; dÞ;

MðdÞ ¼ "
w

Mðw; dÞ:

Also, let us introduce the following notation for Grassmanians:

Grd
w ¼ fWCðFq2Þ

d j dim W ¼ wg:
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Proposition 1.3.1. The action of Uq defined by (2) endows MrðdÞ (and hence MðdÞ)
with the structure of a Uq-module and the map 1Mrðw;dÞ/vd�2w (extended by linearity)

is an isomorphism MrðdÞDVd�2r of Uq-modules.

To prove this proposition, we will need the following lemmas.

Lemma 1.3.1. For vector spaces WCD;

fU j WCUCD; dim U ¼ ugDGrdim D�dim W
u�dim W :

Proof. This follows immediately from the fact that

fU j WCUCD; dim U ¼ ugDfU 0 j U 0CD=W ; dimU 0 ¼ u � dim Wg

via the map U/U 0 ¼ U=W : &

Lemma 1.3.2. wqðPnÞ ¼
Pn

i¼0 q2i:

Proof. This follows from simply counting the number of possible one dimensional
subspaces of Pn: &

Proof of Proposition 1.3.1. If ðW ; tÞAMrðw; dÞ then

E1Mrðwþ1;dÞðW ; tÞ ¼ q�dimðp�1
1

ðW ;tÞÞðp1Þ!pn

21Mrðwþ1;dÞðW ; tÞ

¼ q�dimðfU j WCUCker t; dimU¼wþ1gÞðp1Þ!1Mrðw;wþ1;dÞðW ; tÞ

¼ q�dimðGrd�w�r
1

Þwqðp�11 ðW ; tÞ-Mrðw;w þ 1; dÞÞ

¼ q�dimðPd�w�r�1ÞwqðfU j WCUCker t; dim U ¼ w þ 1gÞ

¼ q�ðd�w�r�1ÞwqðGrd�w�r
1 Þ

¼ q�ðd�w�r�1ÞwqðPd�w�r�1Þ

¼ q�ðd�w�r�1Þ
Xd�w�r�1

i¼0
q2i

¼ q�ðd�w�r�1Þ þ q�ðd�w�r�1Þþ2 þ?þ qd�w�r�1

¼ ½d � w � r�
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and E1Mrðwþ1;dÞðW ; tÞ ¼ 0 otherwise. So E1Mrðwþ1;dÞ ¼ ½d � w � r�1Mrðw;dÞ: Similarly,

if ðW ; tÞAMrðw þ 1; dÞ;

F1Mrðw;dÞðW ; tÞ ¼ q�dimðp�1
2

ðW ;tÞÞðp2Þ!pn

11Mrðw;dÞðW ; tÞ

¼ q�dimðfU jim tCUCW ;dimU¼wgÞðp2Þ!1Mrðw;wþ1;dÞðW ; tÞ

¼ q�dimðGrwþ1�r
w�r Þwqðp�12 ðW ; tÞ-Mrðw;w þ 1; dÞÞ

¼ q�dimðPw�rÞwqðfU j im tCUCW ; dimU ¼ wgÞ

¼ q�ðw�rÞwqðPw�rÞ

¼ q�ðw�rÞ
Xw�r

i¼0
q2i

¼ q�ðw�rÞ þ q�ðw�rÞþ2 þ?þ qw�r

¼ ½w þ 1� r�

and F1Mrðw;dÞðW ; tÞ ¼ 0 otherwise. So F1Mrðw;dÞ ¼ ½w þ 1� r�1Mrðwþ1;dÞ: It is obvious

that

K711Mrðw;dÞ ¼ q7ðd�2wÞ1Mrðw;dÞ: ð4Þ

Now, Mrðw; dÞ ¼ | unless rpwpd � r due to the requirement im tCWCker t in

the definition of Mrðw; dÞ: Thus MrðdÞ ¼ "w¼d�r
w¼r Mrðw; dÞ:

Comparing the above calculations to (1), the result follows. &

So MðdÞ is isomorphic to the direct sum of the irreducible representations of
highest weight d � 2r where 0prpd=2 since these are the possible ranks of t (recall

that t2 ¼ 0).

Let LðdÞ ¼ M0ðdÞ: Then LðdÞ is isomorphic to the algebraic variety of all
subspaces WCD; which is a union of Grassmanians. Let

Lðw; dÞ ¼ M0ðw; dÞ ¼ fWCD j dim W ¼ wgDGrd
w

and

Lðw; dÞ ¼ M0ðw; dÞ ¼ CðqÞ1Lðw;dÞ; LðdÞ ¼ M0ðdÞ ¼ "
d

w¼1
Lðw; dÞ:

We see from Proposition 1.3.1 that the action of Uq defined by (2) endowsLðdÞ with
the structure of the irreducible module Vd via the isomorphism 1Lðw;dÞ/vd�2w

(extended by linearity). Note that for ðW ; tÞAMðdÞ; we can think of t as belonging to
HomðD=W ;WÞ and thus MðdÞ is the cotangent bundle of LðdÞ:
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1.4. Tensor products and the graphical calculus of intertwiners

We define the bilinear pairing of Vd1#?#Vdk
with Vdk

#?#Vd1 by

/vi1#?#vik ; vlk#?#vl1S ¼ dl1
i1
ydlk

ik
:

Then

/Dn�1ðxÞvi1#?#vik ; vlk#?#vl1S

¼ /vi1#?#vik ;
%Dn�1ðoðxÞÞvlk#?#vl1S:

Lusztig’s canonical basis of the tensor product is described in [4]. We refer the
reader to this article or the overview in [1, Section 1.5], for the definition of this basis.
As in [1,4], we denote the elements of Lusztig’s canonical basis by vi1}?}vik and

their dual by vi1 ? vik : The dual is defined with respect to the form / ; S:

/vi1}?}vik ; vlk ? vl1S ¼ dl1
i1
ydlk

ik
:

When we wish to make explicit to which representation a vector belongs, we use the

notation dvk;
dvkAVd :

To simplify notation, we make the following definitions:

#dvw ¼ d1vd1�2w1#?#dk vdk�2wk
;

}dvw ¼ d1vd1�2w1}?}dk vdk�2wk
;

#dvw ¼ d1vd1�2w1#?#dk vdk�2wk ;

dvw ¼ d1vd1�2w1 ? dk vdk�2wk ;

where d;wAðZX0Þk:
We can extend the bar involution s to tensor products of irreducible

representations as follows. Define

sð f ðqÞð#dvwÞÞ ¼ f ðq�1Þð#dvwÞ

and extend by C-linearity. Then s is an isomorphism from Vd1#?#Vdk
to itself

and

sðDðk�1ÞðxÞðvÞÞ ¼ ððs#?#sÞðDðk�1ÞxÞÞðsvÞ ð5Þ

for xAUq and vAVd1#?#Vdk
:

We now recall some results on the graphical calculus of tensor products and
intertwiners. For a more complete treatment, see [1]. In the graphical calculus, Vd is
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depicted by a box marked d with d vertices. To depict CM
a1;y;al
d1;y;dk

; we place the boxes

representing the Vdi
on a horizontal line and the boxes representing the Vai

on

another horizontal line lying above the first one. CM
a1;y;al
d1;y;dk

is then the set of non-

intersecting curves (up to isotopy) connecting the vertices of the boxes such that the
following conditions are satisfied:

1. Each curve connects exactly two vertices.
2. Each vertex is the endpoint of exactly one curve.
3. No curve joins a box to itself.
4. The curves lie inside the box bounded by the two horizontal lines and the vertical

lines through the extreme right and left points.

An example is given in Fig. 1. We call the curves joining two lower boxes lower

curves, those joining two upper boxes upper curves and those joining a lower and an
upper box middle curves. We define the set of oriented crossingless matches

OCM
a1;y;al
d1;y;dk

to be the set of elements of CM
a1;y;al
d1;y;dk

along with an orientation of the

curves such that all upper and lower curves are oriented to the left and all middle
curves are oriented so that those oriented down are to the right of those oriented up.
See Fig. 2.

As shown in [1], the set of crossingless matches CM
a1;y;al
d1;y;dk

is in one to one

correspondence with a basis of the set of intertwiners

H
a1;y;al
d1;y;dk

¼ HomUqðVd1#?#Vdk
;Va1#?#Val

Þ:

The matrix coefficients of the intertwiner associated to a particular crossingless
match are given by Theorem 2.1 of [1]. Note that these are intertwiners in the
dual basis and thus commute with the action of Uq on the tensor product given

by %Dðk�1Þ: Let *g be such an intertwiner and define g ¼ s*gs: Then for xAUq
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Fig. 1. A crossingless match.
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and vAVd1#?#Vdk
;

gDðk�1ÞðxÞðvÞ ¼ s*gsDðk�1ÞðxÞðvÞ

¼ s*gððs#?#sÞDðk�1ÞðxÞÞðsvÞ

¼ s*g %Dðk�1ÞðsxÞðsvÞ

¼ s %Dðk�1ÞðsxÞ*gðsvÞ

¼ sððs#?#sÞDðk�1ÞðxÞÞsgðvÞ

¼Dðk�1ÞðxÞgðvÞ:

Thus g is an intertwiner in the usual basis commuting with the action of Uq given

by Dðk�1Þ:
We will also need to define the set of lower crossingless matches LCMd1;y;dk

and

oriented lower crossingless matches OLCMd1;y;dk
: Elements of LCMd1;y;dk

and

OLCMd1;y;dk
are obtained from elements of CMd1;y;dk

and LCMd1;y;dk
(respec-

tively) by removing the upper boxes (thus converting lower endpoints of upper
curves to unmatched vertices). For the case of OLCMd1;y;dk

; unmatched vertices will

still have an orientation (indicated by an arrow attached to the vertex). As for middle

curves in the case of OCM
a1;y;al
d1;y;dk

; the unmatched vertices in an element of

OLCMd1;y;dk
must be arranged to that those oriented down are to the right of those

oriented up. See Fig. 3.

