A CATEGORY THEORETIC APPROACH TO FORMAL GROUP LAWS

YANANAN WANG

CONTENTS
1. Introduction 1
Acknowledgements 2
2. Background 2
2.1. Rings and modules 2
2.2. Formal Power Series 4
3. Formal Group Laws 5
4. Category Theory 8
5. Category of Formal Group Laws 12
5.1.  Morphisms of Formal Group Laws 12
5.2.  Formal Group Laws as Functors 15
5.3. Change of Base Rings 17
6. Higher-Dimensional Formal Group Laws 19
6.1. Concepts of Higher-Dimensional Formal Group Laws 19
6.2. Formal Group Laws as Functors for Higher-Dimensional FGLs 22
6.3. Change of Base Rings with Higher-Dimensional FGLs 24
References 25

1. INTRODUCTION

A formal group law is a formal power series that behaves in many ways like the product of
a Lie group. In some sense, formal group laws are intermediate between Lie groups and Lie
algebras. The theory of formal group laws has found a great number of incredible applications
in algebraic geometry, number theory, and algebraic topology. We refer the reader to the
book [6] for further details on the original applications of formal groups.

More recently, formal group laws have been studied in their connection to algebraic ori-
ented cohomology theory. Through the formal group algebras introduced in [3], it is possible
to compute the cohomology rings of complete flag varieties for arbitrary oriented cohomol-
ogy theories. These ideas have connections to Hecke algebras (see [7]) and the geometry of
Steinberg varieties (see [8]).

The purpose of this paper is to serve as an introduction to the subject of formal group
laws accessible to undergraduate students. We introduce some of the main definitions and
results, assuming minimal background knowledge. We take a category theoretic point of
view, introducing the category of formal groups, in addition to discussing how one can view
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formal group laws themselves as functors (with homomorphisms of formal group laws being
natural transformations).

The structure of this document is as follows. In the Section 2 we recall some basic concepts
in ring theory, including the important concept of formal power series. In Section 3, we
introduce the concept of formal group laws, illustrating the definitions with a number of
important examples. Then, in Section 4, we recall the basics of category theory that will be
needed in this paper. In Section 5, we discuss the category of formal group laws. We then
explain how formal group laws can be viewed as functors and give a treatment of change of
base rings. In the majority of the paper, we restrict our attention to one-dimensional formal
group laws. However, in Section 6 we discuss how the concepts seen here can be generalized
to higher-dimensional formal group laws.

Acknowledgements. I would like to thank Professor Alistair Savage for his guidance and
support. This project was completed under the supervision of Professor Savage as part of
the Co-op Work-Study Program at the University of Ottawa.

2. BACKGROUND
2.1. Rings and modules.

Definition 2.1 (Module over a ring R). Suppose that R is a ring and 1g is its multiplicative
identity. A left R-module M consists of an abelian group (M,+) and an operation - :
R x M — M such that for all r,s € R and =,y € M, we have:

r-(x4+y)=r-x+r-y
(r+s)-x=r-x+s-x
(r-s)-z=r-(s-x)
lg-z=2
A right R-module M or Mpg is defined similarly, except that the ring acts on the right.
Definition 2.2 (Submodule over a ring R). Suppose M is a left R-module and N is a

subgroup of M. Then N is a submodule (or R-submodule, to be more explicit) if, for any
n € N and any r € R, the product r - n is in N (or n - r for a right module).

Definition 2.3 (R-algebra). Let R be a commutative ring. An associative R-algebra is a
ring A that is an R-module (left, say) such that

r(ab) = (ra)b = a(rd)
for all r € R, a,b € A. Furthermore, A is assumed to be unital, which is to say it contains
element 1 such that
lr=x=12x1
for all z € A.
In addition, A is called a commutative R-algebra if it satisfies
ab = ba
for all a,b € A

We assume that all R-algebras are commutative throughout this paper.
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Definition 2.4 (Subalgebra). Let A be an R-algebra. A subalgebra of A is an R-submodule
of A that is closed under multiplication and contains the identity element 1 € A.

Definition 2.5 (Ideal of an R-algebra). A subset / of an commutative R-algebra A is an
ideal if for every z,y € I, z € A and ¢ € R, we have the following three statements:

z+y €I (Iis closed under addition),
cx € I (Iis closed under scalar multiplication),

z-x € I (Iis closed under multiplication by arbitrary elements).

Definition 2.6 (Homomorphism of R-algebras). A homomorphism between two R-algebras,
A and B, is amap F : A — B such that for all » € R and x,y € A we have:

F(rz) =rF(x),
F(z+y) = F(z) + F(y),
F(zy) = F(z)F(y).

Definition 2.7 (Nilpotent). An element x of a ring is called nilpotent if there exists some
positive integer n such that x™ = 0.

Definition 2.8 (Nilradical). The nilradical of a commutative ring A, denoted by Nil(A), is
the set of all nilpotent elements in the ring.

Lemma 2.9. Let A be a commutative ring. Then Nil(A) is an ideal of A.

Proof. To prove Nil(A) is an ideal, we first show it is closed under addition. If a,b € Nil(A),
then there exist integers n, m such that " = 0 and ™ = 0. We then claim (a + b)"*™ = 0.
To see this, we use the binomial expansion of (a + b)"™ = S 7" a"*™=Fpk. Note that if
k > m, then b* = 0, so the previous sum is equal to Y7 a"™™*b*. However, for k < m,
we have n + m —k =n+ (m —k) > n, so a®™™ % = 0 when k¥ < m. Hence, we have
(a+b)"*t™ =0.

Also, it remains to show that if a € Nil(A) and ¢ € A, then cx = zc € Nil(A). Suppose
a" = 0 for some integer n, then we have (ca)"” = ¢"a™ = ¢" -0 = 0. Hence, we have
cx € Nil(A).

Therefore, we have proved that Nil(A) is an ideal of A. O

Lemma 2.10. If f: S; — Sy is a homomorphism of R-algebras, then f(Nil(S;)) C Nil(Ss).

Proof. If x € f(Nil(S))), we want to show that x € Nil(Ss), which means 2™ = 0 for some
integer m.

Since x € f(Nil(S7)) and f is a homomorphism, there exists some y € Nil(S7) such that
f(y) = z. Hence, we have y € 5.

Since y € Nil(Sy), there exists a positive integer m such that y”™ = 0. Then we have

" =f"y) = fly") =0

Hence, we have showed that 2™ = 0 for some integer m. Therefore, we have proved the
lemma as required. l
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2.2. Formal Power Series. This section gives the fundamental definition of formal power
series and some properties required for the later sections.

