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Abstract

Using the tensor product variety introduced in Malkin (Duke Math. J., to appear) and
Nakajima (Invent. Math. 146 (2001) 399), the complete structure of the tensor product of a
finite number of integrable highest weight modules of U,(sl,) is recovered. In particular, the
elementary basis, Lusztig’s canonical basis, and the basis adapted to the decomposition of the
tensor product into simple modules are all exhibited as distinguished elements of certain
spaces of invariant functions on the tensor product variety. For the latter two bases, these
distinguished elements are closely related to the irreducible components of the tensor product
variety. The space of intertwiners is also interpreted geometrically.
© 2003 Elsevier Science (USA). All rights reserved.

0. Introduction

The purpose of this paper is to obtain a geometric description of the tensor
product of a finite number of integrable highest weight representations of U,(sl»)
using quiver varieties. The definition of a tensor product variety corresponding to the
tensor product of a finite number of integrable highest weight representations of a
Lie algebra g of ADE type was introduced in [6,9] (see also [10] for a geometric
description of the tensor product). There it is demonstrated that the set of irreducible
components of the tensor product variety can be equipped with the structure of a
g-crystal isomorphic to the crystal of the canonical basis in the tensor product
representation.
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In this paper, we consider the specific case g = sl, and recover the entire structure
(as opposed to the crystal structure alone) of U,(sl,) via the tensor product variety.
Our definition of the tensor product variety differs slightly from that of [6,9] in that
we consider our varieties over the finite field F > with ¢* elements (or its algebraic
closure U_:qz) rather than over C. The reader who is only interested in representations
of sl, rather than its associated quantum group, may replace F» by C and set ¢ = 1
everywhere. With a few obvious modifications, the arguments of the paper still hold.
Let de(Z0)*. We find three distinct spaces, 7(d), 7 .(d), and 7 (d), of invariant
(with respect to a natural group action) functions on the tensor product variety T(d),
each isomorphic to Vg, @ --- ® Vi, In each space we define a natural basis. These
three bases, %., #., and %, correspond, respectively, to the elementary basis,
Lusztig’s canonical basis [4], and a basis compatible with the decomposition of
Va, ® -+ ® Vy, into a direct sum of irreducible modules. The two bases %, and %4
are characterized by their relation to the irreducible components of T(d). We define
the irreducible components of T(d) (defined over [p) to be the [ points of the
irreducible components of T(d)’ (the corresponding variety defined over [_qu). We
then define the dense points of an irreducible component of T(d) to be the F 2 points

!12

of a certain dense subset of the corresponding irreducible component of T(d)'.
Distinct elements of the basis %, and %, are supported on distinct irreducible
components of T(d) and equal to a non-zero constant on the set of dense points of
that irreducible component (see Theorems 2.6.1 and 3.3.2). However, the supports of
the elements of %, are disjoint whereas the supports of the elements of %, are not.
We also find a geometric description of the space of intertwiners H‘l;]y--wdk =
Hoqu(slz)(le ®--®Vy,Vu). A natural basis #; of this space is again
characterized by its relation to the irreducible components of T(d).

An important tool used in the development and proof of the results of this paper is
the graphical calculus of intertwiners of U,(sl,) introduced by Penrose, Kauffman
and others. This graphical calculus is expanded in [1] and used to prove various
results concerning Lusztig’s canonical basis. The present paper can be considered a
“geometrization” of these results.

In Section 2.7 we conjecture a characterization of the basis %, as the image of
certain intersection cohomology sheaves of T(d) under a particular functor from the
space of constructible semisimple perverse sheaves on T(d) to the space of invariant
functions on T(d). Since the definition of 7 .(d) relies on the graphical calculus of
intertwiners of U,(sly) (and no such graphical calculus exists for more general Lie
algebras), this conjecture should play a key role in the possible extension of the results
of this paper to a more general set of Lie algebras (for instance, those of type ADE).

This paper is organized as follows. Section 1 contains a review of U,(sl) and its
representations, Nakajima’s quiver varieties, and the graphical calculus of
intertwiners of U,(sl,). The tensor product variety is defined in Section 2 where
the spaces J(d) and 7 .(d) are introduced, an isomorphism between the two is
given, and various results concerning these spaces and their distinguished bases %,
and 4. are proved. Section 3 is concerned with a geometric realization of the space
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of intertwiners and the decomposition of the tensor product representation into a
direct sum of irreducible modules (via the space .7 4(d) and the distinguished basis
Ay). It is concluded with the discussion of an isomorphism between the spaces 7 .(d)
and 7 (d).

The notation used in the description of quiver varities is not standardized. Lusztig
denotes the fixed vector space by D and the subspace by ' while Nakajima denotes
these objects by W and V, respectively. Since we wish to use the notation V,, for
certain U,(sl,) modules (to agree with the notation of [1]), we denote the fixed vector
space by D and the subspace by . We hope that this will not cause confusion
among those readers familiar with the work of Lusztig and Nakajima.

Throughout this paper the topology is the Zariski topology and the ground field is

F,» unless otherwise specified. However, we will usually deal with varieties defined
over [, and consider the corresponding set of [Fp.-rational points. Thus, for
instance, P" = P”[qu and a vector space is an [, vector space. A function on an
algebraic variety is a function into C(g), the field of rational functions in an
indeterminate ¢. The span of a set of such functions is their C(g)-span. The support

of a function f is defined to be the set {x |f(x)#0} and not the closure of this set.

1. The quantum group U,(sl,) and its representations
1.1. The Hopf algebra structure of Uy (sl»)

Let C(g) be the field of rational functions in an indeterminate ¢ and define
-:C(q¢)—C(q) to be the C-algebra involution such that ¢" = ¢~" for all n. The
quantum group U,(sl,) (which we will denote by U,) is the associative algebra over
C(g) with generators E, F, K, K~ and relations

KK '=K 'K,
KE = ¢’EK,
KF = ¢ *FK,
-l
gr—pp K=K
q9—q

The comultiplication and counit of the Hopf algebra structure of U, are given by
AK*' = K*'@K*!

AE=E®|+KQE,

AF=FQK '+1®F
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and

respectively. Although an explicit expression for the antipode exists, we will not need
it in this paper.

Let us introduce two involutions of U,. The first one is the Cartan involution,
denoted by w, which acts as follows:

w(E)=F, oF)=E, oK")=K*" o¢*)=q",

o(xy) =o()o(x), x,yel,.

The second, denoted by o, is called the “bar” involution and is defined by

o(E)y=E, o(F)=F, oK*")Y=K*' o(¢t")=q"",

o(xy) =a(x)a(y), x,yeU,.
Using ¢ we can define a second comultiplication A by
A(x) = (6®0)A(a(x)), xelU,
which implies

AK*!' =K' @ K*!
AE=E®1+ K '®E,

AF=FQK+1®F.

1.2. Irreducible representations of U,(sl,)

Any finite-dimensional irreducible U,-module V' is generated by a highest weight
vector, v, of weight eq? where ¢ = +1 and d = dim(¥) — 1 [2]. In this paper we
consider those representations with ¢ = +1. Let vy = F¥v/[k]! where

kl=("—q"/(g—qg") =g+ 7+ -+,

[fe]t = [1][2]--- [K].
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Then vy—2 = 0 for k>d and {v =v4,04-2, ...,v_4} is a basis of V. We denote this
representation by V. The action of U, on Vj is given by

+1 +m
K= Um =4~ Uy,

Ev, = |:d+—m+ 1:| Um+2,
2
d—m
Fo,, = |:T+ 1:| Um—2- (1)

Define a bilinear symmetric pairing on V; by requiring
{xu,vy = (uyo(x)vy,  vg,vgy =1, w,velVy and xeU,.

It follows that

d
{Va—2k, Va—21) = O [k] ,

where

dl (4
k|~ KNd =K

Let {v?-2%}{_, be the basis dual to {v,_ }{_, with respect to the form <, >. Then

-1
d
d—2k __
% = lk] Vd—2k

and the action of Uy in the dual basis is

+1 +m
K="vy, =q ""vpy,

1.3. Geometric realization of irreducible representations of Uy (sl»)

We recall here Nakajima’s quiver variety construction of finite-dimensional
irreducible representations of Kac—Moody algebras associated to symmetric Cartan
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matrices [7,8] in the specific case of U,(sly). In order to introduce the quantum
parameter g, some of our definitions differ slightly from those in [7,8]. Since the
Dynkin diagram of sl, consists of a single vertex and no edges, the definition of the
quiver variety simplifies considerably. Fix vector spaces W and D of dimensions w
and d, respectively, and consider the variety

M(w,d) = Hom(D, W)@ Hom(W, D).