Let aAðZX0Þk be such that aipdi for i ¼ 1; 2;y; k:We associate an oriented lower
crossingless match to a as follows. For each i; place down arrows on the rightmost ai
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Fig. 2. An oriented crossingless match.
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vertices of the box representing Vdi
: Place up arrows on the remaining vertices. See

Fig. 4. There is a unique way to form an oriented lower crossingless match such that
the orientation of any curve agrees with the direction of the arrows at its endpoints.
Namely, starting from the right connect each down arrow to the first unmatched up
arrow to its right (if there is any). Note that this produces an oriented lower
crossingless match where the unmatched vertices are arranged so that all those with
down arrows are to the right of those with up arrows (otherwise, we could have
matched more vertices). See Fig. 5. So to each a there is an associated element of
OLCMd1;y;dk

: Conversely, given an element of OLCMd1;y;dk
; there is exactly one a

which produces it. So we have a one to one correspondence between the set of

elements aAðZX0Þk such that aipdi and oriented lower crossingless matches
OLCMd1;y;dk

: We will denote the oriented lower crossingless match associated to a

by Mðd; aÞ:
We can put a partial ordering on the sets CM

a1;y;al
d1;y;dk

;OCM
a1;y;al
d1;y;dk

;LCMd1;y;dk
and

OLCMd1;y;dk
as follows. For any two elements S1 and S2 of one of these sets, S1pS2

if the set of lower curves of S1 is a subset of the set of lower curves of S2:
Given the geometrization of irreducible representations of Uq (Section 1.3), it is

natural to seek a geometrization of the tensor product and the space of intertwiners.
This geometric realization is the focus of Sections 2 and 3.
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d1 d2 d3 d4

Fig. 3. An oriented lower crossingless match.

d1 d2 d3 d4

Fig. 4. d ¼ ð4; 3; 3; 4Þ; a ¼ ð3; 1; 1; 2Þ:

d1 d2 d3 d4

Fig. 5. Oriented lower crossingless match associated to d ¼ ð4; 3; 3; 4Þ; a ¼ ð3; 1; 1; 2Þ:
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2. Geometric realization of the tensor product

2.1. Definition of the tensor product variety TðdÞ

We now describe a variety (introduced in [6,9]) corresponding to the tensor
product of the irreducible representations Vd1 ;Vd2 ;y;Vdk

: This construction will

yield three distinct bases of the tensor product in a natural way.

Fix a d-dimensional vector space D and let dAðZX0Þk be such that
Pk

i¼1 di ¼ d:

Define

T0ðdÞ ¼ fðD ¼ fDigk
i¼0;WÞ j 0 ¼ D0CD1C?CDk ¼ D;

WCD; dimDi=Di�1 ¼ dig: ð6Þ

T0ðdÞ admits a natural GLðDÞ action. Namely,

g � ðfDigk
i¼0;WÞ ¼ ðfgDigk

i¼0; gW Þ

for gAGLðDÞ and ðD;WÞAT0ðdÞ: Now let

TðdÞ ¼deffðD ¼ fDigk
i¼0;W ; tÞ j 0 ¼ D0CD1C?CDk ¼ D;WCD;

tAEnd D; tðDiÞCDi�1; dimDi=Di�1 ¼ di; im tCWCker tg: ð7Þ

We call TðdÞ the tensor product variety. We say a flag D ¼ ð0 ¼ D0CD1C?CDk ¼
DÞ is t-stable if tðDiÞCDi�1 for i ¼ 1;y; k:

If we consider the corresponding varieties T0ðdÞ0 and TðdÞ0 defined over %Fq2 ; a

straightforward computation shows that TðdÞ0 is the union of the conormal bundles

of the orbits of the action of GLðDÞ on T0ðdÞ0:
We define the action of E; F and K71 on the set of functions on TðdÞ just as for

the other spaces considered so far. Namely, let

Tðw; dÞ ¼ fðD;W ; tÞATðdÞ j dimW ¼ wg;

Tðw;w þ 1; dÞ ¼ fðD;U ;W ; tÞ j ðD;U ; tÞ; ðD;W ; tÞATðdÞ; UCW ;

dim U ¼ w; dim W ¼ w þ 1g:

We then have the projections

TðdÞ’p1
[
w

Tðw;w þ 1; dÞ!p2 TðdÞ; ð8Þ

where p1ðD;U ;W ; tÞ ¼ ðD;U ; tÞ and p2ðD;U ;W ; tÞ ¼ ðD;W ; tÞ: The action of E; F

and K71 is defined by (2) as usual. Of course, the notation for the action of K71 now
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means that

ðK71f ÞðD;W ; tÞ ¼ q7ðd�2 dim W Þf ðD;W ; tÞ: ð9Þ

2.2. A set of basic functions on the tensor product variety

We now describe a set of basic functions on TðdÞ which will be used to form spaces
of functions isomorphic to Vd1#?#Vdk

: As usual, fix a d-dimensional vector

space D: For a flag D ¼ ð0 ¼ D0C?CDk ¼ DÞ and a subspace WCD; define

aðW ;DÞAðZX0Þk by

aðW ;DÞi ¼ dimðW-DiÞ=ðW-Di�1Þ:

For w; r; nAðZX0Þk; define

Aw;r;n ¼ fðD;W ; tÞATðdÞ j aðW ;DÞ ¼ w; aðim t;DÞ ¼ r; aðker t;DÞ ¼ ng: ð10Þ

Note that the non-empty sets Aw;r;n are precisely the orbits of the action of GLðDÞ
given by

g � ðfDigk
i¼0;W ; tÞ ¼ ðfgDigk

i¼0; gW ; gtg�1Þ; gAGLðDÞ:

From now on, the term constructible will mean constructible with respect to the
stratification given by these sets. We say that a function f on TðdÞ is invariant if it is
invariant under the action of GLðDÞ given by

ðg � f ÞðxÞ ¼ f ðg�1xÞ; gAGLðDÞ:

LetTðdÞ denote the space of invariant functions on TðdÞ:Wewill also use the notation

aðj;lÞ ¼
Xl

i¼j

ai; jaj ¼
Xk

i¼1
ai

for aAðZX0Þk and we will let dj denote the element of ðZX0Þk such that dj
j ¼ 1 and

dj
i ¼ 0 for all iaj:
Let

kw;r;n ¼ q

P
ioj

ðriwjþwinj�wiwjÞ ð11Þ

and define

fw;r;n ¼ kw;r;n1Aw;r;n : ð12Þ

Then it is easy to see that

TðdÞ ¼ Spanffw;r;ngw;r;n:
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We will call the fw;r;n basic functions. Note that fw;r;n ¼ 1Aw;r;n if q ¼ 1: As will be seen

below, the factor of kw;r;n is necessary in order for the fw;r;n to correspond to certain

vectors in the tensor product. Note that fw;r;n � 0 unless rpwpn where we define the
partial ordering such that for a; bAðZX0Þk;

apb 3
Xj

i¼1
aip

Xj

i¼1
bi for 1pjpk

4aob 3 apb; aab: ð13Þ

Also, fw;r;n � 0 unless jrj þ jnj ¼ jdj ¼ d:

Theorem 2.2.1. The action of Uq described in Section 2.1 endows TðdÞ with the

structure of a Uq-module and the map

Zr;n: Spanffw;r;ngw-Vn1�r1#?#Vnk�rk

given by

Zr;nð fw;r;nÞ ¼ #n�rvw�r ð14Þ

(and extended by linearity) is a Uq-module isomorphism.

Proof. Fix a ðD;W ; tÞATðdÞ such that aðW ;DÞ ¼ w� dj for some j (it is easy to see
that Efw;r;nðD;W ; tÞ ¼ 0 unless W satisfies this property). Then

Efw;r;nðD;W ; tÞ ¼ q�dimðp�1
1

ðD;W ;tÞÞðp1Þ!pn

2 fw;r;nðD;W ; tÞ

¼ kw;r;nq
�dimðp�1

1
ðD;W ;tÞÞwqðp�11 ðD;W ; tÞ-p�12 ðAw;r;nÞÞ:

Now,

p�11 ðD;W ; tÞDfU j WCUCker t; dim U ¼ dim W þ 1g

DPdimðker tÞ�dim W�1

¼Pjnj�ðjwj�1Þ�1

¼Pjnj�jwj:
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So dimðp�11 ðD;W ; tÞÞ ¼ jnj � jwj and

p�11 ðD;W ; tÞ-p�12 ðAw;r;nÞ

DfU j WCUCker t; aðU ;DÞ ¼ wg

DfU j ðW-DjÞCUCðker t-DjÞ;

dimðU-Dj�1Þ ¼ wð1;j�1Þ; dim U ¼ wð1;jÞg

DfU j UCðker t-DjÞ=ðW-DjÞ;

Ugðker t-Dj�1Þ=ðW-Dj�1Þ; dimU ¼ 1g

DPdimðker t-DjÞ=ðW-DjÞ�1 � Pdimðker t-Dj�1Þ=ðW-ker Dj�1Þ�1

¼ Pn
ð1;jÞ�ðw�djÞð1;jÞ�1 � Pn

ð1;j�1Þ�ðw�djÞð1;j�1Þ�1

¼ Pn
ð1;jÞ�wð1;jÞ � Pn

ð1;j�1Þ�wð1;j�1Þ�1:

Thus

Efw;r;nðD;W ; tÞ ¼ kw;r;nq
�ðjnj�jwjÞ

Xnð1;jÞ�wð1;jÞ

i¼0
q2i �

Xnð1;j�1Þ�wð1;j�1Þ�1

i¼0
q2i

0
@

1
A

¼ kw;r;nq
jwj�jnj

Xnð1;jÞ�wð1;jÞ

nð1;j�1Þ�wð1;j�1Þ
q2i

¼ kw;r;nq
jwj�jnjþ2ðnð1;j�1Þ�wð1;j�1ÞÞ

Xnj�wj

i¼0
q2i

¼ kw;r;nq
�wð1;j�1Þþwðjþ1;kÞþnð1;j�1Þ�nðjþ1;kÞ ½nj � wj þ 1�:

Now,

kw�dj ;r;n ¼ kw;r;nq
�rð1;j�1Þ�nðjþ1;kÞþw1;j�1þwjþ1;k

So

kw;r;nq
�wð1;j�1Þþwðjþ1;kÞþnð1;j�1Þ�nðjþ1;kÞ ¼ kw�dj ;r;nq

rð1;j�1Þþnð1;j�1Þ�2wð1;j�1Þ

and thus

Efw;r;nðD;W ; tÞ ¼ kw�dj ;r;nq
rð1;j�1Þþnð1;j�1Þ�2wð1;j�1Þ ½nj � wj þ 1�:
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Therefore,