Definition 2.11 (The ring of formal power series). The ring of formal power series in ¢ with
coefficients in R is denoted by R[t], and is defined as follows. The elements of R[t] are
infinite expressions of the form

D ant” =ag+art +axt® + -+ apt" 4 -

n=0

in which a,, € R for all n € N.

In addition, the ring of formal power series in finitely many variables ¢, to, t3,- - - , t,, with
coefficients in R is denoted by R[t1,t,t3, -+ ,tn], and is defined as follows. The elements
of R[ty,ta,t3, - , 1] are infinite expressions of the forms

[e.e]

n14N2 N3 n
E Unyng,ng, - mmt1 by L3 Ly

N1y, =0

in which all the coefficients in R.
The addition of two formal power series under R[t] is defined as

o0

i CLiti X i bjtj = Z (OJZ' + bj)ti+j.
=0 §=0

i,j=0
The multiplication of two formal power series under R[t] is defined as

[e.9]

Zaiti X N bjtj = i aibthj.
=0

i=0 i,j=0
Addition and multiplication of formal power series in several variables is defined similarly.

Proposition 2.12. Let f(t) € R[t] be a formal series without constant term. If the constant
term of the formal power series f (t) is invertible in R, then there exist a unique power series

g(t) € R[t] such that f(g(t)) =t = g(f(1)).
(For the proof of this proposition, we refer the reader to [1, Chapter IV - VII])

Definition 2.13 (Geometric series). As a special form of power series, the geometric series
is a series with a constant ratio between successive terms, and can be written as

a+at+at>+at>+---.

When we substitute r for ¢, where r is a real number with |r| < 1, the geometric series

converges and its sum is 1—; because
) 1 —prtl
L+r4r+r+. =lim(A+r+r2+r°+- 47" = lim (—)
N—00 Nn—00 1—r

Thus, we will sometimes use the notation ﬁ for the formal power series 1 +¢ + 2+ ---.
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3. ForMAL GROUP LAWS

In this present section, we will introduce the fundamental definitions and properties of
formal group laws. We will focus on one-dimensional FGLs in this section, and treat the
higher dimensional case in Section 6.

Definition 3.1 (One-Dimensional Formal Group Law). A one-dimensional commutative
formal group law is a pair (R, F), where R is a commutative ring, called the coefficient ring,
and F' = F(u,v) € R[u,v] is a power series satisfying the following axioms:

FGL1: F(u,0) = F(0,u) = u. (Existence of an identity)
FGL2: F(u,v) = F(v,u). (Commutativity)
FGL3: F(u,F(v,w)) = F(F(u,v),w). (Associativity)
Remark 3.2. Let F(u,v) = 3, ._ja;u'v’ € Ru,v] be a formal group law. Since u =
F(u,0) = agy + ajou + axu® + - - -, we have agy = 0, a;o = 0 for all 4 > 1. Similarly, we have

ag; = 0 for all j > 1. Therefore, any formal group law is of the form
F(u,v) =u+v+ Z aiju'v?.
ij>1

The expression F'(F(u,v),w) means that in F'(u,v) we replace u by F'(u,v) and replace
v by w, then expand to get an element in R[u,v,w]. By Remark 3.2, there is no constant
term in F'(u,v), so the substitution is well-defined.

Remark 3.3. We frequently use the notation u +r v := F(u,v), so the axioms for formal
group law can be expressed as follows:

FGL1: u+rp0=0+pu=u. (Existence of an identity)
FGL2: u+pv=1v+pu. (Commutativity)
FGL3: u+p (v+rpw) = (u+rpv)+pw. (Associativity)

Definition 3.4. Let F(u,v) € R[u,v] be a formal group law. The formal inverse of F is a
power series G(t) € R[t] such that u+rG(u) = 0. We will therefore put —pu := G(u). Given
an integer m > 1, we use the notation m-pu := u 45 u..... +r u and (—m)-pu = —p(m-pu),

-
m times

where —pu denotes the formal inverse of u.
Corollary 3.5. For any formal group law, there exists a unique inverse.

Proof: First, let us prove the existence of the inverse. Let F(u,v) € R[u,v] be a formal
group law. Let H(u,v) = u — F(u,v). As a power series in the indeterminate v, the power
series H has no constant term and (%ﬁ’”))vzo = 1. Then by Proposition 2.12 there exists
G(u,v) such that H(u, G(u,v)) = v. Therefore, F(u, G(u,v)) = u—v and F(u,G(u,u)) =0,
so there exists the inverse G(u,u).

Now, we can prove the uniqueness. Suppose G1(u), Ga(u) € R[u,v] are both inverses of
F and satisfy v +r G1(u) = u +r Go(u) = 0. Then,

Gl(u) = Gl(u) +r 0= G1<U) +ru—+p Gg(u) =0 +r GQ(U) = GQ(U)

So, the inverse is unique. O
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Example 3.6 (Additive formal group law). The additive formal group law is defined as
Fa(u,v) =u+wv,

we need check it satisfies all three axioms.

Firstly, we have Fy(u,0) = u+0 = u, and F4(0,u) = 0+u = u, so Fa(u,0) = F4(0,u) = u,
and the axiom FGL1 is satisfied.

Also, Fy(u,v) =u+v=v+u= Fx(v,u), so the axiom FGL2 is satisfied.

Finally, we have Fy(u, Fa(v,w)) = u+(v+w) = u+v+w = (u+v)+w = Fs(Fa(u,v),w),
so the axiom FGL3 is satisfied.

Hence, it is a formal group law.

Example 3.7 (Mulplicative formal group law). The mulplicative formal group law is defined
as

Fy(u,v) =u+v+ fuv, 5 € R, f#0,
and we need to check it satisfies all three axioms.
Firstly, we have Fiy(u,0) = u+ 0+ 0 = u, and Fp;(0,u) =0+ u+ 0 = u, so Fy(u,0) =
Fr(0,u) = u, and the axiom FGLI is satisfied.
Also, Fp(u,v) =u+ v+ puv = v+ u+ Pou = Fy(v,u), so the axiom FGL2 is satisfied.
Finally, we have
FM(uaFM<an)) - FM(“’? (U+w+ﬁvw>>
=u+v+w+ Pow+ fu(v + w + Pow)
=u+v+w~+ fow + Buv + Buw + Fruvw,
and
Fu(Fy(u,v),w) = Fy(u+ v+ fuv,w)
=u+v+ fuv+w+ B(u+ v+ Puv)w
=u+ v+ fuv + w + Buw + Pfow + Bruvw
=u+v+w+ fow + Buv + Buw + Fruvw,

so Far(u, Fa(v,w)) = Fp(Fa(u,v),w), the axiom FGL3 is satisfied. Hence, it is a formal
group law.