The two components of an element of M(w,d) will be denoted by f; and f,
respectively. GL(W) acts on M(w, d) by

(1) =9 f2) Elafinfog "), g€ GL(W).
Define the map u: M(w,d)—End W by

u(f1,./2) = hifa

Let 1~ '(0) be the algebraic variety defined as the zero set of u. We say a point (f1,/>)
of u=1(0) is stable if f> is injective. The quiver variety is then given by

{(i.2)en 1 (0) [ (fi./2) is stable}/GL(W).
Via the map (f1,/2)— (imf2, f>/1), this variety is seen to be isomorphic to the variety
M(w,d) ={(W,t)| WeD, dim W =w, teEnd D, imt= W cker t}
Note that the condition im < W cker ¢ implies #* = 0. Let

M(d) = MOw,d) = {(W,1)| WD, teEnd D, im 1= W cker}

and
Mw,w+ 1,d)={(U,W,t)|teEnd D, imtcUcWckert, dim U = w, dimW =w+ 1}.
We then have the projections

M(d) < | Mi(w, w+ 1,d) = M(d)

given by 7, (U, W,t) = (U,t) and n(U, W, 1) = (W, 1).
For a subset Y of a variety A4, let 1y denote the function on A4 which takes the
value 1 on Y and 0 elsewhere. Note that since our varieties are defined over [, they

consist of a finite number of (Fp.-rational) points. Let y,(Y) denote the Euler

characteristic of the algebraic variety Y, which is merely the number of points in Y.
For a map = between algebraic varieties A and B, let 7 [S] denote the map between
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the abelian groups of functions on 4 and B given by

Z f) = m(y)(x) = 2,(x ' (x)nY), Yed

verl(x)

303

and let * be the pullback map from functions on B to functions on A acting as

wif (x) = f(n(x)).

We then define the action of E, F and K*! on the set of functions on i(d) by

—dim(z (-
Ef =q~ " O () m3 £,
Ff :qfdim(nz—l(.))(nﬂ!n,lkf’

KEf = gt@-2dim0)
where the notation means that for a function /" on M(d) and (W, ) eM(d),

Ef (W, 1) =g S5m0 V0 () k£ (W, 1),
|
Ef(W,1) :qidlm(nz (W.0) (n2)'nlf(W 1),

W, 1) =g I (),
Let
WM (d) ={(W,t)eM(d) |rank t = r},

M (w,d) ={(W,t)eM(w,d) |rank t = r},
%r(w’ d) = C(Q)l‘llt"(w,d)a

M(d)= @ M (w,d),

w

M(w,d) =@ M(w,d),

M(d) = (—;B M(w,d).

Also, let us introduce the following notation for Grassmanians:

Grd = {W<(Fp)! |dim W = w}.
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Proposition 1.3.1. The action of U, defined by (2) endows 4" (d) (and hence 4 (d))
with the structure of a U, -module and the map 1y (. q) > Va2 (extended by linearity)
is an isomorphism M"(d) = Vy_s, of Ug-modules.

To prove this proposition, we will need the following lemmas.

Lemma 1.3.1. For vector spaces W < D,

{U|WcUcD, dim U = u} = Grimb-dim W

Proof. This follows immediately from the fact that
{U|WecUcD, dmU =u}={U"|U <D/W, dimU’" = u — dim W}

via the map U—U' = U/W. O
Lemma 1.3.2. y,(P") = Y1 ¢*.

Proof. This follows from simply counting the number of possible one dimensional
subspaces of P". [

Proof of Proposition 1.3.1. If (W,1)e M (w,d) then

—1
1

Elgrgysray(W, 1) =g ™ 0 () w5 Mo 1.0 (W, 1)
=g dm{U| WeUckers, dimU:erl})(nl)!lwr(ww+l’d) (W, 1)
= qidim(Gr(‘Pn;r)Xq(ﬂl_] (W, ) n M (w,w + 1,d))
:q_dim(WﬂHil)Xq({U | WeUckert, dimU =w+ 1})
=g [y (Gr
= q*(d*w*r*I)Xq([pdfwfrfl )
d—w=r—1

— qf(dfwfrfl) Z q2i

i=0
:qf(dfwfrfl) + qf(df»tr7r71)+2 4o+ qdfwfrfl

=[d—w-—1]
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and Elgyr 41,4 (W, 1) = 0 otherwise. So Elgy(11.4) = [d — w — r]lgr(yy,q) Similarly,
if (W, 0)eM (w+1,d),

—dim(n3!
Fly oy (W, 1) = g™ ) () w0y (W, 1)

—dim({U|im tc U< W,dimU=w}) (

=9 nZ)!lﬂ)l"(»fvmerl,d)( w, l)

— gy (1 (WL 0 A (v, w + 1,d)
=¢ iy (UlimtcUc W, dimU = w})

_ qf(wfr) T ( Ipwfr)

w—r

:qf(wfr) Z q2i

i=0
:q—(w—r) + q—(w—l')-‘rZ 4o qw—r
=w+1-—7]

and Flg}gr(w_’d)(W, l) = 0 otherwise. So Fl‘JJE"(w,a’) = [W +1— r]l‘JJE’(erl,d} It is obvious
that

+(d—2w)

K g0y = g+ Low (.- (4)

Now, D" (w,d) = 0 unless r<w<d — r due to the requirement im t< W cker ¢ in
the definition of ' (w,d). Thus .4"(d) = ®"="4"(w,d).

Comparing the above calculations to (1), the result follows. [

So . (d) is isomorphic to the direct sum of the irreducible representations of
highest weight d — 2r where 0<r<d/2 since these are the possible ranks of 7 (recall
that 2 = 0).

Let €(d) = M°(d). Then £(d) is isomorphic to the algebraic variety of all
subspaces W < D, which is a union of Grassmanians. Let

Qw,d) = M (w,d) = {WcD|dim W =w}=Gr

and

d
L(w,d) = MO(w,d) = C(@)lgpay, L(d)=4d)= & L(w,d).
w=1
We see from Proposition 1.3.1 that the action of U, defined by (2) endows £ (d) with
the structure of the irreducible module V; via the isomorphism 1g¢, ) Va2
(extended by linearity). Note that for (W, 1) e(d), we can think of ¢ as belonging to
Hom(D/W, W) and thus 9(d) is the cotangent bundle of 2(d).
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1.4. Tensor products and the graphical calculus of intertwiners
We define the bilinear pairing of Vg, ® --- ® Vg, with Vg, ® --- ® Vy, by

(0 ® -+ ®uy, k@ -~ @Mty = 5 .5k

iy - Op -
Then
<An_l(x)vi1@"'@Uik,v’k®...®vll>
= (03, ® @ vy, A" N w(x))h @ @' ).

Lusztig’s canonical basis of the tensor product is described in [4]. We refer the
reader to this article or the overview in [1, Section 1.5], for the definition of this basis.
As in [1,4], we denote the elements of Lusztig’s canonical basis by v; ¢ --- Ov;, and
their dual by v;,Q---Quv;,. The dual is defined with respect to the form <{, >:

{0y O - Ovy, kool y = 811 5k

1 A

When we wish to make explicit to which representation a vector belongs, we use the
notation “vy, ke V.
To simplify notation, we make the following definitions:

® o =104, 2w, ® - ® Y vg, _ow, s
O %y =04, 2w, O -+ OYvg, 20, s

®de :dlvd1—2w1 ® - ®dkvdk—2wk7
Q7de _q Ud172w1® .“@dkvdkfzwk’

where d,we (Z0)".
We can extend the bar involution ¢ to tensor products of irreducible
representations as follows. Define

o(f(@)(®"ow)) = (g )(®"vw)

and extend by C-linearity. Then ¢ is an isomorphism from Vg ® --- ® Va, to itself
and

(A V() (1) = (6® - @) (A x)) (ov) (5)

for xeU, and ve Vyq, ® ---® Vg, .
We now recall some results on the graphical calculus of tensor products and
intertwiners. For a more complete treatment, see [1]. In the graphical calculus, V; is
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.ay

depicted by a box marked d with d vertices. To depict CM:;::wdk, we place the boxes

representing the Vg, on a horizontal line and the boxes representing the V,, on

another horizontal line lying above the first one. CME;::E{ is then the set of non-

intersecting curves (up to isotopy) connecting the vertices of the boxes such that the
following conditions are satisfied:

. Each curve connects exactly two vertices.

. Each vertex is the endpoint of exactly one curve.

. No curve joins a box to itself.

. The curves lie inside the box bounded by the two horizontal lines and the vertical
lines through the extreme right and left points.

AW N =

An example is given in Fig. 1. We call the curves joining two lower boxes lower
curves, those joining two upper boxes upper curves and those joining a lower and an
upper box middle curves. We define the set of oriented crossingless matches
OCMg! "l to be the set of elements of CMg!" "yl along with an orientation of the
curves such that all upper and lower curves are oriented to the left and all middle
curves are oriented so that those oriented down are to the right of those oriented up.
See Fig. 2.

As shown in [1], the set of crossingless matches CMzi;:::ﬁi is in one to one
correspondence with a basis of the set of intertwiners

The matrix coefficients of the intertwiner associated to a particular crossingless
match are given by Theorem 2.1 of [1]. Note that these are intertwiners in the
dual basis and thus commute with the action of U, on the tensor product given

by AK=D. Let 7 be such an intertwiner and define y = ¢jo. Then for xeU,

Fig. 1. A crossingless match.
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& &
- 'dlv - - a2 - - CI3 - - 'd4'

Fig. 2. An oriented crossingless match.

and veVy, ® --- ® Vg,

A% () () = a7eA" Y (x) (0)

Thus y is an intertwiner in the usual basis commuting with the action of U, given
by AV,

We will also need to define the set of lower crossingless matches LCMy, ... g, and
oriented lower crossingless matches OLCMy, . q,. Elements of LCMdh_,‘,dk and
....4, are obtained from elements of CMy, .. 4, and LCMg, .. g4, (respec-
tively) by removing the upper boxes (thus converting lower endpoints of upper
curves to unmatched vertices). For the case of OLCMy, ... q,, unmatched vertices will
still have an orientation (indicated by an arrow attached to the vertex). As for middle
curves in the case of OCMZl::::ﬁL , the unmatched vertices in an element of
OLCMy,,... 4, must be arranged to that those oriented down are to the right of those

oriented up. See Fig. 3.