Efw;r;n ¼
Xk

j¼1
qr

ð1;j�1Þþnð1;j�1Þ�2wð1;j�1Þ ½nj � wj þ 1�kw�dj ;r;n1A
w�di ;r;n

¼
Xk

j¼1
qr

ð1;j�1Þþnð1;j�1Þ�2wð1;j�1Þ ½nj � wj þ 1�f
w�dj ;r;n

¼
Xk

j¼1
q
Pj�1

i¼1 ðni�ri�2ðwi�riÞÞ½nj � wj þ 1�fw�dj ;r;n: ð15Þ

Similarly

Ffw;r;n ¼
Xk

j¼1
q
�
Pk

i¼jþ1ðni�ri�2ðwi�riÞÞ½wj � rj þ 1�f
wþdj ;r;n: ð16Þ

It follows immediately from (9) that

K71fw;r;n ¼ q7ðd�2jwjÞfw;r;n

¼ q7
Pk

i¼1ðni�ri�2ðwi�riÞÞfw;r;n ð17Þ

since jrj þ jnj ¼ jdj:
Now recall that xAUq acts on Vd1#?#Vdk

as Dðk�1ÞðxÞ: In particular,

Dðk�1ÞE ¼
Xk

i¼1
K#?#K#E#1#?#1;

Dðk�1ÞF ¼
Xk

i¼1
1#?#1#F#K�1#?#K�1;

Dðk�1ÞK71 ¼ K71#?#K71; ð18Þ

where in the first two equations, the E or F appears in the ith position. Comparing
(18) and (1) to (15)–(17) the result follows. &

2.3. The space T0ðdÞ and the elementary basis Be

Note that if t ¼ 0; then r ¼ 0 and n ¼ d: Let Be ¼ ffw;0;dgw: Then SpanBe is the

space of invariant functions on T0ðdÞ which we shall denote by T0ðdÞ: We see from
Theorem 2.2.1 that the map

Z0;d : fw;0;d/#dvw
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(extended by linearity) is an isomorphism

T0ðdÞDVd1#?#Vdk
:

We have therefore exhibited the elementary basis as the set of invariant functions on
the variety T0CTðdÞ:

2.4. The space TcðdÞ

The goal of this section is to develop a natural way to extend invariant functions
on T0ðdÞ to invariant functions on TðdÞ with larger supports. Recall that T0ðdÞ and
TðdÞ are the spaces of invariant functions on T0ðdÞ and TðdÞ; respectively. The
action of E; F and K71 defined by (2) gives both T0ðdÞ and TðdÞ the structure of a
Uq-module as can be seen from Theorem 2.2.1. We will call a Uq-module map

e : f/f e from T0ðdÞ to TðdÞ an extension. Assuming an extension e exists,

Zr;n3e3ðZ0;dÞ
�1 is an intertwiner from Vd1#?#Vdk

to Vn1�r1#?#Vnk�rk :

Conversely, each such set of intertwiners determines an extension. Namely, given
a set of intertwiners

fgr;n :Vd1#?#Vdk
-Vn1�r1#?#Vnk�rkgr;n;

we extend a function fAT0ðdÞ to a function f eATðdÞ by defining

f e ¼
X
r;n

ðZr;nÞ
�1
3gr;n3Z0;dð f Þ: ð19Þ

From Section 1.4 we know that a basis for the space of intertwiners between two
tensor product representations of Uq is given by the corresponding crossingless

matches. Now, a lower curve represents a particular action of tAEnd W : A lower
curve connecting Vdi

and Vdj
with ioj represents the fact that t sends a vector in

Dj �Dj�1 to a vector in Di �Di�1: So for any lower crossingless match S; fix a basis

of D compatible with the flag D and let t be the map whose matrix in this basis has
ði; jÞ component equal to 1 if ioj and S has an curve connecting the ith and jth

vertices and is equal to zero otherwise. Then let rS and nS be defined as aðim t;DÞ and
aðker t;DÞ: Thus, rSi is the number of left endpoints of the lower curves contained in

Vdi
and nS

i is di minus the number of right endpoints of the lower curves contained

in Vdi
: See Fig. 6. Then complete S to a crossingless match to VnS

1
�rS

1
#?#VnS

k
�rS

k

as in Fig. 7 (there is a unique way to do this). Let *grS ;nS be the corresponding

intertwiner in the dual basis (that is, commuting with the action of Uq given by
%Dðk�1Þ). Note that *grS ;nS is well defined since the map S/ðrS; nSÞ described above is

injective. Now let grS ;nS ¼ s*grS ;nSs: As noted in Section 1.4, grS ;nS : Vd1#?#Vdk
-

VnS
1
�rS

1
#?#VnS

k
�rS

k
is an intertwiner in the usual basis (that is, it commutes with

the action of Uq given by Dðk�1Þ). For all ðr; nÞ not of the form ðrS; nSÞ for some
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lower crossingless match S; let gr;n ¼ 0: Then let e : f/f e be the map defined

by (19).

Proposition 2.4.1. The extension e is an isomorphism onto its image and

f ejT0ðdÞ ¼ f :

Proof. This follows immediately from Theorem 2.2.1. &

Let

TcðdÞ ¼ eðT0ðdÞÞCTðdÞ:

It follows from Proposition 2.4.1 and Theorem 2.2.1 that TcðdÞDVd1#?#Vdk
:

And it follows from Proposition 2.4.1 that e :T0ðdÞ-TcðdÞ is an isomorphism of
Uq-modules with inverse given by restriction to T0ðdÞ: We will find a distinguished

basis of TcðdÞ related to the irreducible components of TðdÞ0: Before we do this, we
must first examine these irreducible components.
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d1 d2 d3 d4

Fig. 6. Oriented lower crossingless match S. rS ¼ ð3; 1; 1; 0Þ; nS ¼ ð4; 1; 1; 3Þ:

ns
1 - r1

s ns
4 - r4

s

d1 d2 d3 d4

Fig. 7. Completion of Fig. 6 to an oriented crossingless match to V
nS
1
�rS

1
#?#V

nS
k
�rS

k
¼

V1#V0#V0#V3:
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2.5. The irreducible components of the tensor product variety

For the remainder of this section we consider varieties defined over %Fq2 : To avoid

confusion, we denote the corresponding varieties by T0ðdÞ0 and TðdÞ0: For wAðZX0Þk

such that wipdi; let

Z0
w ¼ fðD;W ; tÞATðdÞ0jaðW ;DÞ ¼ wg:

We then have the following.

Theorem 2.5.1. fZ0
wgw are the irreducible components of TðdÞ0:

Proof. It is obvious that 0wZ0
w ¼ TðdÞ0 (where 0 denotes disjoint union). Also,

the connected components of TðdÞ0 are given by fixing the dimension of W :
Thus, since jwj ¼ dim W ; it suffices to prove that the Z0

w are irreducible and

locally closed and that dim Z0
w is independent of w for fixed jwj: Consider

the maps

Z0
w !p1 1Z0

w!
p2 2Z0

w;

where

1Z0
w ¼fðD;WÞ j ðD;W ; tÞAZ0

w for some tg;

2Z0
w ¼fD j ðD;WÞA1Z0

w for some Wg;

p1ðD;W ; tÞ ¼ ðD;WÞ;

p2ðD;WÞ ¼D:

Then p1 and p2 are locally trivial fibrations. Now

2Z0
w ¼ fD ¼ fDigk

i¼0 j 0 ¼ D0CD1C?CDk ¼ D; dimDi=Di�1 ¼ dig

is simply a flag manifold. It is a homogeneous space as follows. GLðDÞ acts

transitively on 2Z0
w with stabilizer isomorphic to the set of matrices

G0 ¼

M1 * ? *

0 M2 & ^

^ & & *

0 ? 0 Mk

1
CCCA

0
BBB@

���������
MiAGLðdiÞ

8>>><
>>>:

9>>>=
>>>;
:
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Thus,

dim2Z0
w ¼ dimGLðDÞ � dim G0

¼
X
ioj

didj: ð20Þ

Now, the fiber of p2 over a point DA 2Z0
w is

F2 ¼ fWCD j aðW ;DÞ ¼ wg:

The group G0 acts transitively on this space and the stabilizer is isomorphic to the set
of matrices

G1 ¼

M1 * * * * ? ? *

0 N1 0 * 0 ? ? *

0 0 M2 * * *

0 0 0 N2 0 *

0 0 0 0 & & *

0 0 0 0 & & 0 ^

^ ^ ^ ^ & & Mk *

0 0 0 0 ? ? 0 Nk

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

��������������������

;
MiAGLðwiÞ;

NiAGLðdi � wiÞ

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:

So

dim F2 ¼ dim G0 � dim G1

¼
X
jpi

wiðdj � wjÞ: ð21Þ

The fiber of p1 over a point ðD;WÞA 1Z0
w is

F1 ¼ ftAEnd D j tðDiÞCDi�1; im tCWCker tg: ð22Þ

Pick a basis fuigd
i¼1 of D such that fuig

d1þ?þdj

i¼1 is a basis for Dj and

[j

l¼0
fuigd

ð1;l�1Þþwl

i¼dð1;l�1Þþ1

(where dð1;0Þ ¼ 0Þ is a basis for W-Dj: Then by considering the matrices of t in this

basis it is easy to see that F1 is an affine space of dimension

dim F1 ¼
X
ioj

wiðdj � wjÞ: ð23Þ
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So from Eqs. (20)–(23) we see that

dim Z0
w ¼

X
ioj

didj þ
Xk

i;j¼1
wiðdj � wjÞ

¼
X
ioj

didj þ jwjðd � jwjÞ ð24Þ

and thus dim Z0
w is independent of w (for a fixed value of jwj).

Now, 2Z0
w;F1 and F2 are all smooth and connected, hence irreducible. Also, 2Z0

w

and F1 are closed while F2 is locally closed. The latter statement follows from the fact
that F2 is equal to the closed set fWCD j aðW ;DÞXwg minus the finite collection of
closed sets fWCD j aðW ;DÞXaga4w: Thus each Z0

w is irreducible and locally

closed. &

Let

A0
w;r;n ¼ fðD;W ; tÞATðdÞ0 j aðW ;DÞ ¼ w; aðim t;DÞ ¼ r; aðker t;DÞ ¼ ng: ð25Þ

We will need the following two propositions in the sequel.

