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1. Introduction

A formal group law is a formal power series that behaves in many ways like the product of
a Lie group. In some sense, formal group laws are intermediate between Lie groups and Lie
algebras. The theory of formal group laws has found a great number of incredible applications
in algebraic geometry, number theory, and algebraic topology. We refer the reader to the
book [6] for further details on the original applications of formal groups.

More recently, formal group laws have been studied in their connection to algebraic ori-
ented cohomology theory. Through the formal group algebras introduced in [3], it is possible
to compute the cohomology rings of complete flag varieties for arbitrary oriented cohomol-
ogy theories. These ideas have connections to Hecke algebras (see [7]) and the geometry of
Steinberg varieties (see [8]).

The purpose of this paper is to serve as an introduction to the subject of formal group
laws accessible to undergraduate students. We introduce some of the main definitions and
results, assuming minimal background knowledge. We take a category theoretic point of
view, introducing the category of formal groups, in addition to discussing how one can view
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formal group laws themselves as functors (with homomorphisms of formal group laws being
natural transformations).

The structure of this document is as follows. In the Section 2 we recall some basic concepts
in ring theory, including the important concept of formal power series. In Section 3, we
introduce the concept of formal group laws, illustrating the definitions with a number of
important examples. Then, in Section 4, we recall the basics of category theory that will be
needed in this paper. In Section 5, we discuss the category of formal group laws. We then
explain how formal group laws can be viewed as functors and give a treatment of change of
base rings. In the majority of the paper, we restrict our attention to one-dimensional formal
group laws. However, in Section 6 we discuss how the concepts seen here can be generalized
to higher-dimensional formal group laws.

Acknowledgements. I would like to thank Professor Alistair Savage for his guidance and
support. This project was completed under the supervision of Professor Savage as part of
the Co-op Work-Study Program at the University of Ottawa.

2. Background

2.1. Rings and modules.

Definition 2.1 (Module over a ring R). Suppose that R is a ring and 1R is its multiplicative
identity. A left R-module M consists of an abelian group (M,+) and an operation · :
R×M →M such that for all r, s ∈ R and x, y ∈M , we have:

r · (x+ y) = r · x+ r · y
(r + s) · x = r · x+ s · x
(r · s) · x = r · (s · x)

1R · x = x

A right R-module M or MR is defined similarly, except that the ring acts on the right.

Definition 2.2 (Submodule over a ring R). Suppose M is a left R-module and N is a
subgroup of M . Then N is a submodule (or R-submodule, to be more explicit) if, for any
n ∈ N and any r ∈ R, the product r · n is in N (or n · r for a right module).

Definition 2.3 (R-algebra). Let R be a commutative ring. An associative R-algebra is a
ring A that is an R-module (left, say) such that

r(ab) = (ra)b = a(rb)

for all r ∈ R, a, b ∈ A. Furthermore, A is assumed to be unital, which is to say it contains
element 1 such that

1x = x = x1

for all x ∈ A.
In addition, A is called a commutative R-algebra if it satisfies

ab = ba

for all a, b ∈ A

We assume that all R-algebras are commutative throughout this paper.
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Definition 2.4 (Subalgebra). Let A be an R-algebra. A subalgebra of A is an R-submodule
of A that is closed under multiplication and contains the identity element 1 ∈ A.

Definition 2.5 (Ideal of an R-algebra). A subset I of an commutative R-algebra A is an
ideal if for every x, y ∈ I, z ∈ A and c ∈ R, we have the following three statements:

x+ y ∈ I (I is closed under addition),

cx ∈ I (I is closed under scalar multiplication),

z · x ∈ I (I is closed under multiplication by arbitrary elements).

Definition 2.6 (Homomorphism of R-algebras). A homomorphism between two R-algebras,
A and B, is a map F : A→ B such that for all r ∈ R and x, y ∈ A we have:

F (rx) = rF (x),

F (x+ y) = F (x) + F (y),

F (xy) = F (x)F (y).

Definition 2.7 (Nilpotent). An element x of a ring is called nilpotent if there exists some
positive integer n such that xn = 0.

Definition 2.8 (Nilradical). The nilradical of a commutative ring A, denoted by Nil(A), is
the set of all nilpotent elements in the ring.

Lemma 2.9. Let A be a commutative ring. Then Nil(A) is an ideal of A.