.....

Letae (Z;O)k be such that a;<d; fori = 1,2, ..., k. We associate an oriented lower
crossingless match to a as follows. For each i, place down arrows on the rightmost a;
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*——
—>
—>
L -
L -

<

Fig. 3. An oriented lower crossingless match.

A U S I (U O

d

r—<

Fig. 4. d = (4,3,3,4), a=(3,1,1,2).

)
)
i

Fig. 5. Oriented lower crossingless match associated to d = (4,3,3,4), a=(3,1,1,2).

vertices of the box representing Vy,. Place up arrows on the remaining vertices. See
Fig. 4. There is a unique way to form an oriented lower crossingless match such that
the orientation of any curve agrees with the direction of the arrows at its endpoints.
Namely, starting from the right connect each down arrow to the first unmatched up
arrow to its right (if there is any). Note that this produces an oriented lower
crossingless match where the unmatched vertices are arranged so that all those with
down arrows are to the right of those with up arrows (otherwise, we could have
matched more vertices). See Fig. 5. So to each a there is an associated element of
...4,- Conversely, given an element of OLCMy, ... q,, there is exactly one a
which produces it. So we have a one to one correspondence between the set of

elements ae(Z 20)" such that a;<d; and oriented lower crossingless matches
OLCMy,,... q,- We will denote the oriented lower crossingless match associated to a
by M(d,a).

We can put a partial ordering on the sets CMg!" 3/, OCMg! " §l , LCMq, .. 4, and
OLCMqy, ... 4, as follows. For any two elements S; and S; of one of these sets, S7<.5>
if the set of lower curves of S; is a subset of the set of lower curves of S5.

Given the geometrization of irreducible representations of U, (Section 1.3), it is
natural to seek a geometrization of the tensor product and the space of intertwiners.
This geometric realization is the focus of Sections 2 and 3.
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2. Geometric realization of the tensor product
2.1. Definition of the tensor product variety T(d)

We now describe a variety (introduced in [6,9]) corresponding to the tensor
product of the irreducible representations Vy,, Va,, ..., Va,. This construction will
yield three distinct bases of the tensor product in a natural way.

Fix a d-dimensional vector space D and let de(Zs)" be such that 3% d; = d.
Define

Tp(d) = {(D = {D},, W) |0 =DycD,c---cD; = D,
WCD, dim Di/Difl = dl} (6)
Tp(d) admits a natural GL(D) action. Namely,
g- ({Di}f:()» W) = ({gDi}f'(:O’gW)
for ge GL(D) and (D, W)eZ(d). Now let
T(d) €{(D = {D,}*,, W, |0 =DycD c =D = D, WD,
teEnd D, t(D;)=D;_;,dimD;/D;_| =d;, imt< W cker t}. (7)
We call T(d) the tensor product variety. We say a flagD = (0 =DycDjc--- <Dy =
D) is t-stable if t(D;)=D;_y fori=1, ... k.

If we consider the corresponding varieties To(d) and T(d)" defined over Fpea

straightforward computation shows that T(d)’ is the union of the conormal bundles
of the orbits of the action of GL(D) on Ty(d)".

We define the action of E, F and K*! on the set of functions on T(d) just as for
the other spaces considered so far. Namely, let

T(w;d) ={(D, W, eZT(d) | dimW = w},

T(w,w+ 1;d) ={(D,U,W,t)|(D,U,t), D, W,t)eT(d), UcW,
dmU=w, dm W =w+ 1}.
We then have the projections

T(d) < | Tow,w+ 15d) 2 3(a), (8)

where 71 (D, U, W,t) = (D, U,t) and (D, U, W,t) = (D, W, t). The action of E, F
and K*! is defined by (2) as usual. Of course, the notation for the action of K*! now
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means that

(KE)(D, W, 1) = g= 2D, W 1), ©)

2.2. A set of basic functions on the tensor product variety

We now describe a set of basic functions on T (d) which will be used to form spaces
of functions isomorphic to Vg, ® -+ ® Va, - As usual, fix a d-dimensional vector
space D. For a flag D= (0=Dy<--- =Dy = D) and a subspace W <D, define
a(W, D)e(Z>0)k by

O((W,D)l- = dlm(WﬂD,)/(WﬂD,,O
For w,r,ne(Z>0)k, define
Agen ={(D, W, t)eT(d) | (W ,D) = w,o(im¢,D) =r,a(ker,D) =n}. (10)

Note that the non-empty sets Ay, are precisely the orbits of the action of GL(D)
given by

g- (DY, W, 1) = ({gDiY o, W, gtg™"), geGL(D).

From now on, the term constructible will mean constructible with respect to the
stratification given by these sets. We say that a function f on I(d) is invariant if it is
invariant under the action of GL(D) given by

(9-/)(x)=f(g7"'x), geGL(D).

Let 7 (d) denote the space of invariant functions on T(d). We will also use the notation
! K
all =% "a;, Ja|=) a
i= i=1

for ae(Zs0)* and we will let & denote the element of (Z-)" such that 5} =1 and

8. =0 for all i#/.
Let

Ko = g2l (1)
and define
fw.r,n == kw,r,nlAw‘r‘W (12)

Then it is easy to see that

f(d) = Span{fw,r,n}w,r,n'
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We will call the fy,n basic functions. Note that fyrn = 14,,, if ¢ = 1. As will be seen

below, the factor of ky,, is necessary in order for the fy ,n to correspond to certain
vectors in the tensor product. Note that fy, ,» = 0 unless r<w<'n where we define the

partial ordering such that for a,be (Zzo)/‘,

b; for 1<j<k

J
=1

J
a<h < Za,—<
i=1 i

1

4a<b < a<bh, a#b. (13)

Also, fyrn =0 unless [r| + n| = |[d| = d.

Theorem 2.2.1. The action of U, described in Section 2.1 endows 7 (d) with the
structure of a Uy -module and the map

Nen: Span{fw,r:n}w - anfr] ®-® V“k*"k
given by
nr,n(fwr,n) = ®n7rvw—r (14)

(and extended by linearity) is a U,-module isomorphism.

Proof. Fix a (D, W,1)eI(d) such that a(W,D) = w — ¢/ for some j (it is easy to see
that Efyrn(D, W,t) = 0 unless W satisfies this property). Then

—dim(z="!
Efw;,n(Da w, l) =4 dim() (D7W1t>)(n1)!n§fw7r7n(l)a w, t)

—dim (=] _ _
= kw,r,nq dim(r} (D7W’t))}fq(n1 I(Da W, 1) N7y I(Aw,nn))'
Now,

' (D, W,t) x{U | WcUckert, dim U = dim W + 1}

~ [pdim(ker t)—dim W—-1
_ phl—(w-1)-1

—phl-w
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So dim(n!(D, W, 1)) = |n| — |w| and
0 (D, W)y (Awen)
~x{U|WcUckert,a(U,D) = w}
~{U|(WnD;)cUc (kertnD;),
dim(UnD; ;) = wl¥=D dim U = wil¥)}
~ (U U< (ker 10Dy)/(W ADy),
Uz (kertnDj_1)/(WnD,_;),dim U = 1}
~ pdim(ker 10D)/(W D)~ _ pdim(ker raD;_1)/(W nker D;_p)-1
(1) —(w—=3) 1)1 _ pn1=1)—(w—/)(/~ 1

w1 pn(=D (=0

Thus
(1) —w(1) (=1 _w(lj=1)
—(|n|— 2i 2i
Efwxn(D, W, 1) =kyeng ™M N g7 7
i=0 i=0
(1) —w(1))
_ 2
Cyeag™ Y
n(lj=1) _w(lj=1)
( i —Wj
1j-1 1j-1 ;
:kw,r.nqlwl_‘n|+2(n 7= _w(1i=1)y Z q2l
i=0
—wl= D) (L) g (Lj=1) _p(+1.k)
=kweag ™ T T Iy — w4 1]
Now,
_(lj=1) _p(j+1.k) 1j-1 J+1.k
kwféf,r,n — kwrn r n +w +W
So
—w(ly=1) L ywl+1k) g (1i=1) _p(+1,k) 1j—1D4nly=1D) _ow(ly—=1)
kw,r,n w W n n :kw_5f7]-7nqr< J—1)+n W
and thus

Ef;v,rﬁn(Dv W» t) =k

) (/=1 n(Li=1) _pw(1j=1)
w—d/ r,n [

n—w +1].