Proposition 2.5.1. Let wAðZX0Þk
with wipdi for all i and let M ¼ Mðd;wÞ: Then

A0
w;rM ;nM is an open dense subset of Z0

w: In particular, A0
w;rM ;nM ¼ Z0

w:

Proof. It is enough to show that A0
w;rM ;nM is dense in Z0

w (it is obvious from the

definitions that A0
w;rM ;nMCZ0

w). Since r
MpwpnM by construction of M; we have

that the projection of A0
w;rM ;nM onto 1Z0

w is all of 1Z0
w: Thus it suffices to show that

A0
w;rM ;nM is dense in each fiber. Fix ðD;WÞA1Z0

w: The fiber, F1; of the projection p1 is

given by (22). The intersection of F1 with ðp1jA0
w;rM ;nM

Þ�1ðD;WÞ is isomorphic to

B ¼ ftAEnd D j tðDiÞCDi�1; im tCWCker t; aðker t;DÞ ¼ nM ; aðim t;DÞ ¼ rMg:

Choose a basis b of D compatible with the flag D and subspace W (that is, there exist
bases for W and each Di which are subsets of b). Now, since im tCWCker t; t can
be factored through D=W and considered as a map into W : Each t is uniquely
determined by the corresponding %tAEndðD=W ;WÞ: Consider the matrix of %t in the
basis of D=W given by the projection of the basis b under the natural map D-D=W

and the basis of W which is a subset of b: It must be of the following form:

Ct ¼

0 A1;2 A1;3 ? A1;k

^ 0 A2;3 ? A2;k

^ ^ & & ^

^ ^ & 0 Ak�1;k

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð26Þ
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where Ai;j is a ðwiÞ � ðdj � wjÞ matrix. Then tAB if and only if each submatrix

C
i;j
t ¼

Ai;iþ1 Ai;iþ2 ? Ai;jþ1

0 Aiþ1;iþ2 ? Aiþ1;jþ1

^ & & ^

0 ? 0 Aj;jþ1

0
BBB@

1
CCCA; 1pipjpk � 1 ð27Þ

has maximal rank. To see this, consider the diagram M 0 of non-crossing-oriented
curves connecting the Vdi

associated to a tAF1: That is, the number of down-oriented

vertices among those associated to Vdi
is given by wi and the number of left and right

endpoints of curves of M 0 in Vdi
are given by aðim t;DÞi and di � aðker t;DÞi;

respectively. A priori, this is not an oriented lower crossingless match (for instance,
the unmatched vertices of M 0 might not be arranged so that those oriented down are

to the right of those oriented up). The requirement that C
i;j
t has maximal rank is

equivalent to the requirement that M 0 has the maximum possible number of curves
connecting Vdi

; Vdiþ1 ;y ; and Vdjþ1 : Thus, referring to the definition of Mðd;wÞ
given in Section 1.4, we see that the condition that all the C

i;j
t have maximal rank is

equivalent to the condition that M 0 ¼ M (so M 0 is indeed an oriented crossingless

match) and thus equivalent to aðim t;DÞ ¼ rM 0 ¼ rM and aðker t;DÞ ¼ nM 0 ¼ nM or
tAB: Note that this argument also allows us to see that B is not empty since it
contains the element t given by the matrix whose ði; jÞ entry is 1 if ioj and M

contains a curve connecting the ith and jth vertices and zero otherwise. In fact, this is
a canonical form of any tAB: That is, by a change of basis (preserving the flag D), we
can transform the matrix of any tAB to this form.
Assume we know that the subset Nm;n of the set Mm;n of m � n matrices given by

Nm;n ¼ fAAMm;n j A has maximal rankg

is an open subset of the set Mm;n: Then Nm;n is given by the non-vanishing of a finite

collection of polynomials in the matrix elements of Mm;n (recall we are working in the

Zariski topology). Thus, the requirement that the submatrices C
i;j
t have maximal

rank is equivalent to the non-vanishing of a finite number of polynomials in the

matrix elements of the C
i;j
t (and hence of Ct). Therefore, we will have shown that B is

the intersection of a finite number of open subsets of F1 and hence is open (and thus
dense since it is not empty) in F1:
So it remains to show that Nm;n is dense in Mm;n: But if we let r ¼ minðm; nÞ; then

Nm;n ¼ fAAMm;n jAt least one r � r submatrix of A has rank rg

which is a union of open subsets of Mm;n (since an r � r matrix has rank r if and only

if its determinant is non-zero) and hence open (and dense) in Mm;n: &

Proposition 2.5.2. With the notation of Proposition 2.5.1, A0
a;rS ;nSCZ0

w for all

SpM; aXw; jaj ¼ jwj:
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Proof. It suffices to show that A0
a;rS ;nS is contained in Z0

w: The image of A0
a;rS ;nS

under the projection p1 is fðD;WÞ j aðW ;DÞ ¼ ag which is contained in 1Z0
w

since aXw and jaj ¼ jwj: The fiber of the projection p1 (restricted to A0
a;rS ;nS ) over a

point ðD;WÞ is

ft j ðD;W ; tÞATðdÞ; aðker t;DÞ ¼ nS; aðim t;DÞ ¼ rSg

and this is in the closure of the set

ft j ðD;W ; tÞATðdÞ; aðker t;DÞ ¼ nM ; aðim t;DÞ ¼ rMg

since SpM: So A0
a;rS ;nSCZ0

w: &

We now define the irreducible components of TðdÞ to be the Fq2 points of the

irreducible components of TðdÞ0: Let Zw denote the set of Fq2 points of the

irreducible component Z0
w of TðdÞ0: We also define the dense points of an irreducible

component Zw of TðdÞ to be the Fq2 points of the dense subset A0
w;rM ;nM (where

M ¼ Mðd;wÞ) of the corresponding irreducible component Z0
w of TðdÞ0: However,

the Fq2 points of A0
w;r;n are exactly the elements of Aw;r;n: Thus, the dense points of the

irreducible component Zw of TðdÞ are just the points of Aw;rM ;nM :

2.6. Geometric realization of the canonical basis

We are now ready to describe the set of functions mentioned at the end of Section
2.4. Define

hdw ¼ Z�10;dð}
dvwÞ;

gdw ¼ ðhdwÞ
e;

Bc ¼ fgdwgw: ð28Þ

For a vector w1#?#wkAVa1#?Vak
; let ðw1#?#wkÞr ¼ wk#?#

w1AVak
#?#Va1 : For an intertwiner g : Va1#?# Vak

-Vb1#?#Vbl
corre-

sponding to a crossingless match S; let gw : Vbl
#?#Vb1-Vak

#?#Va1 denote

the intertwiner corresponding to the crossingless match S rotated 1801: It follows
easily from the graphical calculus described in [1] that

/gðvÞ;wS ¼ /v; ðsgwsÞðwÞS ¼ /v; ð*gÞwðwÞS

for any vAVa1#?#Vak
and wAVbl

#?#Vb1 :

We will need the following results.
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Lemma 2.6.1

grS ;nS ð}dvwÞ ¼
}nS�rS vw�rS if SpMðd;wÞ;
0 otherwise:

(

Proof. It is apparent from the graphical calculus of [1] that if SpMðd;wÞ; then
ð*grS ;nS Þwðð nS�rS vw�r

S ÞrÞ ¼ ð dvwÞr and that ð*grS ;nS Þw sends other dual canonical basis
elements ð nS�rS vaÞr; aaw� rS; to elements of the form ð dva

0 Þr with a0aw:
Therefore

/grS ;nS ð}dvwÞ; ð nS�rS vw�r
S ÞrS ¼/}dvw; ð*grS ;nS Þwðð nS�rS vw�r

S ÞrÞS

¼/}dvw; ð dvwÞrS

¼ 1

and

/grS ;nS ð}dvwÞ; ð nS�rS vaÞrS ¼ 0

for all aaw� rS: Thus grS ;nS ð}dvwÞ ¼ }nS�rS vw�rS : A similar argument demon-

strates that grS ;nS ð}dvwÞ ¼ 0 if S4/ Mðd;wÞ since then the image of ð*grS ;nS Þw is

spanned by dva with aaw: &

Proposition 2.6.1.

gdw ¼
X

SpMðd;wÞ
ðZrSnS Þ�1ð}nS�rS vw�rS Þ:

Proof. This follows immediately from Lemma 2.6.1. &

Proposition 2.6.2. }dvw is equal to #dvw plus a linear combination of elements

#dva; a4w; jaj ¼ jwj; with coefficients in q�1N½q�1�:

Proof. This follows from Sections 1.5 and 1.6 of [1]. &

We can now prove one of our main results.