Proof. To prove Nil(A) is an ideal, we first show it is closed under addition. If a, b ∈ Nil(A),
then there exist integers n,m such that an = 0 and bm = 0. We then claim (a+ b)n+m = 0.
To see this, we use the binomial expansion of (a + b)n+m =

∑n+m
k=0 a

n+m−kbk. Note that if

k ≥ m, then bk = 0, so the previous sum is equal to
∑m−1

k=0 a
n+m−kbk. However, for k < m,

we have n + m − k = n + (m − k) ≥ n, so an+m−k = 0 when k < m. Hence, we have
(a+ b)n+m = 0.

Also, it remains to show that if a ∈ Nil(A) and c ∈ A, then cx = xc ∈ Nil(A). Suppose
an = 0 for some integer n, then we have (ca)n = cnan = cn · 0 = 0. Hence, we have
cx ∈ Nil(A).

Therefore, we have proved that Nil(A) is an ideal of A. �

Lemma 2.10. If f : S1 → S2 is a homomorphism of R-algebras, then f(Nil(S1)) ⊆ Nil(S2).

Proof. If x ∈ f(Nil(S1)), we want to show that x ∈ Nil(S2), which means xm = 0 for some
integer m.

Since x ∈ f(Nil(S1)) and f is a homomorphism, there exists some y ∈ Nil(S1) such that
f(y) = x. Hence, we have y ∈ S1.

Since y ∈ Nil(S1), there exists a positive integer m such that ym = 0. Then we have

xm = fm(y) = f(ym) = 0

Hence, we have showed that xm = 0 for some integer m. Therefore, we have proved the
lemma as required. �
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2.2. Formal Power Series. This section gives the fundamental definition of formal power
series and some properties required for the later sections.

Definition 2.11 (The ring of formal power series). The ring of formal power series in t with
coefficients in R is denoted by RJtK, and is defined as follows. The elements of RJtK are
infinite expressions of the form

∞∑
n=0

ant
n = a0 + a1t+ a2t

2 + · · ·+ ant
n + · · ·

in which an ∈ R for all n ∈ N.
In addition, the ring of formal power series in finitely many variables t1, t2, t3, · · · , tm with

coefficients in R is denoted by RJt1, t2, t3, · · · , tmK, and is defined as follows. The elements
of RJt1, t2, t3, · · · , tmK are infinite expressions of the forms

∞∑
n1,...,nm=0

an1,n2,n3,··· ,nmt
n1
1 t

n2
2 t

n3
3 · · · tnmm

in which all the coefficients in R.
The addition of two formal power series under RJtK is defined as

∞∑
i=0

ait
i ×

∞∑
j=0

bjt
j =

∞∑
i,j=0

(ai + bj)t
i+j.

The multiplication of two formal power series under RJtK is defined as

∞∑
i=0

ait
i ×

∞∑
j=0

bjt
j =

∞∑
i,j=0

aibjt
i+j.

Addition and multiplication of formal power series in several variables is defined similarly.

Proposition 2.12. Let f(t) ∈ RJtK be a formal series without constant term. If the constant
term of the formal power series f

′
(t) is invertible in R, then there exist a unique power series

g(t) ∈ RJtK such that f(g(t)) = t = g(f(t)).

(For the proof of this proposition, we refer the reader to [1, Chapter IV - VII])

Definition 2.13 (Geometric series). As a special form of power series, the geometric series
is a series with a constant ratio between successive terms, and can be written as

a+ at+ at2 + at3 + · · · .

When we substitute r for t, where r is a real number with |r| < 1, the geometric series
converges and its sum is 1

1−r because

1 + r + r2 + r3 + · · · = lim
n→∞

(1 + r + r2 + r3 + · · ·+ rn) = lim
n→∞

(
1− rn+1

1− r

)
.

Thus, we will sometimes use the notation 1
1−t for the formal power series 1 + t+ t2 + · · · .
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3. Formal Group Laws

In this present section, we will introduce the fundamental definitions and properties of
formal group laws. We will focus on one-dimensional FGLs in this section, and treat the
higher dimensional case in Section 6.

Definition 3.1 (One-Dimensional Formal Group Law). A one-dimensional commutative
formal group law is a pair (R,F ), where R is a commutative ring, called the coefficient ring,
and F = F (u, v) ∈ RJu, vK is a power series satisfying the following axioms:

FGL1: F (u, 0) = F (0, u) = u. (Existence of an identity)
FGL2: F (u, v) = F (v, u). (Commutativity)
FGL3: F (u, F (v, w)) = F (F (u, v), w). (Associativity)

Remark 3.2. Let F (u, v) =
∑

i,j=0 aiju
ivj ∈ RJu, vK be a formal group law. Since u =

F (u, 0) = a00 + a10u+ a20u
2 + · · · , we have a00 = 0, ai0 = 0 for all i > 1. Similarly, we have

a0j = 0 for all j > 1. Therefore, any formal group law is of the form

F (u, v) = u+ v +
∑
i,j>1

aiju
ivj.