Example 3.8 (Lorentz formal group law). The Lorentz formal group law is defined as

U+ v
F = :

By Fp(u,v) = 1%;}, we actually mean the power series FL(u,v) = (u +v) Y5 o(—Buv)’.
Recall Definition 2.13 of geometric series, here we have ¢ = —fuwv, so the power series can be
written as (u +v) Y, (—fuv)’ = t5uy- Now, we want to check that it satisfies the three
conditions.

Firstly, we have Fy,(u,0) = 448 = u, and F1(0,u) = & = u. So F(u,0) = F(0,u) = u,
and axiom FGLI is satisfied.

Also, Fy(u,v) = 4% = 28 — [} (v, u), so axiom FGL2 is satisfied.

1+Buv 1+Bou
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Finally, we have

Fr(u, Fr(v,w)) = Fp (u’ %)

vt+w
u+ <1+va>

1 Bu (5% )

utv+w—+Luvw
1+Bow

- < 1+ﬁvw+6uv+ﬁuw>

1+Bow
u~+ v+ w+ fuvw
1+ Bvw + Buv + Puw’

and

Fy(Fy(u,v),w) =FL( uty w)

1+ fuv’
u+v
<1+6uv) tw
1+ 8 (55 w
( utv+w+Luvw )

1+Buv

- 14+ Buv+Luw+Low
14+Buv

_utvtw+ fuvw
1+ Buv + Puw + fow’

so Fr(u, Fr(v,w)) = Fr(Fr(u,v),w). Therefore, the axiom FGL3 is satisfied. Hence, it is a
formal group law.

Definition 3.9 (Lazard ring). We define the Lazard ring L to be the commutative ring with
generators a;j,¢,j € N, and the following relations:

1 ifie=1
31 i0 — i — '7
(3:1) dio = do {0 otherwise ,

(32) CLij = aji,
(3.3) the relations forced upon us by the associativity axiom FGL3.

Example 3.10 (Universal formal group law). The formal group law defined over the Lazard
ring LL is called the universal FGL, and has the form

Fy(u,v) =u+v+ Z au'v?.
ij>1
We want to check that all the axioms are satisfied.

Firstly, we have Fyy(u,0) =u+0+0 = u, and Fy(0,u) =04+ u+ 0 = u, so Fy(u,0) =
Fr(0,u) = u.
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Also,
F(u,v) =u+v+ Z a;ju'v!
4,521
=v+u+ Z a;iv'u!
ij>1
=v+u-+ Z aijviuj since a;; = aj;
4,521
= FU (U> U)
Finally, by Definition 3.9 of the Lazard ring, the formal group law satisfies the associativity

axiom, so Fy(u, Fy(v,w)) = Fy(Fy(u,v),w).
Hence, it is a formal group law.

Remark 3.11 (Elliptic formal group law). Another typical example of formal group laws is
the elliptic formal group law. For further details about it, we refer the reader to [2].

4. CATEGORY THEORY

In this section we recall some basic notions of category theory that will be used in the
current paper. Also, we will illustrate the concepts with examples.

Definition 4.1 (Category). A category C consists of :

e A collection of objects (which are typically denoted by A, B,C,...);
e For each pair of objects A and B, a collection of morphisms f : A — B from A to B;
— Ais the domain and B is the codomain of f: A — B
— the morphisms are typically denoted by f,g,h, ...
e For each object A, there exists an identity morphism Ids : A — A
e For any two morphisms f : A — B, g : B — (|, there exists a morphism gof : A — C,
which we will call the composite of f with g

In addition, we require the morhpisms to satisfy the following further axioms:

Cl: Forany f: A— B,g: B— C,h:C — D, we have (hog)o f = ho(go f).
(Associativity of composition)

C2: Forany f: A— B wehave foldy = f=1Idgof. (Identity morphisms behave as
identities.)

Definition 4.2 (Isomorphism, monomorphism, epimorphism, endomorphism, automorphism).
Let I, G be categories. Then a morphism f : FF — G is called an isomorphism if there exists
a morphism g : G — F such that

fog=1Idg and go f =Idp.
Let F,G be categories, then a morphism f : F' — G is called a monomorphism if
fog1=fog,implies g = go

for all morphisms ¢1,¢92 : X — G.
Dually to monomorphisms, a morphism f : F' — G is called an epimorphism if

gi1o f=goo f implies g, = go
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for all morphisms g1,¢92 : G — X.

A morphism f: F' — F (that is, a morphism with identical source and target) is an
endomorphism of F.

Furthermore, an automorphism is a morphism that is both an endomorphism and an
isomorphism.

Example 4.3 (Category of vector spaces). For a fixed field K, we have the category Vecty
of vector spaces over K. The objects of Vecty are vector spaces over K, and the morphisms
between vector spaces are linear maps.

Example 4.4 (Category of sets). We have the category Set of sets. The objects of Set are
sets, and the morphisms between sets are functions.

Example 4.5 (Category of monoids). We have the category Mon of monoids. The objects
of Mon are monoids, and the morphisms between monoids are monoid homomorphisms.

Example 4.6 (Category of groups). We have the category Grp of groups. The objects of
Grp are groups, and the morphisms between groups are group homomorphisms (preserving
group structure).

Example 4.7 (Category of rings). We have the category Rng of rings. The objects of Rng
are rings, and the morphisms between rings are ring homomorphisms.

Definition 4.8 (Functor). Given categories A and B, a functor F': A — B consists of the
following;:

e To each object X € Ob A, it associates an object F’X € Ob B.
e To each morphism f € A(X,Y), it associates a morphism Ff € B(FX, FY) such
that the following propertites hold:
— For each object X € Ob A, Fldx = Idpx
— For a morphism g € A(X,Y), and a morphism f € A(Y,Z), we have F(fog) =
FfoFg.

Example 4.9. The power set functor P: Set — Set maps each set to its power set and each
function f: X — Y to the map which sends U C X to its image F(U) C Y.

Example 4.10. The forgetful functor U: Grp — Set sends each group G € ObGrp to
its underlying set U(G) € ObSet and each group homomorphism f € Grp(Gy, Gs) to the
corresponding set function U f € Set(U(G1),U(G2)).

Example 4.11. There is a natural functor Grp — Mon sending a group G to itself as a
monoid and each group homomorphism to the corresponding monoid homomorphism.