313
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Therefore,

k
F(L=1) n(1j=1) _pw(1=1)
Efwrn = Z J+n W [ n, —w; + l}kW—(Sf,r,nlA

w—d'rn

(1j=1) 4 p(1j=1) _py(14=1)
qr ! " [n/ — Wi+ llfwfci/-,r,n

Il
M» N

1

~.
Il

Y
g2iny 2D (15)

Il
.M*\

Jj=1

Similarly
i—2(Wi—r;
Ffwrn—z L] l /+1 —r;i—2(w r))[wjfrj+1]fw+5/,r,n' (16)

It follows immediately from (9) that

K+1fwrn _ +(d— 2|w|f wen

k
:qi Z,:](Hi*fi*Z(Wi*fi))fw,r’n (17)
since [r| + [n| = |d]|.

Now recall that xeU, acts on V4, ® --- ® Vg, as A<k_1)(x). In particular,

k
A(k*I)E:Z KR - QKRERI® - ®1,

=1
k
A-Dp _ Z:1@...@1@}7@]{*1@9...@K*l7
=1
AFVRH = k3l @ . @ K, (18)

where in the first two equations, the E or F appears in the ith position. Comparing
(18) and (1) to (15)—(17) the result follows. [

2.3. The space T o(d) and the elementary basis B,

Note that if 7 =0, then r =0 and n = d. Let %4, = {fw 04}, Then Span %, is the
space of invariant functions on Ty(d) which we shall denote by 7 ((d). We see from
Theorem 2.2.1 that the map

) d
Noa - fwoda— @ vy
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(extended by linearity) is an isomorphism
Tod)=Vy ® - ®Vy,.

We have therefore exhibited the elementary basis as the set of invariant functions on
the variety Tp<=I(d).

2.4. The space T .(d)

The goal of this section is to develop a natural way to extend invariant functions
on Ty(d) to invariant functions on T(d) with larger supports. Recall that 7 ((d) and
7 (d) are the spaces of invariant functions on Ty(d) and T(d), respectively. The
action of E, F and K*! defined by (2) gives both 7 ¢(d) and .7 (d) the structure of a
U,-module as can be seen from Theorem 2.2.1. We will call a U;-module map
e:f>f¢ from Ty(d) to J(d) an extension. Assuming an extension & exists,
nr,noeo(nﬂ,d)il is an intertwiner from V3 ® - ®Vy, to Vi ® - QVy -
Conversely, each such set of intertwiners determines an extension. Namely, given
a set of intertwiners

{yr’n : le ® tte ® de - Vlllfl'l ® i ® Vllkfl'k}r’[ﬂ

we extend a function f €7 ((d) to a function f“€ .7 (d) by defining

=0 ) Venoaf): (19)

r.n

From Section 1.4 we know that a basis for the space of intertwiners between two
tensor product representations of U, is given by the corresponding crossingless
matches. Now, a lower curve represents a particular action of reEnd W. A lower
curve connecting Vg, and Vg, with i<j represents the fact that 7 sends a vector in
D; — D;_; to a vector in D; — D;_;. So for any lower crossingless match S, fix a basis
of D compatible with the flag D and let # be the map whose matrix in this basis has
(i,j) component equal to 1 if i<j and S has an curve connecting the ith and jth
vertices and is equal to zero otherwise. Then let r¥ and n® be defined as o(im ¢, D) and
a(ker 2, D). Thus, r{ is the number of left endpoints of the lower curves contained in
Vg, and n? is d; minus the number of right endpoints of the lower curves contained
in Vg,. See Fig. 6. Then complete S to a crossingless match to ansfrls ®® Vn,ffr,f

as in Fig. 7 (there is a unique way to do this). Let j,s,s be the corresponding
intertwiner in the dual basis (that is, commuting with the action of U, given by
A=1) Note that s ,s is well defined since the map S+ (r¥, n%) described above is
injective. Now let y,s ,s = 0J;s 4s0. As noted in Section 1.4, y;s 45 : Vo, @ -+ @ Vg, —
V“ig"f ®-® V“f";f is an intertwiner in the usual basis (that is, it commutes with

the action of U, given by A%y For all (r,n) not of the form (rS,n%) for some
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IQAIH

Fig. 6. Oriented lower crossingless match S. rS = (3,1,1,0), n% = (4,1,1,3).

dy d, ds

Fig. 7. Completion of Fig.6 to an oriented crossingless match to V. S rS ® - ® an,frf =
e r®s.

lower crossingless match S, let y,, = 0. Then let ¢:f+>f¢ be the map defined
by (19).

Proposition 2.4.1. The extension ¢ is an isomorphism onto its image and

Iz =71

Proof. This follows immediately from Theorem 2.2.1. O

Let

It follows from Proposition 2.4.1 and Theorem 2.2.1 that 7 .(d)= V3, ® --- ® Vg, .
And it follows from Proposition 2.4.1 that ¢: 7 (d) - 7 .(d) is an isomorphism of
U,-modules with inverse given by restriction to To(d). We will find a distinguished
basis of 7 .(d) related to the irreducible components of T(d)'. Before we do this, we
must first examine these irreducible components.
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2.5. The irreducible components of the tensor product variety

For the remainder of this section we consider varieties defined over [_qu. To avoid

confusion, we denote the corresponding varieties by To(d)’ and T(d)'. For we (Zs)"
such that w; <d;, let

Z, ={(D, W, 1) eX(d)|a(W,D) = w}.
We then have the following.

Theorem 2.5.1. {Z.},, are the irreducible components of T(d)'.

Proof. It is obvious that U,Z! = T(d)’ (where U denotes disjoint union). Also,
the connected components of I(d)’ are given by fixing the dimension of W.
Thus, since |w| = dim W, it suffices to prove that the Z| are irreducible and
locally closed and that dim Z, is independent of w for fixed |w|. Consider
the maps

1 Pl 11 P2 2y
Z, — Z,= “Z,,
where

17l ={(D, W) | (D, W,t)eZ, for some ¢},
22@ ={D| (D, W)EIZ:V for some W7},
pl(D7 W? t) :(D7 W)’

p2(D7 W) =D.
Then p; and p; are locally trivial fibrations. Now
27l ={D={D;}}},|0 =DycD c--- =Dy = D, dim D;/D;_; = d;}

is simply a flag manifold. It is a homogeneous space as follows. GL(D) acts
transitively on 2Z], with stabilizer isomorphic to the set of matrices

My, % o x
0 M,

Go = M,EGL(dl)

0 - 0 M
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Thus,
dim*Z!, = dim GL(D) — dim G,

= did; (20)

i<j
Now, the fiber of p, over a point D € 2Z/, is
E,={WcD|a(W,D)=w}.

The group Gy acts transitively on this space and the stabilizer is isomorphic to the set
of matrices

M, = * * * *

0 N O * 0 *

0 0 M, = * *

G — 0 0 0 Nz 0 * MjGGL(Wj),
b o 0 0 0 - - « ||" NieGL@; —w))

o 0 0 0 - . 0

. : : M, s

0 0 0 0 0 N

So

dim F2 =dim G() — dim G1

= wi(d; —w)). (21)
J<i
The fiber of p; over a point (D, W) € ' Z. is

F) ={teEnd D |t(D;)=D; i, imt= W cker t}. (22)

Pick a basis {#;}%_; of D such that {u,}d1+ s

a(L-1 4
U {”l}l alli- 1‘21

(where d"0) = 0) is a basis for W nD;. Then by considering the matrices of ¢ in this
basis it is easy to see that F; is an affine space of dimension

dim Fy = wi(d; — w)). (23)

i<j

is a basis for D; and
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So from Egs. (20)—(23) we see that

dim Z, =" did; +Z w;(d

i<j

= did; + \w\ —|w|) (24)

i<j

and thus dim Z, is independent of w (for a fixed value of |w/).

Now, zZiv, F) and F; are all smooth and connected, hence irreducible. Also, ZZQV
and F are closed while F; is locally closed. The latter statement follows from the fact
that F, is equal to the closed set { W <D | «(W,D)>w} minus the finite collection of
closed sets {W<D|a(W,D)>a} Thus each Z| is irreducible and locally
closed. [

a>w’

Let
Ayen =1D, W, 1)eT(d Y |a(W,D) = w,a(im¢,D) = r,a(ker£,D) =n}.  (25)

We will need the following two propositions in the sequel.

Proposition 2.5.1. Let we(Z;o)k with w;<d; for all i and let M = M(d,w). Then
A:N.rM.nM is an open dense subset of Z.,. In particular, A;v Mg = Zl.

Proof. It is enough to show that A:N.rM.nM is dense in Z, (it is obvious from the
definitions that Aj . ., <Z,). Since rY <w<nM by construction of M, we have
that the projection of 4!, ,, onto 'Z; is all of 'Z]. Thus it suffices to show that
Al o is dense in each fiber. Fix (D, W)e 1Z!.. The fiber, Fy, of the projection p; is
giv’en’by (22). The intersection of F; with (p] a )"'(D, W) is isomorphic to

M pM
B={teEnd D|¢D;)cD;_;,imtc W ckert,a(kert,D) = n” a(imz,D) = rM}.