The expression F (F (u, v), w) means that in F (u, v) we replace u by F (u, v) and replace
v by w, then expand to get an element in RJu, v, wK. By Remark 3.2, there is no constant
term in F (u, v), so the substitution is well-defined.

Remark 3.3. We frequently use the notation u +F v := F (u, v), so the axioms for formal
group law can be expressed as follows:

FGL1: u+F 0 = 0 +F u = u. (Existence of an identity)
FGL2: u+F v = v +F u. (Commutativity)
FGL3: u+F (v +F w) = (u+F v) +F w. (Associativity)

Definition 3.4. Let F (u, v) ∈ RJu, vK be a formal group law. The formal inverse of F is a
power series G(t) ∈ RJtK such that u+FG(u) = 0. We will therefore put −Fu := G(u). Given
an integer m > 1, we use the notation m·F u := u+F u.....+F u︸ ︷︷ ︸

m times

and (−m)·F u := −F (m·F u),

where −Fu denotes the formal inverse of u.

Corollary 3.5. For any formal group law, there exists a unique inverse.

Proof: First, let us prove the existence of the inverse. Let F (u, v) ∈ RJu, vK be a formal
group law. Let H(u, v) = u− F (u, v). As a power series in the indeterminate v, the power

series H has no constant term and (∂H(u,v)
∂v

)v=0 = 1. Then by Proposition 2.12 there exists
G(u, v) such that H(u,G(u, v)) = v. Therefore, F (u,G(u, v)) = u−v and F (u,G(u, u)) = 0,
so there exists the inverse G(u, u).

Now, we can prove the uniqueness. Suppose G1(u), G2(u) ∈ RJu, vK are both inverses of
F and satisfy u+F G1(u) = u+F G2(u) = 0. Then,

G1(u) = G1(u) +F 0 = G1(u) +F u+F G2(u) = 0 +F G2(u) = G2(u).

So, the inverse is unique. �
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Example 3.6 (Additive formal group law). The additive formal group law is defined as

FA(u, v) = u+ v,

we need check it satisfies all three axioms.
Firstly, we have FA(u, 0) = u+0 = u, and FA(0, u) = 0+u = u, so FA(u, 0) = FA(0, u) = u,

and the axiom FGL1 is satisfied.
Also, FA(u, v) = u+ v = v + u = FA(v, u), so the axiom FGL2 is satisfied.
Finally, we have FA(u, FA(v, w)) = u+(v+w) = u+v+w = (u+v)+w = FA(FA(u, v), w),

so the axiom FGL3 is satisfied.
Hence, it is a formal group law.

Example 3.7 (Mulplicative formal group law). The mulplicative formal group law is defined
as

FM(u, v) = u+ v + βuv, β ∈ R, β 6= 0,

and we need to check it satisfies all three axioms.
Firstly, we have FM(u, 0) = u + 0 + 0 = u, and FM(0, u) = 0 + u + 0 = u, so FM(u, 0) =

FM(0, u) = u, and the axiom FGL1 is satisfied.
Also, FM(u, v) = u+ v + βuv = v + u+ βvu = FM(v, u), so the axiom FGL2 is satisfied.
Finally, we have

FM(u, FM(v, w)) = FM(u, (v + w + βvw))

= u+ v + w + βvw + βu(v + w + βvw)

= u+ v + w + βvw + βuv + βuw + β2uvw,

and

FM(FM(u, v), w) = FM(u+ v + βuv, w)

= u+ v + βuv + w + β(u+ v + βuv)w

= u+ v + βuv + w + βuw + βvw + β2uvw

= u+ v + w + βvw + βuv + βuw + β2uvw,

so FM(u, FM(v, w)) = FM(FM(u, v), w), the axiom FGL3 is satisfied. Hence, it is a formal
group law.

Example 3.8 (Lorentz formal group law). The Lorentz formal group law is defined as

FL(u, v) =
u+ v

1 + βuv
.

By FL(u, v) = u+v
1+βuv

, we actually mean the power series FL(u, v) = (u + v)
∑

i≥0(−βuv)i.