Example 4.12. There is a free functor F': Set — Grp sending each set S to the free
group F(S) on S. It sends each set function to a group homomorphism in the following
way. Consider the canonical set maps iy: S — F(S1),i2: So — F(S3). Given a set map
f 81 — Sa, we have a set map iy o f from S; to F(Ss). Then by the universal property of
free groups, there exists a unique group homomorphism ¢ : F(S;) — F(S3), such that the
following diagram commutes:
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S,
F(S1) F(S,)

¢

We define F'f = ¢, then the diagram commutes by construction, so the functor sends each
set function f to the group homomorphism F'f. (For more details about free groups and
universal properties, we refer the reader to [4, Chapter II])

Definition 4.13 (Natural transformation). Let F,G be functors from a category C to a
category D. A natural transformation o : ' — G, consists of a collectoin of morphisms
ax : FX — GX, one for each X € Ob(C, such that for any X, X € C and any morphisms
feC(X,X'), the diagram

ax

FX GX
Ef kGf
FX —5 o GX

commutes, that is, ay o Fif = Gf o ax.

Example 4.14. Consider the functor List: Set — Set where List sends a set A € Set to
List(A), the set of all finite lists of members of A and List sends a set-function f: A — B,
where B € Set, to the morphism that sends a list ag, a1, as,...a, to fag, fay, fas, ... fa,.
Claim: there is a natural transformation « : Id — List, where Id is the identity functor
Id : Set — Set.
Indeed, we need functions ay which make the following diagram commute for any f :
A — B:

A f B
aAl ap
List(A) List(f) List(B)

For any A, define a4 to be the function which sends an element of A to the length-one
list containing just that element, and then we are done.

Note, by the way, that we can think of List as the composite functor GF where F' is the
free functor from Set to Mon and G is the forgetful functor in the other direction, from Mon
to Set.

Example 4.15. Let Vectk be the category of vector spaces over a field K, with linear maps.
Define a functor F': Vect — Vect that takes a vector space V to its double dual V** and a
linear map ¢: V' — W to this double adjoint,

F:V—>V™and F: ¢ — ¢™.
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Then, the collection of morphisms {ey : V' — V**|V € Vect} is a natural transformation.

¢
V w
(4.1) (Shve {EW
V** W**
(b**

To prove this, recall that the dual space V* of a vector space V' is the family of linear
functions on V. Hence, the double dual space V** is the family of linear functions on V*.
For example, if v € V| then the evaluation at v is a map v: V* — K defined by

o(f) = f(v)
for all f € V*. This map belongs to the double dual V**. Now, let us set
ev: V — V™ where ey (v) = 7.
Also, the operator adjoint ¢*(f): W* — V* of a linear map ¢: V' — W is defined by
¢"(f)=1rfo09.

Therefore, the second adjoint ¢**: V** — W** is given by
for a € V.

Now, we would like to show that, for any linear map ¢: V' — W, the diagram (4.1)

commutes.
We begin by looking at ey o ¢. If v € V| then

(ew 0 9)(v) = ew(¢v) = dv
Now applying ¢v to f € V gives
ou(f) = f(¢(v)) =0(f 0 d) = 0(¢*(f)) = (Wo &) (),
and so ¢v =T o ¢*.
Thus, we have
(ew 0 ¢)(v) = gv
and finally we arrive at
(4.2) Ewoop=q¢"oey.

Therefore, the collection of morphisms {ey : V' — V** | VV € Vect} is a natural transfor-
mation.

o' =" (1) = ¢ (ev(v)) = (¢ 0 ev)(v),

Definition 4.16 (Initial and terminal object). Let C be a category. An object I € ObC
is an initial object if for every object X € ObC, there is exactly one morphism I — X.
An object T € ObC is a terminal object if for every object X € ObC(, there is exactly one
morphism X — T

Example 4.17. In the category of sets, the empty set is an initial object, and the one-
element set is a terminal object.
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Example 4.18. In the category of semigroups, the empty semigroup is the unique initial
object and any singleton semigroup is a terminal object.

Example 4.19. In the category of non-empty sets, there are no initial objects. The sin-
gletons are not initial: while every non-empty set admits a function from a singleton, this
function is in general not unique.

Example 4.20. In the category of fields, there are no initial or terminal objects. However,
in the subcategory of fields of fixed characteristic, the prime field is an initial object. Recall
that a prime field is a finite field of characteristic p where p is prime. In addition, a prime
field of characteristic zero is isomorphic to the rational number Q.

As the above examples illustrate, initial and terminal objects do not always exist. How-
ever, the following result shows that, if they exist, they are unique up to isomorphism.

Lemma 4.21. Any two initial objects in a category are isomorphic. Similarly, any two
terminal objects in a category are isomorphic.

Proof. As for initial objects, suppose [; and I, are both initial objects in category C. By the
Definition 4.16 of initial object, there must be unique morphisms f: I; — Is and g: I, — I;.
Then g o f is a morphism from I to itself. In addition, another morphism form I; to itself
is the identity morphism Id;,. Since [; is an initial object, there can only be one morphism
from [; to itself, so go f = 1dy,.

Likewise, f o g is a morphism from I to itself and Id;, is another morphism from I,
to itself. Then since I is an initial object, we have f o g = Id;,. As a result, we have
go f=1d; and fog = 1d;,. Hence the unique morphism f has a two-sided inverse and is
an isomorphism.

Similarly, we can prove that all terminal objects are isomorphic using the same technique.

OJ
5. CATEGORY OF FORMAL GROUP LAWS
In this section, we will discuss how formal group laws naturally form a category.
5.1. Morphisms of Formal Group Laws.

Definition 5.1. Let F,G be formal group laws over a ring R; then a homomorphism f :
F — G over R is a power series with no constant term f(t) € R[t] such that

fIF(X,Y)) = G(f(X), F(Y)).

Definition 5.2. Let f(t), g(t) € R[t] be two power series without constant terms. Then the
composition of f and g is defined to be the formal power series (f o g)(t) = f(g(t)).

Remark 5.3. If f(t),g(t) € R[t] are two power series with constant terms, then (f o g)(¢)
is not well-defined in general. For instance, take f(t) = g(t) = {5 =1+t + 2 + ¢34 ---.
Then we have

(fog)(t) = flg(t)
=1+ g(t) + (9())* + (9()* + -+~
=1+ (1 +t++ 84+ )+ Q1+t 4+ 4+ + P+ A+t + 0+ P+ )P+
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Note that when we expand the terms, the constant term from each ¢(t) term will con-
tribute to the final constant term. Hence, the constant term of this composition is 1 + 1 +
1+---=3%>,1, which does not converge.