Theorem 2.6.1. gdw is the unique element of TcðdÞ; up to a multiplicative constant,

satisfying the following conditions:

1. gdw is equal to a non-zero constant on the set of dense points Aw;rM ;nM of the

irreducible component Zw (where M ¼ Mðd;wÞÞ:
2. The support of gdw lies in Zw:
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Furthermore, the set fgdwgw is a basis of TcðdÞ and the map

}dvw/gdw

(extended by linearity) is a Uq-module isomorphism Vd1#?#Vdk
DTcðdÞ:

Proof. In this proof, to simplify notation in calculations, we will suppress the
isomorphism Zr;n defined by (14) and identify the vector #n�rvw�r with the function

fw;r;n: Assume that g0d
w satisfies the above conditions and let g0d

w ¼ ðh0d
w Þ

e: The value of

g0d
w on Aw;rM ;nM is given by kw;rM ;nM times the coefficient of fw;rM ;nM when g0d

w is written

as a linear combination of the basic functions. This coefficient is equal to

/grM ;nM ðh0d
w Þ; ð#nM�rM vw�r

M ÞrS:

.
Therefore, since kw;rM ;nMa0; condition 1 is equivalent to

/grM ;nM ðh0d
w Þ; ð#nM�rM vw�r

M ÞrSa0 3 /h0d
w ; ð*grM ;nM Þwðð#nM�rM vw�r

M ÞrÞSa0:

Now, since M ¼ Mðd;wÞ is the oriented lower crossingless match associated to

w; MðnM � rM ;w� rMÞ has no lower curves and all down arrows are to the right of
all up arrows. So after being rotated by 1801 (but keeping the original orientation of
unmatched vertices—for example, those oriented up remain oriented up), this
diagram has all down arrows to the left of all up arrows. Thus, by Section 2.3 of [1],

ð#nM�rM vw�r
M Þr ¼ ð nM�rM vw�r

M Þr: It also follows from the graphical calculus of [1]
that

ð*grM ;nM Þwðð nM�rM vw�r
M ÞrÞ ¼ ð dvwÞr:

Therefore condition 1 is equivalent to

/h0d
w ; ð dvwÞrSa0: ð29Þ

Next we consider condition 2. In order for this condition to be satisfied, g0d
w must

be equal to zero on Aw0;rM 0
;nM 0 for all w0aw (where M 0 ¼ Mðd;w0Þ). By an argument

analogous to that given above, this is equivalent to the condition

/h0d
w’ð

dvw
0 ÞrS ¼ 0 ð30Þ

for all w0aw: Therefore, by (29) and (30), we must have

h0d
w ¼ cdw �}

dvw ¼ cdw � hdw

for some non-zero constant cdw which proves uniqueness up to a multiplicative

constant. It still remains to show that gdw satisfies the given conditions.
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Now, by Proposition 2.6.1, the value of gdw on Aw;rM ;nM ; where M ¼ Mðd;wÞ; is
equal to kw;r;n times the coefficient of #nM�rM vw�rM in the expression of

}nM�rM vw�rM as a linear combination of elementary basis elements. By Proposition

2.6.2, this coefficient is equal to 1. So gdw is equal to a non-zero constant on Aw;rM ;nM :

Also, by Propositions 2.6.1 and 2.6.2, gdw is equal to a linear combination of

functions of the form ðZrS ;nS Þ�1ð#nS�rS vaÞ ¼ faþrS ;rS ;nS with SpM; jaj ¼
jw� rSj ð) jaþ rSj ¼ jwjÞ; and aXw� rS ð) aþ rsXwÞ: Thus, by Proposition

2.5.2, the support of gdw lies in Zw: So we have demonstrated that the functions gdw are

the unique functions, up to a multiplicative constant, satisfying conditions 1 and 2.
The last two statements of the theorem follow from the fact that the map

Z0;d :}
dvw/hdw (extended by linearity) is a Uq-module isomorphism

Vd1#?#Vdk
DT0ðdÞ and the fact that e is an isomorphism onto its image. &

2.7. A conjectured characterization of TcðdÞ and Bc

We present here a conjecture concerning an alternative characterization of the

basisBc: LetP be the category of semisimple perverse sheaves on TðdÞ0 constructible
with respect to the stratification given by the A0

w;r;n and let D :P-P be the

operation of Verdier Duality. For B�AP and xATðdÞ0; B�
x denotes the stalk complex

at the point x: We define the action of the involution CðkÞ on TðdÞ by

CðkÞð fw;r;nÞ ¼ ðZr;nÞ
�1CðkÞZr;nð fw;r;nÞ;

where on the right-hand side CðkÞ is the involution used to characterize the canonical
basis (see [1, Section 1.6]). In particular, the canonical basis is invariant under the

action of CðkÞ: Now let y :P-TðdÞ be the map such that

ðyðB�ÞÞðxÞ ¼
X

i

ð�1Þi
qidimHiðB�

xÞ for xATðdÞ and B�AP:

For each irreducible component Z0
w of TðdÞ0 there is an intersection sheaf complex

IC�
w associated to the local system which is the constant sheaf C (in degree zero) on

the dense subset A0
w;rM ;nM where M ¼ Mðd;wÞ (see [3] for details).

Conjecture 2.7.1. yðIC�
wÞ ¼ k�1

w;rM ;nM gdw:

The factor of k�1
w;rM ;nM arises from the fact that yðIC�

wÞ is equal to one on the set

A0
w;rM ;nM : The proof of Conjecture 2.7.1 would most likely center around the idea

that the action of Verdier Duality in P should correspond to the action of CðkÞ in
TðdÞ: The precise statement is the following:

Conjecture 2.7.2. yD ¼ CðkÞy:
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3. Geometric realization of the intertwiners

3.1. Defining the intertwiners

The goal of this section is to decompose TðdÞ into subsets corresponding to a basis
for the space of intertwiners

H
m
d1;y;dk

¼ HomUqðVd1#?#Vdk
;VmÞ: ð31Þ

Note that H
m
d1;y;dk

¼ 0 unless m ¼ d � 2r for some 0prpd=2 (where d ¼ jdjÞ: Thus,
the intertwiners will be maps from TðdÞ to MðdÞ since these Vm are precisely the

representations appearing in MðdÞ (see Section 1.3).
Let Y be a constructible subset of TðdÞ: Define RY :TðdÞ-TðdÞ to be the map

which restricts functions to their values on Y : That is, for fATðdÞ; RY f ¼ 1Y f

(where the multiplication of functions is pointwise).
Consider the map p :TðdÞ-MðdÞ such that pðD;W ; tÞ ¼ ðW ; tÞ: Let TY ¼ p!RY :

Then TY is a map from TðdÞ to MðdÞ:

Proposition 3.1.1. If YCTðdÞ satisfies p1p�12 ðYÞCY and p2p�11 ðYÞCY where p1 and

p2 are the maps from (8) then TY is an intertwiner.

Proof. It suffices to show that TY commutes with the action of E; F and K71 since

these elements generate Uq: Note that the condition p1p�12 ðYÞCY implies

p�12 ðY ÞCp�11 ðYÞ and the condition p2p�11 ðYÞCY implies p�11 ðY ÞCp�12 ðYÞ: Thus
p�11 ðY Þ ¼ p�12 ðY Þ: We first show that TY E ¼ ETY : Now TY E ¼ p!RY E and ETY ¼
Ep!RY : Thus it suffices to show that RY E ¼ ERY and p!E ¼ Ep!: Since TðdÞ is
spanned by functions of the form 1A where A is a subvariety of TðdÞ; we need only
check that actions agree on such functions. For x ¼ ðD;W ; tÞATðdÞ

RY E1AðxÞ ¼ 1Y ðxÞðE1AÞðxÞ

¼ 1Y ðxÞq�dimðp�1
1

ðxÞÞððp1Þ!pn

21AÞðxÞ

¼ q�dimðp�1
1

ðxÞÞ1Y ðxÞððp1Þ!1p�1
2

ðAÞÞðxÞ

¼ q�dimðp�1
1

ðxÞÞ1Y ðxÞwqðp�11 ðxÞ-p�12 ðAÞÞ

¼ q�dimðp�1
1

ðxÞÞwqðp�11 ðx-Y Þ-p�12 ðAÞÞ

¼ q�dimðp�1
1

ðxÞÞwqðp�11 ðxÞ-p�11 ðYÞ-p�12 ðAÞÞ

¼ q�dimðp�1
1

ðxÞÞwqðp�11 ðxÞ-p�12 ðYÞ-p�12 ðAÞÞ

¼ q�dimðp�1
1

ðxÞÞwqðp�11 ðxÞ-p�12 ðY-AÞÞ

ARTICLE IN PRESS
A. Savage / Advances in Mathematics 177 (2003) 297–340 325



¼ q�dimðp�1
1

ðxÞÞðp1Þ!1p�1
2

ðY-AÞðxÞ

¼ q�dimðp�1
1

ðxÞÞðp1Þ!pn

21Y-AðxÞ

¼ q�dimðp�1
1

ðxÞÞðp1Þ!pn

2ð1Y1AÞðxÞ

¼ERY1AðxÞ;

where the fifth equality holds from consideration of the two cases xAY and xeY :
It remains to show that p!E ¼ Ep!: For the purposes of this demonstration, we

introduce the map

p0 :
[
w

Tðw;w þ 1; dÞ-
[
w

Mðw;w þ 1; dÞ

which acts as p0ðD;U ;W ; tÞ ¼ ðU ;W ; tÞ: We have the following commutative
diagram:

TðdÞ !p MðdÞ

mp2 mp2S
w

Tðw;w þ 1; dÞ !p
0 S

w

Mðw;w þ 1; dÞ

kp1 kp1

TðdÞ !p MðdÞ

As before we use the notation p1 and p2 to denote several different, but analogous
maps.

Note that p�1p2 ¼ p2ðp0Þ�1 (both are the map ðU ;W ; tÞ/
fðD;W 0; t0ÞATðdÞ j W 0 ¼ W ; t0 ¼ tgÞ: Using this fact we show that ðp0Þ!pn

2 ¼ pn
2p!:

Let xATðdÞ: Then

ðpn

2p!1AÞðxÞ ¼ ðp!1AÞðp2ðxÞÞ

¼ wqðp�1ðp2ðxÞÞ-AÞ

¼ wqðp2ððp0Þ�1ðxÞÞ-AÞ

¼ wqðp2ððp0Þ�1ðxÞ-p�12 ðAÞÞÞ

¼ wqððp0Þ�1ðxÞ-p�12 ðAÞÞ

¼ ðp0Þ!1p�1
2

ðAÞðxÞ

¼ ðp0Þ!pn

21AðxÞ;
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where in the fourth equality we used the general fact that p2ðBÞ-A ¼
p2ðB-p�12 ðAÞÞ and in the fifth equality we used the fact that if x ¼ ðU 0;W 0; t0Þ then

ðp0Þ�1ðxÞ-p�12 ðAÞ ¼ fðD;U ;W ; tÞ j p0ðD;U ;W ; tÞ ¼ ðU 0;W 0; t0Þ; p2ðD;U ;W ; tÞAAg

¼fðD;U ;W ; tÞ j U ¼ U 0;W ¼ W 0; t ¼ t0; ðD;W ; tÞAAg

D fðD;W ; tÞ j W ¼ W 0; t ¼ t0; ðD;W ; tÞAAg

¼ p2ððp0Þ�1ðxÞ-p�12 ðAÞÞ:

We also have that p1p0 ¼ pp1 (both are the map ðD;U ;W ; tÞ/ðU ; tÞ). Thus

Ep! ¼ q�dimðp�1
1

ð�ÞÞðp1Þ!pn

2p!