Recall Definition 2.13 of geometric series, here we have t = −βuv, so the power series can be
written as (u + v)

∑
i≥0(−βuv)i = u+v

1+βuv
. Now, we want to check that it satisfies the three

conditions.
Firstly, we have FL(u, 0) = u+0

1+0
= u, and FL(0, u) = 0+u

1+0
= u. So FL(u, 0) = FL(0, u) = u,

and axiom FGL1 is satisfied.
Also, FL(u, v) = u+v

1+βuv
= v+u

1+βvu
= FL(v, u), so axiom FGL2 is satisfied.
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Finally, we have

FL(u, FL(v, w)) = FL

(
u,

v + w

1 + βvw

)

=
u+

(
v+w

1+βvw

)
1 + βu

(
v+w

1+βvw

)
=

(
u+v+w+βuvw

1+βvw

)
(

1+βvw+βuv+βuw
1+βvw

)
=

u+ v + w + βuvw

1 + βvw + βuv + βuw
,

and

FL(FL(u, v), w) = FL

(
u+ v

1 + βuv
, w

)

=

(
u+v

1+βuv

)
+ w

1 + β
(

u+v
1+βuv

)
w

=

(
u+v+w+βuvw

1+βuv

)
(

1+βuv+βuw+βvw
1+βuv

)
=

u+ v + w + βuvw

1 + βuv + βuw + βvw
,

so FL(u, FL(v, w)) = FL(FL(u, v), w). Therefore, the axiom FGL3 is satisfied. Hence, it is a
formal group law.

Definition 3.9 (Lazard ring). We define the Lazard ring L to be the commutative ring with
generators aij, i, j ∈ N, and the following relations:

ai0 = a0i =

{
1 if i = 1,

0 otherwise ,
(3.1)

aij = aji,(3.2)

the relations forced upon us by the associativity axiom FGL3.(3.3)

Example 3.10 (Universal formal group law). The formal group law defined over the Lazard
ring L is called the universal FGL, and has the form

FU(u, v) = u+ v +
∑
i,j>1

aiju
ivj.

We want to check that all the axioms are satisfied.
Firstly, we have FU(u, 0) = u + 0 + 0 = u, and FU(0, u) = 0 + u + 0 = u, so FU(u, 0) =

FL(0, u) = u.



8 YANANAN WANG

Also,

F (u, v) = u+ v +
∑
i,j≥1

aiju
ivj

= v + u+
∑
i,j≥1

ajiv
iuj

= v + u+
∑
i,j≥1

aijv
iuj since aij = aji

= FU(v, u)

Finally, by Definition 3.9 of the Lazard ring, the formal group law satisfies the associativity
axiom, so FU(u, FU(v, w)) = FU(FU(u, v), w).

Hence, it is a formal group law.

Remark 3.11 (Elliptic formal group law). Another typical example of formal group laws is
the elliptic formal group law. For further details about it, we refer the reader to [2].

4. Category Theory

In this section we recall some basic notions of category theory that will be used in the
current paper. Also, we will illustrate the concepts with examples.

Definition 4.1 (Category). A category C consists of :

• A collection of objects (which are typically denoted by A,B,C, . . . );
• For each pair of objects A and B, a collection of morphisms f : A→ B from A to B;

– A is the domain and B is the codomain of f : A→ B
– the morphisms are typically denoted by f, g, h, . . .

• For each object A, there exists an identity morphism IdA : A→ A
• For any two morphisms f : A→ B, g : B → C, there exists a morphism g◦f : A→ C,

which we will call the composite of f with g

In addition, we require the morhpisms to satisfy the following further axioms:

C1: For any f : A → B, g : B → C, h : C → D, we have (h ◦ g) ◦ f = h ◦ (g ◦ f).
(Associativity of composition)

C2: For any f : A→ B we have f ◦ IdA = f = IdB ◦f . (Identity morphisms behave as
identities.)

Definition 4.2 (Isomorphism, monomorphism, epimorphism, endomorphism, automorphism).
Let F,G be categories. Then a morphism f : F → G is called an isomorphism if there exists
a morphism g : G→ F such that

f ◦ g = IdG and g ◦ f = IdF .

Let F,G be categories, then a morphism f : F → G is called a monomorphism if

f ◦ g1 = f ◦ g2 implies g1 = g2

for all morphisms g1, g2 : X → G.
Dually to monomorphisms, a morphism f : F → G is called an epimorphism if

g1 ◦ f = g2 ◦ f implies g1 = g2
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for all morphisms g1, g2 : G→ X.
A morphism f : F → F (that is, a morphism with identical source and target) is an

endomorphism of F .
Furthermore, an automorphism is a morphism that is both an endomorphism and an

isomorphism.