Choose a basis f of D compatible with the flag D and subspace W (that is, there exist
bases for W and each D; which are subsets of ff). Now, since im t— W cker ¢, ¢ can
be factored through D/W and considered as a map into W. Each ¢ is uniquely
determined by the corresponding 7e End(D/ W, W). Consider the matrix of 7 in the
basis of D/ W given by the projection of the basis § under the natural map D—D/W
and the basis of W which is a subset of . It must be of the following form:

0 A1, A1z - Aix
0 Ay o Axg

C=|: -+ "~ - : : (26)
S 0 Ar1x
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where A4,; is a (w;) x (d; — w;) matrix. Then ¢€ B if and only if each submatrix

Aiiy1 A2 - Aijn

o 0 A e At
C;”: . z.+17z+2 ' l+.1J+1 7 1<i<j<k—l (27)

0 0 Adjjn

has maximal rank. To see this, consider the diagram M’ of non-crossing-oriented
curves connecting the V. associated to a r€ Fy. That is, the number of down-oriented
vertices among those associated to Vg, is given by w; and the number of left and right
endpoints of curves of M’ in Vy, are given by «(im¢,D), and d; — a(ker ¢, D),,
respectively. A priori, this is not an oriented lower crossingless match (for instance,
the unmatched vertices of M’ might not be arranged so that those oriented down are
to the right of those oriented up). The requirement that C* has maximal rank is
equivalent to the requirement that M’ has the maximum possible number of curves
connecting Vg, Va , and Vg . Thus, referring to the definition of M (d, w)

s e
given in Section 1.4, we see that the condition that all the Cf’/ have maximal rank is
equivalent to the condition that M’ = M (so M’ is indeed an oriented crossingless
match) and thus equivalent to a(im 7, D) = r™ = r™ and oa(ker t,D) =n™' =nM or
te B. Note that this argument also allows us to see that B is not empty since it
contains the element ¢ given by the matrix whose (i,j) entry is 1 if i<j and M
contains a curve connecting the ith and jth vertices and zero otherwise. In fact, this is
a canonical form of any 7€ B. That is, by a change of basis (preserving the flag D), we
can transform the matrix of any 7€ B to this form.

Assume we know that the subset N,,, of the set M,,, of m x n matrices given by

Npyn={AeM,, | A has maximal rank}

is an open subset of the set M,,,. Then N,,, is given by the non-vanishing of a finite
collection of polynomials in the matrix elements of M, , (recall we are working in the

Zariski topology). Thus, the requirement that the submatrices C!/ have maximal
rank is equivalent to the non-vanishing of a finite number of polynomials in the

matrix elements of the CfJ (and hence of C;). Therefore, we will have shown that B is
the intersection of a finite number of open subsets of F| and hence is open (and thus
dense since it is not empty) in Fj.

So it remains to show that N, , is dense in M,,,. But if we let » = min(m, n), then

Nyn ={A€M,,, | At least one r x r submatrix of 4 has rank r}

which is a union of open subsets of M,,, (since an r x r matrix has rank r if and only
if its determinant is non-zero) and hence open (and dense) in M,,,. O

Proposition 2.5.2. With the notation of Proposition 2.5.1, A g nSCZ_‘/’V for all
S<M, azw, |a| = |w|.
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/

Proof. It suffices to show that 4/ ¢  is contained in Zj,. The image of 4! ¢

under the projection p; is {(D, W)|x(W,D) =a} which is contained in 'Z,
since a>w and |a| = |w|. The fiber of the projection p; (restricted to 4 s s) over a
point (D, W) is

{t| (D, W,)eX(d),a(ker £,D) = n® a(im¢,D) =15}
and this is in the closure of the set

{t| (D, W,1)eX(d),a(ker , D) = n™ a(im 1, D) = rM}
since S< M. So A;,rS,nSCZ- O

We now define the irreducible components of I(d) to be the [ points of the
irreducible components of I(d). Let Z, denote the set of F,. points of the
irreducible component Z7, of T(d)". We also define the dense points of an irreducible
component Zy of T(d) to be the F, points of the dense subset A:v M (where
M = M(d,w)) of the corresponding irreducible component Z, of T(d)'. However,

the [ > points of 4], , are exactly the elements of Ay . Thus, the dense points of the

irreducible component Z,, of T(d) are just the points of A, . .

2.6. Geometric realization of the canonical basis

We are now ready to describe the set of functions mentioned at the end of Section
2.4. Define

By = 1540 vw),
gy = ()",

For a vector wi® - @wieVy @ Vy, let W ®--@wr) =wi® - ®
wi€Vy, ® - ®V,,. For an intertwiner y: Vy @ - ® Vy = Vy, ® - @ Vy, corre-
sponding to a crossingless match S, let y': V@ - @ Vy, = Va, ®--- @V, denote
the intertwiner corresponding to the crossingless match S rotated 180°. It follows
easily from the graphical calculus described in [1] that

), wy = <o, 0y’ e)(w)> = (v, () (w)>

for any veV, ® --- @ V,, and weVy, @ --- @ Wy,
We will need the following results.
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Lemma 2.6.1

S_.S .
VxS S(Ode) = O vy s I S<M(d,w),
e 0 otherwise.
Proof. It is apparent from the graphical calculus of [1] that if S<M(d,w), then
¥ S_ .S S
(Frs.a8) (@™

elements (O™ 1), a%w—r5, to elements of the form (V%)
Therefore

Y)Y = (%) and that (37,57,,s)T sends other dual canonical basis

" with a’#w.

S_ S

Cres s (0000), @ 0" )) = Oy, (Fys ) ("

= (0%, (")

S_ S S

ey

=1

and

Cresas (0%00), (@) =0
for all aw —rS. Thus 7,5 ,s(0%vw) = O"S”va,rs. A similar argument demon-
strates that y,s’ns(Ode) =0 if S¢M(d,w) since then the image of (W}rs_’ns)T is
spanned by Q%* with azw. [

Proposition 2.6.1.

Proof. This follows immediately from Lemma 2.6.1. [

Proposition 2.6.2. %, is equal to ®%v, plus a linear combination of elements
®%Y,,a>w, |a| = |w|, with coefficients in ¢~ 'N[g~"].

Proof. This follows from Sections 1.5 and 1.6 of [1]. [
We can now prove one of our main results.

Theorem 2.6.1. g8 is the unique element of 7 .(d), up to a multiplicative constant,
satisfying the following conditions:

1. g% is equal to a non-zero constant on the set of dense points Ayt gu 0f the
irreducible component Z,, (where M = M (d, w)).
2. The support of g3 lies in Zy.
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Furthermore, the set {g8}, is a basis of 7 .(d) and the map
Oy - g?v
(extended by linearity) is a Ug-module isomorphism Vg, ® --- @ Vg, =7 .(d).

Proof. In this proof, to simplify notation in calculations, we will suppress the
isomorphism 7, , defined by (14) and identify the vector ®" "vy_, with the function
Jwrn- Assume that /¢ satisfies the above conditions and let g/ = (24)°. The value of
g on Ay v g is given by ky vy times the coefficient of £, v i when g8 is written
as a linear combination of the basic functions. This coefficient is equal to

M

e g (B, (@™ o=y

Therefore, since k,, .m ,u #0, condition 1 is equivalent to

Cpar g (HS), (@™ Y 20 o Y, o o) (@™ )Y > 20,

Now, since M = M(d,w) is the oriented lower crossingless match associated to
w, M(nM — M w — M) has no lower curves and all down arrows are to the right of
all up arrows. So after being rotated by 180° (but keeping the original orientation of
unmatched vertices—for example, those oriented up remain oriented up), this

diagram has all down arrows to the left of all up arrows. Thus, by Section 2.3 of [1],

(@ =" vy — (o™ ="y Tt also follows from the graphical calculus of [1]

that

M_ .M

(Foar o) (@0 )) = (@)
Therefore condition 1 is equivalent to
CHY, (@) #0. (29)

Next we consider condition 2. In order for this condition to be satisfied, g/ must
be equal to zero on A, . a for all w'#w (where M’ = M(d,w’)). By an argument
analogous to that given above, this is equivalent to the condition

I @"Y) ) =0 (30)
for all w'#w. Therefore, by (29) and (30), we must have
h/d:Cd'OdU :Cd‘/’ld

for some non-zero constant ¢% which proves uniqueness up to a multiplicative
constant. It still remains to show that g¢ satisfies the given conditions.
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Now, by Proposition 2.6.1, the value of g4 on Ay M gv, Where M = M(d,w), is

equal to kyrn times the coefficient of ®"M_'Mvw_,M

in the expression of
O™ ™" v, _.um as a linear combination of elementary basis elements. By Proposition
2.6.2, this coefficient is equal to 1. So ¢ is equal to a non-zero constant on A, i .
Also, by Propositions 2.6.1 and 2.6.2, g% is equal to a linear combination of
. — S_ .S . .

functions of the form (y,s,s) (@™ 1,) =farxSeSas  With  S<M, |a| =
w—r5 (= ]a+r =|w|), and a>w—r% (= a+r'>w). Thus, by Proposition
2.5.2, the support of ¢4 lies in Zy. So we have demonstrated that the functions g4 are
the unique functions, up to a multiplicative constant, satisfying conditions 1 and 2.