¼ q�dimðp�1
1

ð�ÞÞðp1Þ!ðp0Þ!pn

2

¼ q�dimðp�1
1

ð�ÞÞðp1p0Þ!pn

2

¼ q�dimðp�1
1

ð�ÞÞðpp1Þ!pn

2

¼ q�dimðp�1
1

ð�ÞÞp!ðp1Þ!pn

2

¼ p!q
�dimðp�1

1
ð�ÞÞðp1Þ!pn

2

¼ p!E;

where we have used the fact that the map f/f! is functorial [5].
Thus, we have shown that TY E ¼ ETY : The proof that TY F ¼ FTY is analogous.

Also,

K71TY f ðD;W ; tÞ ¼ q7ðd�2 dimW ÞTY f ðD;W ; tÞ

¼TY q7ðd�2 dimW Þf ðD;W ; tÞ

¼TY K71f ðD;W ; tÞ: &

3.2. A basis BI for the space of intertwiners

We see from Section 1.4 that a basis for the space of intertwiners H
m
d1;y;dk

is in one-

to-one correspondence with the set of crossingless matches CMm
d1;y;dk

: Note that
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crossingless matches of the form CMm
d1;y;dk

(i.e. with only one box on the top vertical

line) are in one to one correspondence with elements of LCMd1;y;dk
: For a given

element S of LCMd1;y;dk
simply set m equal to the number of unmatched vertices of S

and join the unmatched vertices to the upper box. Recall that elements aAðZX0Þn

such that aipdi are in one to one correspondence with the elements of OLCMd1;y;dk
:

Given such an a; consider its associated oriented lower crossingless match Mðd; aÞ:
Note that jaj is the number of vertices (both matched and unmatched) in Mðd; aÞ
which are oriented down.
For any flag D and tAEnd D let aðt;DÞ ¼ aðker t;DÞ: Then let

Ya ¼fðD;W ; tÞATðdÞ j aðt;DÞ ¼ nMðd;aÞ; dim W ¼ jajg

¼
[

w:jwj¼jaj

[
r

A
w;r;nMðd;aÞ : ð32Þ

Now, note that nMðd;aÞ depends only on the lower curves of a and not on the
orientation of the unmatched vertices. Thus, if %a denotes the (unoriented) lower

crossingless match associated to a; we can unambiguously define n%a ¼ nMðd;aÞ: Then
if b is an unoriented crossingless match, we define

Yb ¼fðD;W ; tÞATðdÞ j aðt;DÞ ¼ nbg

¼
[
a:%a¼b

Ya: ð33Þ

The last equality arises from the fact that if ðD;W ; tÞATðdÞ then im tCWCker t; so
rpdim Wpd � r (where r ¼ rank t). Thus, since ðD;W ; tÞAYb implies that r ¼
rank t is the number of lower curves in b; the values r; r þ 1;y; d � r are precisely
the number of down arrows (that is, the jaj) in the various a such that %a ¼ b:We also
have the following:

Proposition 3.2.1. TbYb ¼ TaYa ¼ TðdÞ:

Proof. It is obvious that the Ya are disjoint. Thus, from Eq. (33) we see that it

suffices to prove that for every ðD;W ; tÞATðdÞ; aðt;DÞ ¼ nMðd;aÞ for some cross-
ingless match a: Fix an ðD;W ; tÞATðdÞ and let a ¼ aðt;DÞ: Now, down arrows of a
represent dimensions of the kernel of t while up arrows of a represent dimensions of

D=ker t: Let c denote the ith up arrow from the left. Since im tCker t and
tðDjÞCðDj�1Þ; there must be at least i down arrows to the left of c: Since this holds

for all i; it follows that each up arrow of Mðd; aÞ is matched. Thus, since nMðd;aÞ is
obtained from a by forcing all unmatched vertices to be oriented down, we have that

nMðd;aÞ ¼ a ¼ aðt;DÞ: &
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Define

BI ¼ TYb
bA
[
m

CM
m
d1;y;dk

�����
( )

: ð34Þ

Proposition 3.2.2. Each element of BI is an intertwiner and

TYb
ðTðdÞÞCMrðdÞDVm

for bACMm
d1;y;dk

and r ¼ ðd � mÞ=2:

Proof. According to Proposition 3.1.1, to show that TYb
is an intertwiner we

need only check that p2p�11 ðYbÞCYb and p1p�12 ðYbÞCYb for all bACMm
d1;y;dk

:

If we denote by tx and Dx the map t and flag D of the point xATðdÞ (so x ¼
ðDx;W ; txÞ for some W ), then ty ¼ tx and Dy ¼ Dx for all yAp2p�11 ðxÞ: Thus

aðtx;DxÞ ¼ aðty;DyÞ for all yAp2p�11 ðxÞ which implies that p2p�11 ðYbÞCYb for all b:

Similarly p1p�12 ðYbÞCYb for all b: Now, the image of TYb
consists of functions on

MrðdÞ where r is the number of lower curves in b: In fact, it is easy to see that for
fATðdÞ;TYb

ð f ÞðW ; tÞ depends only on the dimension of W and the rank of t: So

the image of TYb
is contained in MrðdÞ: Recall from Section 1.3 that MrðdÞDVd�2r:

Since r is equal to the number of lower curves in b; d � 2r is equal to the number of
middle curves and hence d � 2r ¼ m: So TYb

is an intertwiner into the representation

Vm as it should be. &

3.3. The space TsðdÞ and the basis Bs

For the purposes of this section we will identify the sets LCMd1;y;dk
andS

m CM
m
d1;y;dk

as in Section 3.2. Also, to simplify notation, we shall identify elements

aAðZX0Þk such that aipdi with their associated oriented lower crossingless matches
Mðd; aÞ:
Let TsðdÞ be the space of all functions fATðdÞ such that

dimW ¼ dim W 0; aðt;DÞ ¼ aðt0;D0Þ ) f ðD;W ; tÞ ¼ f ðD0;W 0; t0Þ:

It is obvious that if we define

Bs ¼ 1Ya aA
[
m

OCMm
d1;y;dk

�����
( )

; ð35Þ

then

TsðdÞ ¼ SpanBs:

ARTICLE IN PRESS
A. Savage / Advances in Mathematics 177 (2003) 297–340 329



Theorem 3.3.1. TsðdÞ is isomorphic as a Uq-module to Vd1#?#Vdk
and Bs is a

basis for TsðdÞ adapted to its decomposition into a direct sum of irreducible

representations. That is, for a given bACMm
d1;y;dk

; the space Spanf1Ya j %a ¼ bg is

isomorphic to the irreducible representation Vm via the map

1Ya/
mvm�2ð# of unmatched down arrows in aÞ

(extended by linearity).

Proof. For aALCMd1;y;dk
such that a has at least one unmatched up arrow, let aþ

be the element of LCMd1;y;dk
obtained from a by switching the orientation of the

rightmost unmatched up arrow. Thus aþ ¼ %a and aþ has one more unmatched down
arrow than a: Similarly, if aALCMd1;y;dk

has at least one unmatched down arrow,

let a� be the element of LCMd1;y;dk
obtained from a by switching the orientation of

the leftmost unmatched down arrow. Recall from the proofs of Propositions 3.1.1

and 3.2.2 that p�11 ðYbÞ ¼ p�12 ðYbÞ: It follows from this and the fact that Yb ¼S
a:%a¼b Ya that p2p�11 ðYaÞ ¼ Yaþ if a has at least one unmatched up arrow and

p2p�11 ðYaÞ ¼ | otherwise. Similarly, p1p�12 ðYaÞ ¼ Ya� if a has at least one unmatched

down arrow and p1p�12 ðYaÞ ¼ | otherwise.

Now, for xATðdÞ;

F1YaðxÞ ¼ q�dimðp�1
2

ðxÞÞðp2Þ!pn

11YaðxÞ

¼ q�dimðp�1
2

ðxÞÞðp2Þ!1p�1
1

ðYaÞðxÞ

¼ q�dimðp�1
2

ðxÞÞwqðp�12 ðxÞ-p�11 ðYaÞÞ:

Now, we already know from the above discussion that p�12 ðxÞ-p�11 ðYaÞ ¼ | if

xeYaþ : So assuming x ¼ ðD;W ; tÞAYaþ ; let r ¼ rank t: Then

F1YaðD;W ; tÞ ¼ q�dimðp�1
2

ðD;W ;tÞÞwqðp�12 ðD;W ; tÞ-p�11 ðYaÞÞ

¼ q�dimPjaþj�r�1
wqðPjaþj�r�1Þ

¼ q�ðjaþj�r�1Þ
Xjaþj�r�1

i¼0
q2i

¼ ½jaþj � r�

¼ ½ð# down arrrows in aþÞ � ð# lower curves in aþÞ�

¼ ½# unmatched down arrows in aþ�:
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Thus,

F1Ya ¼ ½# unmatched down arrows in aþ�1Yaþ
: ð36Þ

Now,

E1YaðxÞ ¼ q�dimðp�1
1

ðxÞÞðp1Þ!pn

21YaðxÞ

¼ q�dimðp�1
1

ðxÞÞðp1Þ!1p�1
2

ðYaÞðxÞ

¼ q�dimðp�1
1

ðxÞÞwqðp�11 ðxÞ-p�12 ðYaÞÞ:

We know that p�11 ðxÞ-p�12 ðYaÞ ¼ | if xeYa� : So assuming x ¼ ðD;W ; tÞAYa� ; let
r ¼ rank t: Then

E1YaðD;W ; tÞ ¼ q�dimðp�1
1

ðD;W ;tÞÞwqðp�11 ðD;W ; tÞ-p�12 ðYaÞÞ

¼ q�dimPd�r�ja�j�1
wqðPd�r�ja�j�1Þ

¼ ½d � r � ja�j�

¼ ½d � ð# lower curves in a�Þ � ð# down arrows in a�Þ�

¼ ½ð# up arrows in a�Þ � ð# lower curves in a�Þ�

¼ ½# unmatched up arrows in a��:

Thus,

E1Ya ¼ ½# unmatched up arrows in a��1Ya� : ð37Þ

Finally, it is easy to see that

K1Ya ¼ q7ðd�2jajÞ1Ya

¼ q7ðm�2ð# unmatched down arrows in aÞÞ1Ya ; ð38Þ

where m is the total number of unmatched arrows in a: Using the fact that m is the
total number of middle curves of b (and hence the total number of unmatched
vertices in any a such that %a ¼ b), the second statement of the theorem now follows
easily from a comparison with (1).