Example 4.3 (Category of vector spaces). For a fixed field K, we have the category VectK
of vector spaces over K. The objects of VectK are vector spaces over K, and the morphisms
between vector spaces are linear maps.

Example 4.4 (Category of sets). We have the category Set of sets. The objects of Set are
sets, and the morphisms between sets are functions.

Example 4.5 (Category of monoids). We have the category Mon of monoids. The objects
of Mon are monoids, and the morphisms between monoids are monoid homomorphisms.

Example 4.6 (Category of groups). We have the category Grp of groups. The objects of
Grp are groups, and the morphisms between groups are group homomorphisms (preserving
group structure).

Example 4.7 (Category of rings). We have the category Rng of rings. The objects of Rng
are rings, and the morphisms between rings are ring homomorphisms.

Definition 4.8 (Functor). Given categories A and B, a functor F : A → B consists of the
following:

• To each object X ∈ ObA, it associates an object FX ∈ ObB.
• To each morphism f ∈ A(X, Y ), it associates a morphism Ff ∈ B(FX,FY ) such

that the following propertites hold:
– For each object X ∈ ObA, F IdX = IdFX
– For a morphism g ∈ A(X, Y ), and a morphism f ∈ A(Y, Z), we have F (f ◦ g) =
Ff ◦ Fg.

Example 4.9. The power set functor P : Set→ Set maps each set to its power set and each
function f : X → Y to the map which sends U ⊆ X to its image F (U) ⊆ Y .

Example 4.10. The forgetful functor U : Grp → Set sends each group G ∈ Ob Grp to
its underlying set U(G) ∈ Ob Set and each group homomorphism f ∈ Grp(G1, G2) to the
corresponding set function Uf ∈ Set(U(G1), U(G2)).

Example 4.11. There is a natural functor Grp → Mon sending a group G to itself as a
monoid and each group homomorphism to the corresponding monoid homomorphism.

Example 4.12. There is a free functor F : Set → Grp sending each set S to the free
group F (S) on S. It sends each set function to a group homomorphism in the following
way. Consider the canonical set maps i1 : S1 → F (S1), i2 : S2 → F (S2). Given a set map
f : S1 → S2, we have a set map i2 ◦ f from S1 to F (S2). Then by the universal property of
free groups, there exists a unique group homomorphism φ : F (S1) → F (S2), such that the
following diagram commutes:
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S1

F (S1) F (S2)

i1

φ

i2 ◦ f

We define Ff = φ, then the diagram commutes by construction, so the functor sends each
set function f to the group homomorphism Ff . (For more details about free groups and
universal properties, we refer the reader to [4, Chapter II])

Definition 4.13 (Natural transformation). Let F,G be functors from a category C to a
category D. A natural transformation α : F → G, consists of a collectoin of morphisms
αX : FX → GX, one for each X ∈ Ob C, such that for any X,X

′ ∈ C and any morphisms
f ∈ C(X,X ′

), the diagram

FX GX

FX
′

GX
′

Ff

αX

αX′

Gf

commutes, that is, αX′ ◦ Ff = Gf ◦ αX .

Example 4.14. Consider the functor List : Set → Set where List sends a set A ∈ Set to
List(A), the set of all finite lists of members of A and List sends a set-function f : A→ B,
where B ∈ Set, to the morphism that sends a list a0, a1, a2, . . . an to fa0, fa1, fa2, . . . fan.

Claim: there is a natural transformation α : Id → List, where Id is the identity functor
Id : Set→ Set.

Indeed, we need functions αA which make the following diagram commute for any f :
A→ B:

A B

List(A) List(B)

αA

f

List(f)

αB

For any A, define αA to be the function which sends an element of A to the length-one
list containing just that element, and then we are done.

Note, by the way, that we can think of List as the composite functor GF where F is the
free functor from Set to Mon and G is the forgetful functor in the other direction, from Mon
to Set.

Example 4.15. Let VectK be the category of vector spaces over a field K, with linear maps.
Define a functor F : Vect → Vect that takes a vector space V to its double dual V ∗∗ and a
linear map φ : V → W to this double adjoint,

F : V → V ∗∗ and F : φ→ φ∗∗.
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Then, the collection of morphisms {εV : V → V ∗∗|V ∈ Vect} is a natural transformation.