The last two statements of the theorem follow from the fact that the map

UITE <>del—>h§V (extended by linearity) is a Ug-module isomorphism
Va, ® --- ® Vg, =7 ¢(d) and the fact that ¢ is an isomorphism onto its image. [J

2.7. A conjectured characterization of 7 .(d) and B,

We present here a conjecture concerning an alternative characterization of the
basis .. Let 2 be the category of semisimple perverse sheaves on I(d)’ constructible
with respect to the stratification given by the Ay, and let 2:2—2 be the

operation of Verdier Duality. For B*e 2 and xe I(d)’, B, denotes the stalk complex
at the point x. We define the action of the involution ¥*) on 7 (d) by

PO fwen) = en)” PO 00 (furn)s

where on the right-hand side ¥¥) is the involution used to characterize the canonical
basis (see [1, Section 1.6]). In particular, the canonical basis is invariant under the

action of ¥*). Now let : 2 — 7 (d) be the map such that

(0(B*))(x) = Y (~1)'¢'dimH;(B}) for xeX(d) and B* e 2.

i

For each irreducible component Z/, of T(d)’ there is an intersection sheaf complex
IC;, associated to the local system which is the constant sheaf C (in degree zero) on
the dense subset A/, ,, where M = M(d,w) (see [3] for details).

Conjecture 2.7.1. 0(IC}) = ky Ly vy

The factor of k;lrM_nM arises from the fact that 0(IC},) is equal to one on the set
Al - The proof of Conjecture 2.7.1 would most likely center around the idea

that the action of Verdier Duality in 2 should correspond to the action of ¥*) in
7 (d). The precise statement is the following:

Conjecture 2.7.2. 02 = yXg.
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3. Geometric realization of the intertwiners
3.1. Defining the intertwiners

The goal of this section is to decompose T(d) into subsets corresponding to a basis
for the space of intertwiners

Héll i, :Hoqu(Vm@...@de,Vu), (31)

Note that Hy, 4, = 0 unless y = d — 2r for some 0<r<d/2 (where d = |d|). Thus,
the intertwiners will be maps from 7 (d) to .#(d) since these V, are precisely the
representations appearing in .#(d) (see Section 1.3).

Let Y be a constructible subset of T(d). Define Ry : 7 (d)—.7 (d) to be the map
which restricts functions to their values on Y. That is, for fe 7 (d), Ryf = 1yf
(where the multiplication of functions is pointwise).

Consider the map p: T(d) > M(d) such that p(D, W, ) = (W,t). Let Ty = pRy.
Then Ty is a map from 7 (d) to .#(d).

Proposition 3.1.1. If Y = ¥(d) satisfies min;, '(Y)< Y and myn ' (Y) <= Y where ny and
7y are the maps from (8) then Ty is an intertwiner.

Proof. It suffices to show that Ty commutes with the action of E, F and K*! since
these elements generate U,. Note that the condition mn;!(Y)<Y implies
;' (Y)en ' (Y) and the condition mn;!(Y)<= Y implies n;!(Y)<=ny!(Y). Thus
;1Y) = n5!(Y). We first show that TyE = ETy. Now TyE = pRyE and ETy =
Ep\Ry. Thus it suffices to show that RyE = ERy and pE = Ep. Since 7 (d) is
spanned by functions of the form 14 where 4 is a subvariety of T(d), we need only
check that actions agree on such functions. For x = (D, W, ) e T(d)

RyE14(x) =1y (x)(E14)(x)
= 1y (x)g~ ™ O () L) (x)
O () ()1 100
— g dimGr ! ()q y ()2, (! (x) "7y (A))
_ qfdim(nl" (x))xq(n-;‘ (xnY)nmy'(A4))
_ gdim(ey! Oy, (7 (x) Amr (V) s (4))
_ q,dim(nl—l (X»Xq(ﬂfl (x) ﬂzfl (Y)n n;l (4))

—dim(r! (5 — —
=g Wy (! () nmy (Y 0 4)
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_ qfdim(nl_l(«Y))(nl)llnzq(YmA)(X)
_ q_dim(n(‘(x))(m)!n’z"l yna(x)
— gm0 () ¥ (151 (x)
=ERy14(x),
where the fifth equality holds from consideration of the two cases xe ¥ and x¢ Y.

It remains to show that p)E = Ep,. For the purposes of this demonstration, we
introduce the map

P U I(w,w+1;d)— UEIR(w,er 1,d)

which acts as p'(D,U, W,t) = (U, W,t). We have the following commutative
diagram:

I(d) 2, M(d)

Tm (K2
U (v, + 15d) 2 UM, w+1,d)
" I " lm

I(d) 2, M(d)

As before we use the notation n; and n, to denote several different, but analogous
maps.

Note that p'm=m(p)"' (both are the map (U, W,0)—
{(D, W',/ )eZ(d)| W = W, =1t}). Using this fact we show that (p'),n5 = nip.
Let xeZ(d). Then

(Rpr1.0)(x) = (L) (7))
= 1,0 (7)) 2 4)
= 1, (7)) () " A)
= 1,(m((7) () 3 (4)))
= 1,((0) " (x) 3 (4))
= (P10 ()
= () L),
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where in the fourth equality we used the general fact that my(B)nA =
ma(Bnn;'(4)) and in the fifth equality we used the fact that if x = (U’, W', ') then

) () nm(A) ={(D, U, W,0) | p(D,UW,1) = (U, W), m(D, U, W,1)e A}
={D,U,W,)|U=U,W=W t=1{,D,W,t)eAd}

~ (D, W,0) | W = W1 ={,(D,W,1)e A}

=m((p) 7 (¥) nmy ' (4)).
We also have that 7;p’ = pn; (both are the map (D, U, W, t)— (U, 1)). Thus

Epy = ¢ ™0 O) (), iy

= ¢~ O (), (')

—dim(n7 () (

=q mp')ms

—dim(n (-
— g IO ()t

—dim(n1())

=q pi(m1),705

where we have used the fact that the map f'+f is functorial [5].
Thus, we have shown that Ty E = ETy. The proof that Ty F = FTy is analogous.
Also,

KE'Tyf(D, W, 1) =q=@2dmW) 1o r(D, W 1)
=Tyq* 2D, W, 1)

=TyK='f(D, W,1). O

3.2. A basis By for the space of intertwiners

We see from Section 1.4 that a basis for the space of intertwiners Hc’l‘1 4 is in one-

4,- Note that
k

.....

to-one correspondence with the set of crossingless matches CMfi‘1
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crossingless matches of the form CMfi‘l 4 (i.e. with only one box on the top vertical

.....

.....

line) are in one to one correspondence with elements of LCMy, ... 4,. For a given
element S of LCMy, .. g, simply set u equal to the number of unmatched vertices of S
and join the unmatched vertices to the upper box. Recall that elements ae(Z )"
such that a;<d, are in one to one correspondence with the elements of OLCMy, ... 4, -
Given such an a, consider its associated oriented lower crossingless match M(d, a).
Note that |a| is the number of vertices (both matched and unmatched) in M(d, a)
which are oriented down.
For any flag D and 1€ End D let «(z,D) = a(ker ¢, D). Then let

Yo ={(D, W,)eI(d) | a(,D) = n"4 dim W = |a|}

= U U AwﬁrAnM(d“)' (32)

wiw|=[a| T

Now, note that n”(@2 depends only on the lower curves of a and not on the
orientation of the unmatched vertices. Thus, if a denotes the (unoriented) lower
crossingless match associated to a, we can unambiguously define n* = n™(@2) Then
if b is an unoriented crossingless match, we define

Y, ={(D, W,1)eI(d) | a(t,D) = n”}

U . (33)

a:a=bh

The last equality arises from the fact that if (D, W, ) e T(d) then im t< W cker ¢, so
r<dim W<d —r (where r =rank¢). Thus, since (D, W, t)eY, implies that r =
rank ¢ is the number of lower curves in b, the values r,r+ 1, ...,d — r are precisely
the number of down arrows (that is, the |a|) in the various a such that a = . We also
have the following:

Proposition 3.2.1. |_|be = |_|aYa = I(d).

Proof. It is obvious that the Y, are disjoint. Thus, from Eq. (33) we see that it
suffices to prove that for every (D, W,1)eI(d),a(s, D) =nM@2) for some cross-
ingless match a. Fix an (D, W,¢)eX(d) and let a = «(z, D). Now, down arrows of a
represent dimensions of the kernel of ¢ while up arrows of a represent dimensions of
D/kert. Let ¢ denote the i" up arrow from the left. Since imzckers and
t(D;) = (Dj_1), there must be at least i down arrows to the left of ¢. Since this holds
for all i, it follows that each up arrow of M (d,a) is matched. Thus, since n* (42 s
obtained from a by forcing all unmatched vertices to be oriented down, we have that
nM@a) — a3 = o(z, D). O
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Define

B, = {Tyb be U CM(‘,‘I,__’dk}. (34)
u

Proposition 3.2.2. Each element of %, is an intertwiner and

Ty,(7d)cu"(d)=V,

Proof. According to Proposition 3.1.1, to show that Ty, is an intertwiner we
need only check that mm;'(Ys)< Y, and mny'(Ys) <Yy for all heCMy 4 .
If we denote by #* and D* the map ¢ and flag D of the point xeT(d) (so x =
(DY, W, r*) for some W), then # =" and D’ =D for all yemn;!(x). Thus
a(t*, DY) = o(#",D”) for all yemyn;!(x) which implies that mny ! (Y) < Y, for all b.
Similarly 775! (Y,) < Y, for all b. Now, the image of Ty, consists of functions on
I’ (d) where r is the number of lower curves in b. In fact, it is easy to see that for
fe7 (), Ty,(f)(W,t) depends only on the dimension of W and the rank of 7. So
the image of 7'y, is contained in .#"(d). Recall from Section 1.3 that .#"(d)=Vy_»,.
Since r is equal to the number of lower curves in b, d — 2r is equal to the number of
middle curves and hence d — 2r = u. So Ty, is an intertwiner into the representation
V, as it should be. O

3.3. The space T 4(d) and the basis %,

For the purposes of this section we will identify the sets LCMy, .. g4, and

U, CMg, ¢, a8 1n Section 3.2. Also, to simplify notation, we shall identify elements
ac (Z;o)k such that a; <d; with their associated oriented lower crossingless matches
M(d,a).