Since we know from Section 1.4 that the set CMm
d1;y;dk

is in one to one

correspondence with the set of intertwiners H
m
d1;y;dk

; we have that

TsðdÞD"
m

H
m
d1;y;dk

#VmDVd1#?#Vdk

which proves the first statement of the theorem. &
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Now, like the canonical basis, the basis Bs we have constructed here is closely
related to the irreducible components of TðdÞ: To see this, we first need a

proposition. Consider the varieties Ya and Yb defined over %Fq2 : To avoid confusion,

denote these by Y 0
a and Y 0

b: Then

Proposition 3.3.1. Y 0
a ¼ Z0

a:

Proof. Since the Y 0
a are smooth and connected, they are irreducible. Also, from an

argument analogous to the one given in the proof of Proposition 3.2.1, we know that

0aY
0
a ¼ TðdÞ0: Thus, since the cardinality of the sets fY 0

ag and fZ0
ag are the same,

fY 0
ag must be the set of irreducible components of TðdÞ0: Now, Y 0

a-Z0
a ¼S

r A0
a;r;nMðd;aÞ : But, by Proposition 2.5.1, A0

a;rMðd;aÞ;nMðd;aÞ ¼ Z0
a: Therefore we must

have Y 0
a ¼ Z0

a: &

Since Ya is precisely the set of Fq2 points of Y 0
a; we have the following

characterization of the basis Bs:

Theorem 3.3.2. The elements 1Ya of the basis Bs are the unique elements of TsðdÞ
equal to one on the dense points of the irreducible component Za of TðdÞ with support

contained in this irreducible component.

So, like the elements of Bc; the elements of Bs are equal to a non-zero constant on
the set of dense points of an irreducible component of TðdÞ with supports contained
in distinct irreducible components. However, unlike Bc; the elements of Bs have
disjoint supports.

3.4. The multiplicity variety SðdÞ

We briefly describe here the relation between BI and Bs and the multiplicity

variety [6]. Let dAðZX0Þk and let D be a jdj-dimensional %Fq2 vector space. The

multiplicity variety is the variety (defined over %Fq2 )

SðdÞ0 ¼ fðD; tÞ j ðD;W ; tÞATðdÞ0 for some WCDg:

Define the projection p :TðdÞ0-SðdÞ0 by pðD;W ; tÞ ¼ ðD; tÞ: It follows easily from

the above results that the irreducible components of SðdÞ0 are given by the closures
of the sets

Y0
b ¼ fðD; tÞ j aðt;DÞ ¼ nbg; bALCMd1;y;dk

;

and that these irreducible components are in one to one correspondence with the

irreducible modules in the direct sum decomposition of Vd1#?#Vdk
: Then Y 0

b ¼
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p�1ðY0
bÞ and fYa j %a ¼ bg yields a decomposition of the Fq2 points of the fiber

of pjY 0
b
isomorphic to the decomposition of MrðdÞ into the subsets Mrðw; dÞ

where r is the number of lower curves in b: Thus the bases BI and Bs have
natural geometric interpretations in terms of the multiplicity variety and the
projection p:

3.5. The action of the intertwiners on TsðdÞ

We will now determine how our intertwiners act on the space TsðdÞ: For

aAðZX0Þk; let aj ¼ að1;jÞ: We will need the following two technical lemmas.

Lemma 3.5.1. If D ¼ ð0 ¼ D0CD1CD2C?CDk ¼ DÞ is a flag with d ¼ aðD;DÞ
and aAðZX0Þk

with aipdi; then

wqðfW j WCD; aðW ;DÞ ¼ agÞ ¼ cd;a ¼
def
X
bACa

q
2
P

1pjoipd
bið1�bjÞ;

where

Ca ¼ fbAðZX0Þd jbiAf0; 1g8i; bðdj�1þ1;djÞ ¼ ajg

and we set d0 ¼ 0:

Proof. Complete D to a flag F ¼ ð0CF1CF2C?CFd ¼ DÞ such that dim Fi ¼ i

and Fdi ¼ Di where d ¼ jdj: This gives a decomposition of Grd
jaj into cells, each

isomorphic to ðFq2Þ
j for some j: The cells are given by fW j WCD; aðW ;FÞ ¼ bg for

a fixed b: The number of points in such a cell is equal to

q
2
P

1pjoipd
bið1�bjÞ:

Our variety is the union of those cells such that bðdj�1þ1;djÞ ¼ aj : The result

follows. &

Specializing to q ¼ 1 yields

Lemma 3.5.2.

cd;ajq¼1 ¼
Yk

i¼1

di

ai

 !
:

Proof. This follows immediately from Lemma 3.5.1 since biAf0; 1g for each
cell. &
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Theorem 3.5.1. The set BI acting on TsðdÞ spans the space of intert-

winers "m H
m
d1;y;dk

: In particular, for bACM
m
d1;y;dk

; TYb
acts on the basis Bs of

TsðdÞ as

TYb
1Ya ¼

cb1Mrðjaj;dÞAMrðdÞDVd�2r ¼ Vm if %a ¼ b;

0 if %aab;

(

where r is the number of lower curves in b, d ¼ jdj and cb is non-zero constant.

Proof. Recall that TY ¼ p!RY : It is obvious from the fact that Yb ¼
S
a:%a¼b Ya

that

RYb
1Ya ¼ 1Yb

1Ya ¼
1Ya if %a ¼ b;

0 if %aab:

(

So we need only determine p!1Ya for %a ¼ b: Now, for x ¼ ðW x; txÞAMðdÞ;

p!1YaðxÞ ¼ wqðp�1ðxÞ-YaÞ:

Recall that p is the map ðD;W ; tÞ/ðW ; tÞ and

Ya ¼ fðD;W ; tÞATðdÞjaðt;DÞ ¼ nb; dim W ¼ jajg:

Thus,

p�1ðxÞ-YaDfD j dimðDi=Di�1Þ ¼ di; txðDiÞCDi�1; aðtx;DÞ ¼ nbg ð39Þ

if dim W x ¼ jaj and p�1ðxÞ-Ya ¼ | otherwise. Note that this variety depends only
on the dimension of the kernel of tx (or equivalently, the rank of tx) and the
dimension of W x: The variety is empty unless r ¼ rank tx is equal to the number of
lower curves in a: Thus, TYb

1Ya is a constant function on Mrðjaj; dÞ: Moreover, this

constant cb; equal to the number of points in the variety in (39), depends only on

%a ¼ b and not on the orientation of a: As long as cb is non-zero, we know that TYb
is

a non-zero intertwiner. Moreover, it is obvious that if all the Yb are non-zero then
the intertwiners TYb

are linearly independent.

To show that cba0 it suffices to show that its evaluation at q ¼ 1 is non-zero. The
variety (39) consists of all tx-stable flags D ¼ ð0CD1C?CDk ¼ DÞ such that

dimDi ¼ di and the intersection of Di with ker tx is a space of dimension ðnbÞj ¼Pj
i¼1 n

b
i : There is only one choice for Dk; namely D: Assume we have picked Djþ1: Dj

can be any subspace of dimension di such that

txðDjþ1ÞCDjCDjþ1
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and

dimðDj-ker txÞ ¼ ðnbÞj:

Note that since dimðDjþ1-ker txÞ ¼ ðnbÞjþ1 and dimDjþ1 ¼ djþ1; we have that

dim txðDjþ1Þ ¼ djþ1 � ðnbÞjþ1: Also, since ðtxÞ2 ¼ 0; txðDjþ1ÞCker tx: Passing to the

quotient by txðDjþ1Þ and denoting this by a bar, we see that picking a subspace Dj

subject to the above conditions is equivalent to picking a subspace Dj of Djþ1 of

dimension dj � ðdjþ1 � ðnbÞjþ1Þ such that

dimðDj-ker txÞ ¼ ðnbÞj � ðdjþ1 � ðnbÞjþ1Þ:

Since dimDjþ1 ¼ djþ1 � ðdjþ1 � ðnbÞjþ1Þ ¼ ðnbÞjþ1 and dimDjþ1-ker tx ¼
dimDjþ1-ker tx ¼ ðnbÞjþ1 � ðdjþ1 � ðnbÞjþ1Þ ¼ 2ðnbÞjþ1 � djþ1 we see by Lemma

3.5.2 that the value of wq of the variety of such spaces evaluated at q ¼ 1 is

2ðnbÞjþ1 � djþ1

ðnbÞjþ1 þ ðnbÞj � djþ1

 !
ðnbÞjþ1 � ð2ðnbÞjþ1 � djþ1Þ

dj � djþ1 þ ðnbÞjþ1 � ððnbÞjþ1 þ ðnbÞj � djþ1Þ

 !