However, if f(t), g(t) € R[t] are two power serieses without constant terms, then (fog)(¢)
is well-defined. To see this, take f(t) = Y -, a,t™ and g(t) = > -, byt™ without constant
term, so we have - -

(fog)(t) = flg®))

= i n (Z bmtm> '

n>1 m>1

= icltl.

>1

Also, we know that for a fixed k, we have Zﬁzl ap (Z’;Zl bmtm>n = Zgl dit' for some

finite coefficients d;. We claim that ¢; = d; for any [ < k. Indeed, for coefficients ¢; where
[ < k, the terms in the infinite sum with m > k or n > k do not contribute since they involve
powers of t higher than k. Therefore, each coefficient ¢; will be a finite number and therefore
the composition is well-defined.

Definition 5.4 (Category of formal group laws). For a fixed ring R, we have the category

of formal group laws FGLg. The objects of FGLg are formal group laws over R, and the

morphisms between formal group laws are the homomorphisms defined in Definition 5.1.
For any morphisms over formal group laws f: B — C, g: C — D, h: D — E, we have

ho(go f)(t)=ho(g(f(t)))
= h(g(f(1)))

and

Hence, (hog)o f=ho(go f).
Also, define the identity morphism Id: F' — F as Idp = t. For any f: B — C we have
foldg = f=1Idgof.

Lemma 5.5. Let R be a field of characteristic zero and assume that [ is an invertible
element of R. Then the additive and multiplicative formal group laws are isomorphic via the
isomorphism g(e' — 1) = %(t + 3Pt 4.

Proof. Let Fi(x,y) = x+vy+ Bxy be the multiplicative formal group law and Fy(x,y) = x+y
be the additive formal group law. Let g(t) = /‘lg(et —-1) = %(t + 3Pt ).
Firstly, we can show that g: Fi(x,y) — Fy(x,y), where g(t) = %(et — 1), is a homomor-

phism. We have
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S S T G T I
B 5 B g B g B
el L e )
B B B B pr g2 B2 pR
el e 1 e e o 1
B B B P 5 g B B

ety 1

B B

=g(z +y)

Then, we need to prove it is an isomorphism. Define the inverse morphism of g to be
2 3 4
h(t) = (In(pt+1)) = pt— Bt) wt) — (Bi) +- -, and we need to show A is a homomorphism.
Hence, we have

Fy(h(z), h(y)) = Fa(In(fz + 1), In(fy + 1))
In(fz +1) + In(By + 1)

In((Bz +1)(By + 1))
In(
In(5

B*zxy + Bx + By + 1)
(Bry +x+y)+1)

n

n

h(Bry +x +y)
= h(Fi(z,y)).

In addition, we also need to show
g(h(t)) = g(In(Bt + 1))
= Lty _yy

(Bt+1-1)

and



A CATEGORY THEORETIC APPROACH TO FORMAL GROUP LAWS 15

Therefore, there is a isomorphism between the additive and multiplicative formal group
laws. 0

However, over general commutative rings R there is no such homomorphism as defining
it requires non-integral rational numbers, and the additive and multiplicative formal groups
are usually not isomorphic.

Lemma 5.6. Let R be a field of characteristic zero, and F a commutative one-dimensional
formal group law over R. Then there exists an isomorphism f: F — Fa (the additive formal
group law) defined over R.

(For a proof of Lemma 5.6, we refer the reader to [5, Chapter IV, Section 1])

5.2. Formal Group Laws as Functors.

Lemma 5.7. Let S be a commutative R-algebra and let F' be a formal group law over R.
Then F' induces a binary operation on Nil(S) and (Nil(S), +F) is an abelian group.

Proof. To show Nil(S) is a group with group operation +p, we first claim that Nil(.S) is
closed under this binary operation. If z,y € Nil(S), we have z +rpy = Z?j':o ai;x'y’.
Since = and y are nilpotent, ™ = 0 and y™ = 0 for some integer n; and ny. Hence,
THPY = D a;r'y’ = > o aijr'y’ +0 = > =0 a;;z'y’ for n = min{ny,ny}. In
addition, z* € Nil(S) and 3/ € Nil(S) imply z'y’ € Nil(S); a;; € R and z'y/ € S imply
a;x'y’ € Nil(S) since Nil(S) is an ideal. Hence, 377" a;;z'y’ € Nil(S) and x +ry € Nil(S).

Also, the group Nil(S) is associative. For z,y,z € Nil(S), we have F(x,F(y,z)) =
F(F(x,y), z) by the definition of formal group law.

In addition, the group Nil(A) has an identity 0 since F(z,0) = F(0,z) = 0.

Furthermore, by Corollary 3.5, we know that for each element x € Nil(S), there exists an
element y = —px € Nil(S) such that F(z,y) = 0.

Therefore, we have proved that F' gives a group structure on Nil(S) with the binary
operation +p. [l

Let S be a commutative R-algebra. Then any one-dimensional formal group law F' over
S gives a group structure on the set Nil(S). Hence, (denote the category of commutative
R-algebras by Cr), we want to show that the associative formal group law F gives a functor
Fr: Cgr — Grp from the category of commutative R-algebras to the category of groups.

More precisely, for each object S € Ob Cp, it associates Fr(S) = (Nil(S), +r) € Ob Grp
defined in the Lemma 5.7.

Also, for each homomorphism ¢: S; — S, where S1, Ss € Ob Cg, we know that ¢(Nil(S7)) C
Nil(Sg) by Lemma 2.10. Take =,y € Nil(S;) and let n € N such that 2" = 0 = y™. We want
to show that ¢(z +r y) = ¢(x) +r é(y). So we have

oz +ry)=0o (Z az’jxiyj>

i,j=0

=¢ (Z aijxiy])

i,j=0
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= Z ¢ (a,;jxiyj)

i,j=0

= Z a;j¢ (x’y])

1,7=0

= 3w (#) 6 ()

i.j=0

= 3 a0 () 6 ()

i.j=0

= > a;o(z) oy

— o) +r 6(y).

Hence, it is proved that ¢(z +ry) = ¢(x) +r ¢#(y). For a ring homomorphism ¢: Sy — Ss,
define Fr(¢) as ¢ restricted to Nil(S;). Hence, each homomorphism ¢: S; — Sy where
S1,S9 € Ob Ck is sent by the functor to a homomorphism Fg(¢): Frp(S;) — Fg(Ss).

In addition, it is straightforward to verify that Fp(Idy) = Idp,(x) for each object X €
Ob Cg. Also, it is true that for a homomorphism ¢: S; — Sy and a homomorphism 7: Sy, —
S3, we have Fr(pon) = Fr(¢) o Fr(n).