Let 7 4(d) be the space of all functions f'€.7 (d) such that
dim W =dim W', «(t,D) = a(¢',D') = f(D, W,t) = f (D', W', ).

It is obvious that if we define
By = {1 Ya

7 s(d) = Span %;.

ae| OCMgI,,_,,dk}, (35)
n

then
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Theorem 3.3.1. 7 ((d) is isomorphic as a Ug-module to V3, ® --- @ Va, and % is a
basis for 7 4(d) adapted to its decomposition into a direct sum of irreducible

representations. That is, for a given beCMﬁl ''''' a,» the space Span{ly, |a = b} is

isomorphic to the irreducible representation V, via the map

n .
lYa = Uy—2(# of unmatched down arrows in a)

(extended by linearity).

Proof. For acLCMy, . 4, such that a has at least one unmatched up arrow, let a*
be the element of LCMjy, obtained from a by switching the orientation of the
rightmost unmatched up arrow. Thus a™ = a and a* has one more unmatched down
arrow than a. Similarly, if aeLCMyjy, ... 4, has at least one unmatched down arrow,
_____ 4, obtained from a by switching the orientation of
the leftmost unmatched down arrow. Recall from the proofs of Propositions 3.1.1
and 3.2.2 that n;!(Y,) = n5'(Y,). It follows from this and the fact that Y, =
Uaap Ya that mn'(Y,) = Y,+ if a has at least one unmatched up arrow and
mony ! (Ya) = 0 otherwise. Similarly, 7;n5 ' (Y,) = Ya- if a has at least one unmatched
down arrow and w75 ! (Y,) = 0 otherwise.
Now, for xeI(d),

RSN 72

—dim(my ! (x
Fly, (x) =g ™ 0 (ny) w1y, (x)
—dim(my ! (x
—q dim(m; " ( ))(EZ)!lnl’l(Ya)(x)

—dim(r= ! (x - -
- dim (1 ( ))Xq(TCZ l(x)mnl '(Ya)).

Now, we already know from the above discussion that 7y!(x)nry!(Y,) =0 if
x¢ Yy+. So assuming x = (D, W, t)e Y,+, let r = rank ¢. Then

Fly, (D, W, 1) =g ™0 W0y (o (D, W, 0) vy (Ya)
_dimplatl-r-1 +_p
=q dimP Xq([p)|a | 1)

[at|—r—1
—(lat|—pr— ;
=q (la™[=r=1) Z e
i=0
=[la"| =]
= [(# down arrrows in a") — (# lower curves in a™)]

= [# unmatched down arrows in a*].
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Thus,
F1y, = [# unmatched down arrows in a*]ly . (36)
Now,

—1

Ely, (x) =¢ ™ 0D (m)) w51y, (x)
. —1
=q D () Ly (3)
—dim(n; ! (x n 2
R <'*)>Xq(771 l(x)mnzl(Ya)).

We know that 77! (x) 75! (Ya) = 0 if x¢ Y,—. So assuming x = (D, W, 1) € Y,-, let
r =rank 7. Then

Ely, (D, W, 1) =g~ W0y, (D, W, 1)y (Ya))
_ q—dimpd*"*\flflXq(ﬂj,d—r—\a’\—l)
=[d—r—la]
=[d — (# lower curves in a~ ) — (# down arrows in a )]
=[(# up arrows in a~ ) — (# lower curves in a” )]
= [# unmatched up arrows in a”|.
Thus,
Ely, = [# unmatched up arrows in a”]ly,. (37)
Finally, it is easy to see that
Kly, =qtd-2a01,
— g% (n-2(# unmarched down arrows in a))y (38)

where p is the total number of unmatched arrows in a. Using the fact that u is the
total number of middle curves of b (and hence the total number of unmatched
vertices in any a such that a = b), the second statement of the theorem now follows
easily from a comparison with (1).

Since we know from Section 1.4 that the set CMfi‘l,._"dk is in one to one
correspondence with the set of intertwiners Hgl,...,dk’ we have that

Tz ® Hf , @V,2Va® @V,
u

which proves the first statement of the theorem. [J
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Now, like the canonical basis, the basis #; we have constructed here is closely
related to the irreducible components of T(d). To see this, we first need a
proposition. Consider the varieties Y, and Y, defined over [_qu. To avoid confusion,
denote these by Y, and Y;. Then

Proposition 3.3.1. Y] = ZI.

Proof. Since the Y, are smooth and connected, they are irreducible. Also, from an
argument analogous to the one given in the proof of Proposition 3.2.1, we know that
U, Y! = I(d)". Thus, since the cardinality of the sets {Y]} and {Z} are the same,
{Y7} must be the set of irreducible components of T(d). Now, Y/nZ! =
U A;J’nM(d.a). But, by Proposition 2.5.1, A;er(d‘a)’nM(d,a) = Z!. Therefore we must

have Y, =Z,. O

Since Y, is precisely the set of [, points of Y,, we have the following
characterization of the basis %;.

Theorem 3.3.2. The elements 1y, of the basis %, are the unique elements of 7 s(d)
equal to one on the dense points of the irreducible component Z, of T(d) with support
contained in this irreducible component.

So, like the elements of 4., the elements of %, are equal to a non-zero constant on
the set of dense points of an irreducible component of T(d) with supports contained
in distinct irreducible components. However, unlike 4., the elements of %, have
disjoint supports.

3.4. The multiplicity variety S(d)

We briefly describe here the relation between #%; and %, and the multiplicity
variety [6]. Let de(Zso)" and let D be a |d|-dimensional F,» vector space. The
multiplicity variety is the variety (defined over [_qu)

S) = {(D,?) | (D, W,1)eZ(d)" for some W cD}.

Define the projection n: T(d)' — &S(d)’ by n(D, W, t) = (D, ). It follows easily from
the above results that the irreducible components of &(d)’ are given by the closures
of the sets

@;7 = {(D7 t) |OC(I, D) = nb}a bELCMdl,.H,dk;

and that these irreducible components are in one to one correspondence with the
irreducible modules in the direct sum decomposition of Vy, ® --- ® Vg, . Then Y, [’) =
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n_1(%}) and {Y,|a = b} yields a decomposition of the F, points of the fiber
of n|Y1', isomorphic to the decomposition of 9 (d) into the subsets I (w,d)

where r is the number of lower curves in b. Thus the bases #; and %, have
natural geometric interpretations in terms of the multiplicity variety and the
projection 7.

3.5. The action of the intertwiners on 7 s(d)

We will now determine how our intertwiners act on the space 7 ((d). For
ae(Z=o)", let @/ = a(ly). We will need the following two technical lemmas.

Lemma 3.5.1. [f D= (0=DycD;c=Dy,<--- =Dy = D) is a flag with d = o(D, D)
and ae(Zgo)k with a; <d;, then

1,({W | WeD,a(W,D) =a}) = caa @ 3 7 Lz "0
beC,

where
Ca = {be(Z50)!|b;e{0, 1}i, b&G-1714) — )

and we set dg = 0.

Proof. Complete D to a flag F = (0cF,cF,<--- <F; = D) such that dimF; =i
and Fy = D; where d = |d|. This gives a decomposition of Gr‘il into cells, each
isomorphic to ([qu)i for some j. The cells are given by {W | W< D, a(W,F) = b} for
a fixed b. The number of points in such a cell is equal to

q221<j<f<¢/bi(lfbf>.

Our variety is the union of those cells such that b@-1+14)

follows. O

=a;. The result

Specializing to ¢ = 1 yields

Lemma 3.5.2.

k di
Cd.a|q:1:H a; .

i=1

Proof. This follows immediately from Lemma 3.5.1 since b;e{0,1} for each
cel. O
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Theorem 3.5.1. The set %B; acting on T (d) spans the space of intert-
winers @, Hy 4. In particular, for be CMy 4, Ty, acts on the basis % of
T 5(d) as

o1 — colow aja) €M (d)=Vaor =V, if a=0b,
R ) if a#b,

where 1 is the number of lower curves in b, d = |d| and cj, is non-zero constant.