(4.1)

V W

V ∗∗ W ∗∗

φ

εV εW

φ∗∗

To prove this, recall that the dual space V ∗ of a vector space V is the family of linear
functions on V . Hence, the double dual space V ∗∗ is the family of linear functions on V ∗.

For example, if v ∈ V , then the evaluation at v is a map v : V ∗ → K defined by

v(f) = f(v)

for all f ∈ V ∗. This map belongs to the double dual V ∗∗. Now, let us set

εV : V → V ∗∗, where εV (v) = v.

Also, the operator adjoint φ∗(f) : W ∗ → V ∗ of a linear map φ : V → W is defined by

φ∗(f) = f ◦ φ.
Therefore, the second adjoint φ∗∗ : V ∗∗ → W ∗∗ is given by

φ∗∗(α) = α ◦ φ∗

for α ∈ V ∗∗.
Now, we would like to show that, for any linear map φ : V → W , the diagram (4.1)

commutes.
We begin by looking at εW ◦ φ. If v ∈ V , then

(εW ◦ φ)(v) = εW (φv) = φv

Now applying φv to f ∈ V gives

φv(f) = f(φ(v)) = v(f ◦ φ) = v(φ∗(f)) = (v ◦ φ∗)(f),

and so φv = v ◦ φ∗.
Thus, we have

(εW ◦ φ)(v) = φv = v ◦ φ∗ = φ∗∗(v) = φ∗∗(εV (v)) = (φ∗∗ ◦ εV )(v),

and finally we arrive at

(4.2) εW ◦ φ = φ∗∗ ◦ εV .
Therefore, the collection of morphisms {εV : V → V ∗∗ | V ∈ Vect} is a natural transfor-

mation.

Definition 4.16 (Initial and terminal object). Let C be a category. An object I ∈ Ob C
is an initial object if for every object X ∈ Ob C, there is exactly one morphism I → X.
An object T ∈ Ob C is a terminal object if for every object X ∈ Ob C, there is exactly one
morphism X → T .

Example 4.17. In the category of sets, the empty set is an initial object, and the one-
element set is a terminal object.
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Example 4.18. In the category of semigroups, the empty semigroup is the unique initial
object and any singleton semigroup is a terminal object.

Example 4.19. In the category of non-empty sets, there are no initial objects. The sin-
gletons are not initial: while every non-empty set admits a function from a singleton, this
function is in general not unique.

Example 4.20. In the category of fields, there are no initial or terminal objects. However,
in the subcategory of fields of fixed characteristic, the prime field is an initial object. Recall
that a prime field is a finite field of characteristic p where p is prime. In addition, a prime
field of characteristic zero is isomorphic to the rational number Q.

As the above examples illustrate, initial and terminal objects do not always exist. How-
ever, the following result shows that, if they exist, they are unique up to isomorphism.

Lemma 4.21. Any two initial objects in a category are isomorphic. Similarly, any two
terminal objects in a category are isomorphic.

Proof. As for initial objects, suppose I1 and I2 are both initial objects in category C. By the
Definition 4.16 of initial object, there must be unique morphisms f : I1 → I2 and g : I2 → I1.
Then g ◦ f is a morphism from I1 to itself. In addition, another morphism form I1 to itself
is the identity morphism IdI1 . Since I1 is an initial object, there can only be one morphism
from I1 to itself, so g ◦ f = IdI1 .

Likewise, f ◦ g is a morphism from I2 to itself and IdI2 is another morphism from I2
to itself. Then since I2 is an initial object, we have f ◦ g = IdI2 . As a result, we have
g ◦ f = IdI1 and f ◦ g = IdI2 . Hence the unique morphism f has a two-sided inverse and is
an isomorphism.

Similarly, we can prove that all terminal objects are isomorphic using the same technique.
�

5. Category of Formal Group Laws

In this section, we will discuss how formal group laws naturally form a category.

5.1. Morphisms of Formal Group Laws.

Definition 5.1. Let F,G be formal group laws over a ring R; then a homomorphism f :
F → G over R is a power series with no constant term f(t) ∈ RJtK such that

f(F (X, Y )) = G(f(X), f(Y )).

Definition 5.2. Let f(t), g(t) ∈ RJtK be two power series without constant terms. Then the
composition of f and g is defined to be the formal power series (f ◦ g)(t) = f(g(t)).