Therefore, we have showed that the formal group law F' defines a functor Fr: Cr — Grp
from the category of commutative R-algebras to the category of groups.

Furthermore, we will be talking about the natural transformation given by the morphisms
of formal group laws of functors.

Let F' and G be formal group laws over R, and consider the associated functors Fr and
F¢ from the category Cr to the category Grp. A natural transformation f : Fp — Fg,
consists of a collection of morphisms fs : Fr(S) — Fg(S), one for each S € Ob Cpg, such
that for any 51,5, € Cr and any morphisms ¢: S; — Ss, the diagram

Fr(s) — 25 F(sy)
(5.1) Fr(¢) ‘ Fa(¢)
Fp(Ss) s Fq(Ss)

commutes; that is, fg, o Fr(¢) = Fg(¢) o fg,.

Let f be a homomorphism between the formal group laws F' and G. Thus, f is a power
series with no constant term f(t) € R[t] satisfying f(F(X,Y)) = G(f(X), f(Y)). For
f: F — @G, define fg: Nil(S) — Nil(S) as fs(r) = f(r) for r € Nil(S), and we want to
show the map fs is well-defined. Take r € Nil(S) such that r™ = 0 for some integer n, then
we have fg(r) = > Cjair’ = Y art+0 =" ar" € Nil(S). Hence, the map fg is
well-defined.
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Next we want to show that fs is a group homomorphism from the group Fp(S) =
(Nil(S), +F) to the group Fg(S) = (Nil(S), +¢). To claim it is a homomorphism, we need
show that for any =,y € Nil(5), it is true that f(z +ry) = f(z) +¢ f(y). By our definition
of f, it is already correct that f(z +ry) = f(z) +a f(y).

Hence, we have showed that ag is a group homomorphism from Fg(S) to Fg(S).

Proposition 5.8. If f: FF — G is a homomorphism of formal group laws over R, then
(fs)seobcy s a natural transformation from Fp to Fe.

Proof. To prove the proposition is true, we need to show diagram (5.1) commutes. More
specifically, take r € Fr(S1) such that 7" = 0, we need to prove that Fg(¢) o fs,(r) =
fs, oFp(¢)(r). Write f as f = .-, a;t". Since f is a ring homomorphism, we have

Fa(¢) o fs,(r) = Fa(p) o f(r)

1=0

= f(o(r))
= ng © (25(7’)
= fs, oFp(g)(r).

Hence, the diagram (5.1) commutes and the result follows. 0

5.3. Change of Base Rings. Suppose F' € R[t] is a formal group law over R and ¢: R —
R’ is a ring homomorphism of commutative rings. Write F as F(u,v) = Y>°_j a;u'v? and
define F'(u,v) = > ia—o @ai)u'v?. Now we want to check that F' € R'[t] is a formal group
law over the ring R'.

Firstly, we have

Fl(u,00 =Y ¢ay)u'tV = ¢(1p)u+0=lyu=u

i,j=0
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and
F'(0,u) =0+u=u.

So the axiom FGL1 is satisfied.
Also, since the formal group law F' is commutative and

oo
F(u,v) = Z ajju'v’ = Z aijv'u!’ = F(v,u),
iv.j 0 'Lj 0

we have

=D dlaguv’ = ) lay)v'n’ = F (v,u)
i,j=0 i,j=0
because ¢ is a ring homomorphism. Hence, the axiom FGL2 is satisfied.
Finally, since F'(u, F'(v,w)) = F(F(u,v),w), we have

E a;;u' ) = a;u E av'w’ | = E a;;(F(u,v))'w = E aij E auv’ | w.

1,7=0 1,7=0 4,7=0 1,7=0 1,7=0 1,7=0

By the property of ring homomorphism, we can show that

F(u, F (v, w) Z aiju (Z <Z5(aij)viwj>

4,7=0 ,7=0

=Z%(ZWMMQW

i,j=0 i,j=0
= F(F'(u,v),w).
So, by applying the homomorphism, we get

> dla)u’ (Z ‘b(az‘j)viwj) =D dlayy) (Z ¢(az‘j)ui7}j> w.

1,5=0 1,j=0 1,5=0 1,j=0

Hence, we have F'(u, F' (v,w)) = F'(F'(u,v),w) and the axiom FGL3 is satisfied.

Now we define a functor F, associated with the ring homomorphism ¢: R — R'. Let
FGLg be the category of formal group laws over the ring R, and FGLy be the category of
formal group laws over the ring R". For each object F = ZZ?’:O a;ju'v! € Ob FGLE, we have
Fy(F) =3 "o d(aij)u'v’ € ObFGLy by applying ¢ to all the coefficients.

Also, for each homomorphism f: F' — G where F,G € ObFGLg, we have f(F(u,v)) =
G(f(u), f(v)) by Definition 5.1. Now, for each f € R[z], define Fy(f) € R'[z] to be the
formal group law obtained by applying ¢ to all the coefficients of f. For each homomorphism
f: F — G where F,G € ObFGLg, we want to show Fy(f) is a homomorphism of formal
group laws from Fy(F) to Fy(G) where Fy(F),F,(G) € ObFGLy. In other words, we
need to prove that Fy(f)(u +g,r) v) = F¢(f)( u) +r,c) Fo(f)(v). We define (u +pv) =
> sizo aigu'v’, define u +g v = Y775 bijuv? and define f(t) = Y72 ert*. Also, since f is a
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homomorphism of formal group laws and we have f(F(u,v)) = G(f(u), f(v)), which can be
written as

(5.2) Z Ch (Z aivjuivj) Z bij (Z Crl ) (Z ckvk> .
k=0 i,7=0 4,7=0 k=0 k=0
Then we have

Fy(f)(u+r, ) v (Z o(a;j)u v9>

i,7=0
00 00 k
:Z¢ (Zgbawuvj)
k=0 4,j=0

=2 ath) (Yot ) (S o)

(by the equation (5.2) and the fact that ¢ is a ring homomorphism)

= 5 66 (Fo () () (Bl ) (0))

1,j=0

=Fy(f)(u) +r,u ) Folf)(v).