¼
2ðnbÞjþ1 � djþ1

ðnbÞjþ1 þ ðnbÞj � djþ1

 !
djþ1 � ðnbÞjþ1

dj � ðnbÞj

 !
:

This is thus strictly positive provided that

2ðnbÞjþ1 � djþ1
X0; ð40Þ

ðnbÞjþ1 þ ðnbÞj � djþ1
X0; ð41Þ

djþ1 � ðnbÞjþ1
X0; ð42Þ

dj � ðnbÞj
X0; ð43Þ

2ðnbÞjþ1 � djþ1
XðnbÞjþ1 þ ðnbÞj � djþ1; ð44Þ

djþ1 � ðnbÞjþ1
Xdj � ðnbÞj: ð45Þ

Now, recall that nb is obtained from a by forcing all unmatched arrows to be

oriented down. Also, dj is the number of vertices associated to Vd1 through Vdj
while

ðnbÞj is number of these vertices with down arrows. Thus dj � ðnbÞj is the number of
these vertices with up arrows. So (42), (43) and (45) are obvious. Eq. (44) follows
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from the simple fact that ðnbÞjþ1
XðnbÞj: Eqs. (40) and (41) follow from the fact that

each up arrow is matched to a down arrow to its left since all unmatched arrows
point down and matchings are oriented to the left.
Thus, wq of the variety of choices of Dj given Djþ1 is independent of Djþ1 (up to

isomorphism) and is non-zero. Using the fact that the Euler characteristic of a locally
trivial fibered space is equal to the product of the Euler characteristics of the base
and the fiber, we see that the evaluation of cb at 1 is a product of positive numbers
and is thus positive. So cba0: &

3.6. The action of the intertwiners on TcðdÞ

We now compute the action of our intertwiners on the space TcðdÞ:
Define the coefficients kd;wa by

}dvw ¼
X
a

kd;wa ð#dvaÞ:

For bACMm
d1;y;dk

; define lb;mbAðZX0Þk such that lbi is equal to the number

of left endpoints of lower curves of b in the box corresponding to Vdi
and mb

i is

equal to the number of endpoints of middle curves of b in the box corresponding
to Vdi

:

Theorem 3.6.1. The set BI acting on TcðdÞ spans the space of intertwiners

"mH
m
d1;y;dk

: In particular, if bACMm
d1;y;dk

is such that bpMðd;wÞ; then

TYb
ðgdwÞ ¼ o1

Mjlb jðjwj;dÞ;

where

o ¼
X
a

km
b;w�lb

a k
aþlb;lb;lbþmb

Yk�1
i¼1

cai
1
;ai
2

 !
;

ai
1 ¼ ððlbÞði;kÞ; aði;kÞ; ðmb � aÞði;kÞ; ðd�mb � 2lbÞði;kÞÞ;

ai
2 ¼ ðlbi ; ai;m

b
i � ai; di �mb

i � lbi Þ

Otherwise, TYb
ðgdwÞ ¼ 0:

Proof. For a crossingless match bACMm
d1;y;dk

; TYb
ðgdwÞ ¼ p!RYb

ðgdwÞ and

RYb
ðgdwÞ ¼

X
SpMðd;wÞ

RYb
ðZrS ;nS Þ�1ð}nS�rS vw�rS Þ:
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This is equal to zero unless %S ¼ b for some SpMðd;wÞ (that is, the set of
lower curves of b is a subset of the set of lower curves of Mðd;wÞÞ: If this is the
case, then

RYb
ðgdwÞ ¼ ðZrS ;nS Þ�1ð}nS�rS vw�rS Þ

for the particular SpMðd;wÞ such that %S ¼ b: Then nS ¼ lb þmb and rS ¼ lb: So

RYb
ðgdwÞ ¼ ðZ

lb;lbþmbÞ�1ð}mb

v
w�lbÞ

¼ ðZ
lb;lbþmbÞ�1

X
a

km
b;w�lb

a ð#mb
vaÞ

 !

¼
X
a

km
b;w�lb

a f
aþlb;lb;lbþmb

¼
X
a

km
b;w�lb

a k
aþlb;lb;lbþmb1A

aþlb ;lb ;lbþmb
:

Let ðW ; tÞAMðdÞ: Then if the set of lower curves of b is a subset of the set of lower
curves of Mðd;wÞ;

TYb
ðgdwÞðW ; tÞ ¼

X
a

km
b;w�lb

a k
aþlb;lb;lbþmb p!1A

aþlb;lb;lbþmb
ðW ; tÞ

¼
X
a

km
b;w�lb

a k
aþlb;lb;lbþmbwqðfD j aðD;DÞ ¼ d; tðDiÞCDi�1;

aðim t;DÞ ¼ lb; aðW ;DÞ ¼ lb þ a; aðker t;DÞ ¼ lb þmbgÞ: ð46Þ

We see from Proposition 2.6.2 that km
b;w�lb

a ¼ 0 unless jaj ¼ jw� lbj ¼ jwj � jlbj:
Therefore, since jaðW ;DÞj ¼ dim W ; (46) is zero unless dim W ¼ jwj: Similarly, it is
zero unless rank t ¼ dimðim tÞ ¼ jlbj: If these conditions are satisfied, (46) is
independent of W and t: We can then evaluate o; the value of the expression in
(46), using Lemma 3.5.1 and the fact that the Euler characteristic of a locally trivial
fibered space is the product of the Euler characteristics of the base and the fiber.
There is only one possible choice for D0; namely 0. Assume we have picked Di�1:
Then Di must satisfy the following conditions:

1. tðDiÞCDi�1 or, equivalently, DiCt�1ðDi�1Þ;
2. Di*Di�1; dimDi ¼ dð1;iÞ;
3. dimðDi-im tÞ ¼ ðlbÞð1;iÞ;
4. dimðDi-WÞ ¼ ðlb þ aÞð1;iÞ;
5. dimðDi-ker tÞ ¼ ðlb þmbÞð1;iÞ:
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Pass to the quotient by Di�1 and denote this by a bar. Let F be the flag

F ¼ ðF0 ¼ 0CF1 ¼ im tCF2 ¼ WCF3 ¼ ker t;F4 ¼ t�1ðDi�1ÞÞ:

Then the above conditions are equivalent to picking DiCt�1ðDi�1Þ such that

aðDi;FÞ ¼ ðlbi ; ai;m
b
i � ai; di �mb

i � lbi Þ:

Since

dim im t ¼ðlbÞði;kÞ;

dim W ¼ðlb þ aÞði;kÞ;

dim ker t ¼ðlb þmbÞði;kÞ

and

dim t�1ðDi�1Þ ¼ dim t�1ðDi�1Þ � dimDi�1

¼ dimðim t-Di�1Þ þ dimðker tÞ � dimDi�1

¼ðlbÞð1;i�1Þ þ ðd � jlbjÞ � dð1;i�1Þ

¼ ðd� lbÞði;kÞ;

the form of the action of the elements of BI follows.

It remains to show that the set BI spans the space of intertwiners "m H
m
d1;y;dk

:

Since it follows from Theorem 3.5.1 that the cardinality of BI is equal to the

dimension of "m H
m
d1;y;dk

; it suffices to show the linear independence of the set BI :

Assume that, acting on the space TsðdÞ;X
i

aiTYbi
¼ 0; aia0 8 i: ð47Þ

Since the image of TYbi
is contained in Mjlbi

jðdÞ by the above results, we may assume

that jlbi
j ¼ jlbj

j for all i and j: Fix an i and consider a w such that Mðd;wÞ ¼ bi: All

TYbj
; jai; act by zero on gdw by the above (since jlbi

j ¼ jlbj
j; we cannot have bjpbi ¼

Mðd;wÞÞ: Also, TYbi
a0 by the above. Thus ai ¼ 0 which is a contradiction. Thus the

theorem is proved. &
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3.7. An isomorphism of TcðdÞ with TsðdÞ

For ðD;W ; tÞATðdÞ; let

BD;W ;t ¼ fðD0;W 0; t0Þ j W 0 ¼ W ; t0 ¼ t; aðt;D0Þ ¼ aðt;DÞg:

For fATðdÞ let

wqð f Þ ¼
X

xATðdÞ
f ðxÞ:

Let x :TcðdÞ-TsðdÞ be the map given by

xð f ÞðD;W ; tÞ ¼ wqðRBD;W ;t
f Þ:

The fact that the image of x is contained in TsðdÞ follows from the fact that, up to
isomorphism, BD;W ;t depends only on aðt;DÞ and dim W :

Proposition 3.7.1. x is an Uq-module isomorphism.

Proof. This follows easily from Theorems 3.5.1 and 3.6.1 since

x ¼
X

b

1

cb

ðTYb
jYb

Þ�1 3 TYb
: &

Acknowledgments

I thank I. Frenkel for suggesting the topic of this paper and for his help during its
development. I am also grateful to A. Malkin, O. Schiffmann, M. Khovanov and
H. Nakajima for very helpful discussions. This work was supported in part by the
Natural Science and Engineering Research Council of Canada.

References

[1] I.B. Frenkel, M.G. Khovanov, Canonical bases in tensor products and graphical calculus for Uqðsl2Þ;
Duke Math. J. 87 (3) (1997) 409–480.

[2] C. Kassel, Quantum Groups, Springer, Berlin, 1995.

[3] F. Kirwan, An Introduction to Intersection Homology Theory, Longman Scientific & Technical, New

York, 1988.

[4] G. Lusztig, Canonical bases in tensor products, Proc. Natl. Acad. Sci. USA 89 (1992)

8177–8179.

[5] R.D. MacPherson, Chern classes for singular algebraic varieties, Ann. Math. 100 (1974) 423–432.

ARTICLE IN PRESS
A. Savage / Advances in Mathematics 177 (2003) 297–340 339



[6] A. Malkin, Tensor product varieties and crystals, ADE case, preprint, math.AG/0103025, Duke

Math. J., to appear.

[7] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math.

J. 76 (2) (1994) 365–416.

[8] H. Nakajima, Quiver varieties and Kac–Moody algebras, Duke Math. J. 91 (3) (1998)

515–560.

[9] H. Nakajima, Quiver varieties and tensor products, Invent. Math. 146 (2001) 399–449.

[10] M. Varagnolo, E. Vasserot, Perverse sheaves and quantum Grothendieck rings, preprint, math.QA/

0103182.

ARTICLE IN PRESS
A. Savage / Advances in Mathematics 177 (2003) 297–340340


	The tensor product of representations of Uq(sl2) via quivers
	Introduction
	The quantum group Uq(sl2) and its representations
	The Hopf algebra structure of Uq(sl2)
	Irreducible representations of Uq(sl2)
	Geometric realization of irreducible representations of Uq(sl2)
	Tensor products and the graphical calculus of intertwiners

	Geometric realization of the tensor product
	Definition of the tensor product variety T(d)
	A set of basic functions on the tensor product variety
	The space T0(d) and the elementary basis Be
	The space Tc(d)
	The irreducible components of the tensor product variety
	Geometric realization of the canonical basis
	A conjectured characterization of Tc(d) and Bc

	Geometric realization of the intertwiners
	Defining the intertwiners
	A basis BI for the space of intertwiners
	The space Ts(d) and the basis Bs
	The multiplicity variety S(d)
	The action of the intertwiners on Ts(d)
	The action of the intertwiners on Tc(d)
	An isomorphism of Tc(d) with Ts(d)

	Acknowledgements
	References