Remark 5.3. If f(t), g(t) ∈ RJtK are two power series with constant terms, then (f ◦ g)(t)
is not well-defined in general. For instance, take f(t) = g(t) = 1

1−t = 1 + t + t2 + t3 + · · · .
Then we have

(f ◦ g)(t) = f(g(t))

= 1 + g(t) + (g(t))2 + (g(t))3 + · · ·
= 1 + (1 + t+ t2 + t3 + · · · ) + (1 + t+ t2 + t3 + · · · )2 + (1 + t+ t2 + t3 + · · · )3 + · · ·
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Note that when we expand the terms, the constant term from each g(t) term will con-
tribute to the final constant term. Hence, the constant term of this composition is 1 + 1 +
1 + · · · =

∑∞
n=0 1, which does not converge.

However, if f(t), g(t) ∈ RJtK are two power serieses without constant terms, then (f ◦g)(t)
is well-defined. To see this, take f(t) =

∑
n≥1 ant

n and g(t) =
∑

n≥1 bnt
n without constant

term, so we have

(f ◦ g)(t) = f(g(t))

=
∞∑
n≥1

an

(∑
m≥1

bmt
m

)n

=
∞∑
l≥1

clt
l.

Also, we know that for a fixed k, we have
∑k

n≥1 an

(∑k
m≥1 bmt

m
)n

=
∑k2

l≥1 dlt
l for some

finite coefficients dl. We claim that cl = dl for any l ≤ k. Indeed, for coefficients cl where
l ≤ k, the terms in the infinite sum with m > k or n > k do not contribute since they involve
powers of t higher than k. Therefore, each coefficient cl will be a finite number and therefore
the composition is well-defined.

Definition 5.4 (Category of formal group laws). For a fixed ring R, we have the category
of formal group laws FGLR. The objects of FGLR are formal group laws over R, and the
morphisms between formal group laws are the homomorphisms defined in Definition 5.1.

For any morphisms over formal group laws f : B → C, g : C → D, h : D → E, we have

h ◦ (g ◦ f)(t) = h ◦ (g(f(t)))

= h(g(f(t)))

and

(h ◦ g)f(t) = (h(g))(f(t))

= h(g(f(t))).

Hence, (h ◦ g) ◦ f = h ◦ (g ◦ f).
Also, define the identity morphism Id: F → F as IdF = t. For any f : B → C we have

f ◦ IdB = f = IdC ◦f .

Lemma 5.5. Let R be a field of characteristic zero and assume that β is an invertible
element of R. Then the additive and multiplicative formal group laws are isomorphic via the
isomorphism 1

β
(et − 1) = 1

β
(t+ 1

2
t2 + 1

6
t3 + · · · ).

Proof. Let F1(x, y) = x+y+βxy be the multiplicative formal group law and F2(x, y) = x+y
be the additive formal group law. Let g(t) = 1

β
(et − 1) = 1

β
(t+ 1

2
t2 + 1

6
t3 + · · · ).

Firstly, we can show that g : F1(x, y) → F2(x, y), where g(t) = 1
β
(et − 1), is a homomor-

phism. We have

F1(g(x), g(y)) = F1

(
ex

β
− 1

β
,
ey

β
− 1

β

)
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=
ex

β
− 1

β
+
ey

β
− 1

β
+ β

(
ex

β
− 1

β

)(
ey

β
− 1

β

)
=
ex

β
− 1

β
+
ey

β
− 1

β
+ β

(
ex+y

β2
− ex

β2
− ey

β2
+

1

β2

)
=
ex

β
− 1

β
+
ey

β
− 1

β
+
ex+y

β
− ex

β
− ey

β
+

1

β

=
ex+y

β
− 1

β

= g(x+ y)

= g(F2(x, y)).

Then, we need to prove it is an isomorphism. Define the inverse morphism of g to be

h(t) = (ln(βt+1)) = βt− (βt)2

2
+ (βt)3

3
− (βt)4

4
+· · · , and we need to show h is a homomorphism.

Hence, we have

F2(h(x), h(y)) = F2(ln(βx+ 1), ln(βy + 1))

= ln(βx+ 1) + ln(βy + 1)

= ln((βx+ 1)(βy + 1))

= ln(β2xy + βx+ βy + 1)

= ln(β(βxy + x+ y) + 1)

= h(βxy + x+ y)

= h(F1(x, y)).

In addition, we also need to show

g(h(t)) = g(ln(βt+ 1))

=
1

β
(e(ln(βt+1)) − 1)

=
1

β
(βt+ 1− 1)

=
1

β
(βt)

= t.

and

h(g(t)) = h(
1

β
(et − 1))

= ln(β
1

β
(et − 1) + 1)

= ln((et − 1) + 1)

= ln(et)

= t.
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Therefore, there is a isomorphism between the additive and multiplicative formal group
laws. �

However, over general commutative rings R there is no such homomorphism as defining
it requires non-integral rational numbers, and the additive and multiplicative formal groups
are usually not isomorphic.