Hence, we proved that Fy(f)(u +v,r) v) = Fo(f)(u) +r,c) Fs(f)(v). So each homo-
morphism f: F' — G where F,G € ObFGLp, is sent by the functor Fy to a homomorphism
Fy(f): F(F) — Fy(G). In addition, it is straightforward to verify that Fy(Idr) = Idg, )
for each object F' € Ob FGLg. It remains to show that for a homomorphism f: F' — G and a
homomorphism g: G — H, we have Fy(fog) = F4(f)oF4(g). Now, define f(u) = Y 0, a;u’
and g(u) = Y ;o bu’. Then take u € R, and we have

Fy(fog)(u) =F, (Z ai(g(U)Y)

1=0

1=0 =0

= Z o(a;) (Z o(bj)u? ) because ¢ is a ring homomorphism

=Fy(f) o Fy(g)(u).
Hence, we have showed that Fy is a functor from FGLg to FGL

6. HIGHER-DIMENSIONAL FORMAL GROUP LAWS

6.1. Concepts of Higher-Dimensional Formal Group Laws.
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Definition 6.1 (n-Dimensional Formal Group Law). An n-dimensional commutative formal

group law is a pair (R, F'), where R is a commutative ring, called the coefficient ring, and F' is

a collection of n power series Fj(uy, ug, - -+ , Up, V1, V2, -+ ,U,) € Rug,ug -+, Up, 01,02, + ,0,]
for 1 < i <n in 2n variables such that it satisfies the following axioms:

FGL1: F(u,0) = F(0,u) = u. (Existence of an identity)
FGL2: F(u,v) = F(v,u). (Commutativity)
FGL3: F(u, F(v,w)) = F(F(u,v),w). (Associativity)
where we write F' for (Fy,--- , F,), u for (ug, - ,u,), and so on.

Remark 6.2. We frequently use the notation u+pv := F(u,v) where F means (Fy, dotsc, F},)
and u means (uq, dotsc, u,). So the axioms for a formal group law can be expressed as follows:

FGL1: u+r0=04+pu=u. (Ezistence of an identity )
FGL2: u+pv=v+pu. (Commutativity)
FGL3: u+p (v+rw)= (u+pv)+rw. (Associativity )

Definition 6.3. Let F(u,v) € R[u,v] be a formal group law. A formal inverse of F' is a
collection of power series G;(t) € R[t] for 1 < i < n such that u +p G(u) = 0. We will
therefore put —pu := G(u).

Example 6.4 (Additive formal group law). The additive formal group law is defined as
FA(Ul,Ug,' ©t oy Up, V1, Vo, 0 7Un) = (ul + U1, U F U2, U, +Un)7

we need check it satisfies all three axioms.
Firstly, we have

Fa(uy,ug, -+ ,up,0,0,--+,0) = (ug +0,us + 0, -+ Ju, +0) = (ug,ug, -+, uy)
and
Fa(0,0,--+,0,up,ug, -+ ,up) = (04+ug,0+ug, -+ ,0+wu,) = (up,ug, -+ ,uy,),
So
Fa(uy,ug, -+ ,u,,0,0,--+,0) = F4(0,0,--+,0,u1,u, -+ ,uy) = (ug,ug, -+, Up).

and the axiom FGL1 is satisfied.
Also, Fa(uy, tg, -, Un, V1,02, - V) = (U1 + V1, Uz + Vo, Up + V) = (V1 + U1, v2 +
Uy 3 U+ Up) = Fa(vy,vg, -+, Up, up, Ug,y - -+, Uy ), SO the axiom FGL2 is satisfied.
Finally, we have
FA(u17u27 e 7un7FA<U17U27 sty Upy Wy, W, c 0y Wy, ))
= (u1 + (v1 +wy),us + (Vg +wa), -+, up + (v, + wy))
= (u1 +v1 + wy,ug + v + wa, -+ Uy + U, + W)
= ((uy +v1) + wy, (ug + ve) + wa, -+, (up + vy) + wy)
= Fa(Fa(uy, ug, -+, Up, U1, V2, , Uy, ), W1, Wa, -+ , W, ),
so the axiom FGL3 is satisfied.
Hence, it is a formal group law.
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Example 6.5 (Mulplicative formal group law). The mulplicative formal group law is defined
as
Fy(u,v) =u+v+ Puv, § € R, B #0,
More precisely, define Fy/(u,v) as
U+ v+ fuv = (ug + vy + Bugvy, Uz + Vo + Bugve, -+ Uy + Uy + BUyUy).
We need to check it satisfies all three axioms. The proof is the same as for the one-dimensional
case in Example 3.7. Hence, it is a formal group law.

Example 6.6 (Lorentz formal group law). The Lorentz formal group law is defined as

U+ v
Frlu,v) = ——
2w, ) 1+ Buv
Thus, we define u + v = (ug + vi,us + Vo, - -+ , U, + v,), define 1 + fuv = (1 + fugvy, 1 +
Bugva, - -+, 1 4+ Pu,v,) and define 11;;)”} = (1_’:152’1’1”1, lizﬂtgig, e ,—li%:;’gn). By —fﬁzz’lﬂl, we
actually mean the power series (u1 + v1) Y ;5(—Buiv1)". Recall Definition 2.13 of geo-
metric series, here we have r = —fujv;, so the power series can be written as (u; +

1) Y iso(—Buint)’ = 1757, Now, we want to check that it satisfies the three conditions.

The proof is the same as for the one-dimensional case in Example 3.8. Hence, it is a formal
group law.

Definition 6.7 (Homomorphism between higher-dimensional FGLs). A homomorphism
from a formal group law F' of dimension m to a formal group law G of dimension n is
a collection f of n power series in m variables, such that G(f(u), f(v)) = f(F(u,v)). More
precisely, the homomorphism f needs to satisfy

Gi(fl(uly,U/Qa”' 7um)’f2(u1’u%... 7um)7... ,fn(UhUQ,"' 7um)7
fl(vlav%'" 7Um>7f2(U1;U27"‘ ;Um)7"‘ 7fn(vl71)27... ,'Um))
= fi(Fl(Ul,UQ,"' Uy, V1, Vg, v v ,Un),FQ(Ul,UQ,"‘ y Uy, U1, Vg, * * + 71}”)’... ,
Fo(ug, ug, -+ U, 01,02, + ,0,))

where 1 > 7 > m.

Definition 6.8 (Category of higher-dimensional FGLs). For a fixed ring R, we have the
category of formal group laws FGLg. The objects of FGLg are higher-dimensional formal
group laws over R, and the morphisms between formal group laws are the homomorphisms
defined in Definition 6.7.

Suppose we have morphisms over formal group laws f: A - B, g: B — C, h: C — D
where A is of dimension n, B is of dimension m and C' is of dimension p. Then we have

ho(go f)(tita, -+ ,tn) = ho(g(f(ti,t2, -+ ,tn)))
=h(g(f(tr,t2,- - ,tn)))

and

(hog)f(ty,ta,--- ) = (@) (f (t1, b2, -+ 1))

h(g(f(tlv lg, - >tn>>)'

Hence, (hog)o f=ho(go f).
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Also, define the identity morphism Id: F' — F as Idp = t. For any f: B — C we have
fOIdB = f = Idcof.