Proof. Recall that Ty = piRy. It is obvious from the fact that Y, =J,5_, Ya
that

Rt gy, ftnoifa=b
R T Y

So we need only determine pi1y, for a = b. Now, for x = (W*, ¥) e M(d),
ply,(x) = 2,(p" (x) N Ya).

Recall that p is the map (D, W,t)+— (W ,t) and

Ya = {(D, W,1)eT(d)|a(s, D) = n, dim W = |al}.

Thus,

p 1 (x)n Y, ={D|dim(D;/D;_;) = d;, #*(D;) =D,_y, o(£*, D) = n°} (39)

if dim W* = |a| and p~!(x) " Y, = 0 otherwise. Note that this variety depends only
on the dimension of the kernel of #* (or equivalently, the rank of #*) and the
dimension of W*. The variety is empty unless r = rank #* is equal to the number of
lower curves in a. Thus, Ty, 1y, is a constant function on 9’ (|a|,d). Moreover, this
constant ¢y, equal to the number of points in the variety in (39), depends only on
a = b and not on the orientation of a. As long as ¢, is non-zero, we know that Ty, is
a non-zero intertwiner. Moreover, it is obvious that if all the Y}, are non-zero then
the intertwiners Ty, are linearly independent.

To show that ¢, #0 it suffices to show that its evaluation at ¢ = 1 is non-zero. The
variety (39) consists of all #.-stable flags D = (0cD;<--- <Dy = D) such that
dim D; = d’ and the intersection of D; with ker ¥ is a space of dimension (n’Y =

jz::1 n’. There is only one choice for Dy, namely D. Assume we have picked Dj;. D;
can be any subspace of dimension d’ such that

t'(Djy1) =Dy e Dyyy
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and
dim(D; nker £°) = (n”).

Note that since dim(Dj,; nker ) = (n PY*™ and dim D;;; =&, we have that
dim #*(Djy;) = &' — (n?Y'. Also, since ()* =0, t*(Dj;1) cker ¢*. Passing to the
quotient by *(Dj ) and denoting this by a bar, we see that picking a subspace D;
subject to the above conditions is equivalent to picking a subspace D; of D;;; of
dimension & — (@' — (n?Y*") such that

dim(D; nker 7¥) = (n°Y — (¢! — ("Y'*).
Since  dimD;; =& — (¢ — (?Y™) = @Y and  dim D nker =

dim D;j nker /¥ = (Y™ — (& — Py =2’y — &' we see by Lemma
3.5.2 that the value of %q Of the Vdrlety of such spaces evaluated at ¢ =1 is

2(nb)j+1 . dj+1 (nb)j+l b)J+1 d]+1
(nb)j+l + (nb)j — &t &d—dt! £ (nb)f+l _ nb)’H +( nb)’ . diH)

B 2(nb)i+1 _dt! d!— (nb)/+1
- (nb)iH + (nb)i _ @t 4 (nb)i )

This is thus strictly positive provided that

(Yt — & >0, (40)

@Y + my — &t >0, (41)

& — byt >0, (42)

& — (n"y >0, (43)

2y — = Y 4 (Y — (44)
¢ - @y =d - (). (45)

Now, recall that n” is obtained from a by forcing all unmatched arrows to be
oriented down. Also, & is the number of vertices associated to Vy, through Va, while

(n®Y is number of these vertices with down arrows. Thus & — (n”Y is the number of
these vertices with up arrows. So (42), (43) and (45) are obvious. Eq. (44) follows
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from the simple fact that (nb)"+1 > (n’ )] Eqgs. (40) and (41) follow from the fact that
each up arrow is matched to a down arrow to its left since all unmatched arrows
point down and matchings are oriented to the left.

Thus, y, of the variety of choices of D; given D;y, is independent of D;; (up to
isomorphism) and is non-zero. Using the fact that the Euler characteristic of a locally
trivial fibered space is equal to the product of the Euler characteristics of the base
and the fiber, we see that the evaluation of ¢, at 1 is a product of positive numbers
and is thus positive. So ¢, #0. O

3.6. The action of the intertwiners on 7 .(d)

We now compute the action of our intertwiners on the space 7 .(d).
Define the coefficients k4" by

Oy = Z KV (@%0,).

PN

of left endpoints of lower curves of b in the box corresponding to ¥V, and m? is
equal to the number of endpoints of middle curves of b in the box corresponding
to Vd,--

Theorem 3.6.1. The set %; acting on 7 .(d) spans the space of intertwiners
@ uHy, g, In particular, if beCMy 4 is such that b<M(d,w), then

d
Ty, (gy) = DLy )

where

a 1

, " k—1
_ E : m’, w—I | I o
W= Ka ka+lb,lh,lb+mb Call.a'2 )
i

ap = (11", a0, " — )™, (@ —m” —2")),
a,m’ —a;, d; —m’ —1)
Otherwise, Ty, (¢%) = 0.

Proof. For a crossingless match beCMy 4., T, (gy) = PRy, (gy) and

—1 nS—r$
RYb (ggv) = Z RYb (an,nS) (<> Uwfrs)'
S<M(dw)
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This is equal to zero unless S =5 for some S<M(d,w) (that is, the set of
lower curves of b is a subset of the set of lower curves of M(d,w)). If this is the
case, then

_ aS_gS
Ry, (08) = (ys,ps) ' (O™ 0y _ys)

for the particular S< M (d,w) such that § = b. Then n® =1’ + m® and r® = I”. So

b

Ry, (98) = (np o) (O™ 1, )

§ : 1 m”
7]1/7 lb +mb < K w ® ))
= E : Ky a+l” P 1P +mb

b b

o m’ w—I

= E K, ka+lb.lb.lb+m”1Aa+1”,|/’.lb+m"'
a

Let (W, 1) eMi(d). Then if the set of lower curves of b is a subset of the set of lower
curves of M(d,w),

v
Ty, (95)(W, 1) Z Km Mk p b yme P L (W, 1)

a+12 10 10y mb

= Z Km " a+lb P Zg({D (D, D) =d, {(D;) =Dy,
a(imz,D) =1°, a(W,D) =1 +a,a(kert,D) =" + m"}).  (46)

We see from Proposition 2.6.2 that ;cg‘b’w"h =0 unless |a| = |w—1°| = |w| — |I”|.
Therefore, since |a( W, D)| = dim W, (46) is zero unless dim W = |w|. Similarly, it is
zero unless rank r = dim(im¢) = |I’|. If these conditions are satisfied, (46) is
independent of W and ¢. We can then evaluate w, the value of the expression in
(46), using Lemma 3.5.1 and the fact that the Euler characteristic of a locally trivial
fibered space is the product of the Euler characteristics of the base and the fiber.
There is only one possible choice for Dy, namely 0. Assume we have picked D;_;.
Then D; must satisfy the following conditions:

. t(D;)=D;_; or, equivalently, D;ct~ (D, 1),
.D;oD,_;, dimD; = d",

. dim(D; nim 1) = (")),

. dim(D; A W) = (1P +a)",

. dim(D; nker £) = (I” + m?){"),

[ N S S R
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Pass to the quotient by D;_; and denote this by a bar. Let F be the flag

F = (F() =0cF, = ECFz = WCF3 = ker t,Fqy = til(Dl;l)).
Then the above conditions are equivalent to picking D;=¢!(D;_;) such that

(D F) = (2 m! — a.d; — ] 1),

Since
dimim 7 = (17)%0)
dim W = (I + ),
dimker 7 = (1" + m")*)
and

dim r~1(D;_;) =dim ' (D,_;) — dim D;_,
=dim(im tn D;_;) + dim(ker ) — dim D,_,

— (lb)(l,ifl) + (d _ |lb|) _ d(l,i—l)
=(d 1",

the form of the action of the elements of %, follows.

It remains to show that the set % spans the space of intertwiners @, Hy 4 -

Since it follows from Theorem 3.5.1 that the cardinality of %; is equal to the
dimension of @, Hgl7-.--dk’ it suffices to show the linear independence of the set %;.

Assume that, acting on the space 7 ,(d),

> aTy, =0, a+#0 Vi (47)

Since the image of Ty, is contained in .2/ (d) by the above results, we may assume
that |ly,| = [ly;| for all i and j. Fix an i and consider a w such that M(d, w) = b;. All
Tij, Jj#i, act by zero on g8 by the above (since |l | = |y, |, we cannot have b; <b; =
M(d,w)). Also, Ty, #0 by the above. Thus @; = 0 which is a contradiction. Thus the
theorem is proved. [
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3.7. An isomorphism of T .(d) with T ((d)
For (D, W, 1) eZ(d), let

Bpw,={D W )| W =W, =tu(t,D)=o(s,D)}.

For fe7(d) let

()= fx.
)

xeZ(d
Let £: 7 .(d) > 7 4(d) be the map given by

é(f)(D7 W7 t) = X{[(RBDJ/VJf)'

The fact that the image of ¢ is contained in 7 ;(d) follows from the fact that, up to
isomorphism, Bp , depends only on «(z,D) and dim W.

Proposition 3.7.1. ¢ is an Ug-module isomorphism.

Proof. This follows easily from Theorems 3.5.1 and 3.6.1 since

1 “
5:26—})(Tyb|yb) °Ty,. O

b
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