6.2. Formal Group Laws as Functors for Higher-Dimensional FGLs. Let S be a
commutative R-algebra. We will show that any n-dimensional formal group law F' over S
gives a group structure on the set Nil(S)". Denote the category of commutative R-algebras by
Cgr. We want to show that the associative formal group law F gives a functor Fr: Cr — Grp
from the category of commutative R-algebras to the category of groups.

More precisely, for each object S € Ob Cf, it associates Fp(S) = (Nil(5)", +r) € Ob Grp,
which is analogous to the structure defined in the Lemma 5.7.

Also, for each homomorphism ¢: S; — Sy where S, Se € Ob Cg, we know that ¢(Nil(S;)™)
Nil(S)™ by Lemma 2.10. Take x,y € Nil(S;)™ where  means (z1,xa,- - ,2,) and y means
(y1,Y2,*** ,yn). Let m € N such that 2™ = (0,0,---,0) = v™. We want to show that

O(t 41 y) = 6(x) +r B(y). So we have

Pz +ry) =09 (Z aijifiyj>
i,j=0

=¢ (Z aijxiyj>
i,j=0

|
[
8
<
<
—
&S
<
T
~

= aio(z)ély)

i,j=0

— 6(2) +1 6ly).

Hence, it is proved that ¢(u + v) = ¢(u) +¢ ¢(v). For a ring homomorphism ¢: S; — S,
define Fr(¢) as ¢ restricted to Nil(S7)". Hence, each homomorphism ¢: S; — Sy where
S1, 52 € Ob Ck is sent by the functor to a homomorphism Fr(¢): Fr(S;) = Fg(Ss).

In addition, it is straightforward to verify that Fp(Idy) = Idp,(x) for each object X €
Ob Cg. Also, it is true that for a homomorphism ¢: S; — Sy and a homomorphism 7: Sy —
S3, we have Fr(¢pon) = Fr(¢) o Fr(n).

Therefore, we have showed that the formal group law F' defines a functor Fr: Cr — Grp
from the category of commutative R-algebras to the category of groups.

N
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Furthermore, we will be talking about the natural transformation given by the morphisms
of formal group laws of functors.

Let Fr,Fg be functors from the category Cg to the category Grp. A natural transfor-
mation f : F' — G, consists of a collection of morphisms fg : Fr(S) — Fg(S), one for each
S € Ob Cg, such that for any Sy,S, € Cr and any morphisms ¢: S; — S, the diagram

Fr(S) 2o Fo(Sy)
(6.1) Fr(¢) ‘ Fa(¢)
Fr(Ss) I F(S2)

commutes; that is, fg, o Fr(¢) = Fg(¢) o fg,.
Let f be a homomorphism between the formal group laws F' of dimension m and G of

dimension n. Thus, f = (fi,..., fa) is a collection of power series with no constant term
fi(tla t27 Tt 7tm> = Z;)l()’qu’...’inzo aE?;iQ,"',inTlf7 T? € R[[th t27 T 7tm]] SatiSfying f(F(X7 Y)) =

G(f(X), f(Y)) where 1 > i > m. For f: F — G, define fg: Nil(S)™ — Nil(S)" as
fs(r) = f(r) for r € Nil(S)™ where r stands for (ry,re,---,r,), and we want to show the
map fg is well-defined. Take r € Nil(S)" such that 7* = 0 for some integer k, then we have

[oe) o
_ Z 1) i1 2 in (2) i1 .2 in
fS(T) - iy ig,inT1oT25 " 5 Ty Qi ig, e yin 19 T2 Tyt

01,02, in=0 1,82, ,in=0

) k
Z GEZ)Q,M ,inrll'l 7 T?, - 77";”) = < Z agll,)iQ,m ,inrll'l 7 T?, . ,T;”,
i1,i2, yin=0 i1i2, in=0
k k
Z az(f?iz,-..,inrilﬂﬂ?’ T 7Tf1"a T Z agri)27,,.7in7"il,7“§2, e ,T%") € Nll(S)n
i1,i2, 5in=0 i1,i2, 5in=0

Hence, the map fg is well-defined.

Next we want to show that fg is a group homomorphism from the group Fg(S) =
(Nil(S)™, 4+F) to the group Fg(S) = (Nil(S)", +¢5). To claim it is a homomorphism, we
need show that for any w,v € Nil(S)™, it is true that f(z +ry) = f(z) +¢ f(y). By our
definition of f, it is already correct that f(z +ry) = f(z) +¢ f(y).

Hence, we have showed that fg is a group homomorphism from F(S) to F(S).

Proposition 6.9. If f: F' — G is a homomorphism of higher-dimensional formal group
laws over R, then (fs)scobcy i a natural transformation from Fp to Fg.

Proof. To prove the proposition is true, we need to show diagram (6.1) commutes. More
specifically, take r € Fg(S;) such that " = 0, we need to prove that Fg(¢) o fs,(r) =
fs, o Fp(¢)(r). Write f as f = > 2, a;t". Since ¢ is a ring homomorphism, we have
Fa(¢)o fs,(r) =Fa(¢)o f(r)
= o(f(r))
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Hence, the diagram (6.1) commutes and the result follows. U

6.3. Change of Base Rings with Higher-Dimensional FGLs. Suppose F' € R[tq,ts, - ,t,]
is a higher-dimensional formal group law over R and ¢: R — R’ is a ring homomorphism of
commutative rings. Take u,v € R, then write F' as

o0
_ (1) (51 i Ji J
Flu,v) = ( § s i in i W1 577 s Uy U s U e
1

1 7""inajlz"'7jnzo
oo
(m) i1 in Ji In
E : Qi oo simsin i W10 777 s U s V150 m e Uy

11, in,J1, 5 Jn=0

and define

o0
/ 1 . . - .
F (u,v) = ( E ¢(a§13~,in,i1,-~-,in)uz11> S VN - L 1
11

i 7... 71;'"/7]'17“. 7.77120

o0
(m) i1 in J1 Jn
E ¢(ai1,-~,in,i17~-~,in)ul U, U, Uy

i1, 500,01, Jn=0

Now we want to check that I € R'[ty,t, - ,t,] is a formal group law over the ring R'.
The proof for higher-dimensional FGLs is analogous to the one-dimensional case, as proved
in Section 5.3.

Finally we can get the conclusion that F, is a functor from FGLg to FGL .
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