Lemma 5.6. Let R be a field of characteristic zero, and F a commutative one-dimensional
formal group law over R. Then there exists an isomorphism f : F → FA (the additive formal
group law) defined over R.

(For a proof of Lemma 5.6, we refer the reader to [5, Chapter IV, Section 1])

5.2. Formal Group Laws as Functors.

Lemma 5.7. Let S be a commutative R-algebra and let F be a formal group law over R.
Then F induces a binary operation on Nil(S) and (Nil(S),+F ) is an abelian group.

Proof. To show Nil(S) is a group with group operation +F , we first claim that Nil(S) is
closed under this binary operation. If x, y ∈ Nil(S), we have x +F y =

∑∞
i,j=0 aijx

iyj.
Since x and y are nilpotent, xn1 = 0 and yn2 = 0 for some integer n1 and n2. Hence,
x +F y =

∑∞
i,j=0 aijx

iyj =
∑n

i,j=0 aijx
iyj + 0 =

∑n
i,j=0 aijx

iyj for n = min{n1, n2}. In

addition, xi ∈ Nil(S) and yj ∈ Nil(S) imply xiyj ∈ Nil(S); aij ∈ R and xiyj ∈ S imply
aijx

iyj ∈ Nil(S) since Nil(S) is an ideal. Hence,
∑n

i,j=0 aijx
iyj ∈ Nil(S) and x+F y ∈ Nil(S).

Also, the group Nil(S) is associative. For x, y, z ∈ Nil(S), we have F (x, F (y, z)) =
F (F (x, y), z) by the definition of formal group law.

In addition, the group Nil(A) has an identity 0 since F (x, 0) = F (0, x) = 0.
Furthermore, by Corollary 3.5, we know that for each element x ∈ Nil(S), there exists an

element y = −Fx ∈ Nil(S) such that F (x, y) = 0.
Therefore, we have proved that F gives a group structure on Nil(S) with the binary

operation +F . �

Let S be a commutative R-algebra. Then any one-dimensional formal group law F over
S gives a group structure on the set Nil(S). Hence, (denote the category of commutative
R-algebras by CR), we want to show that the associative formal group law F gives a functor
FF : CR → Grp from the category of commutative R-algebras to the category of groups.

More precisely, for each object S ∈ ObCR, it associates FF (S) = (Nil(S),+F ) ∈ Ob Grp
defined in the Lemma 5.7.

Also, for each homomorphism φ : S1 → S2 where S1, S2 ∈ ObCR, we know that φ(Nil(S1)) ⊆
Nil(S2) by Lemma 2.10. Take x, y ∈ Nil(S1) and let n ∈ N such that xn = 0 = yn. We want
to show that φ(x+F y) = φ(x) +F φ(y). So we have

φ(x+F y) = φ

(
∞∑

i,j=0

aijx
iyj

)

= φ

(
n∑

i,j=0

aijx
iyj

)
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=
n∑

i,j=0

φ
(
aijx

iyj
)

=
n∑

i,j=0

aijφ
(
xiyj

)
=

n∑
i,j=0

aijφ
(
xi
)
φ
(
yj
)

=
∞∑

i,j=0

aijφ
(
xi
)
φ
(
yj
)

=
∞∑

i,j=0

aijφ(x)iφ(y)j

= φ(x) +F φ(y).

Hence, it is proved that φ(x +F y) = φ(x) +F φ(y). For a ring homomorphism φ : S1 → S2,
define FF (φ) as φ restricted to Nil(S1). Hence, each homomorphism φ : S1 → S2 where
S1, S2 ∈ ObCR is sent by the functor to a homomorphism FF (φ) : FF (S1)→ FF (S2).

In addition, it is straightforward to verify that FF (IdX) = IdFF (X) for each object X ∈
ObCR. Also, it is true that for a homomorphism φ : S1 → S2 and a homomorphism η : S2 →
S3, we have FF (φ ◦ η) = FF (φ) ◦ FF (η).

Therefore, we have showed that the formal group law F defines a functor FF : CR → Grp
from the category of commutative R-algebras to the category of groups.

Furthermore, we will be talking about the natural transformation given by the morphisms
of formal group laws of functors.

Let F and G be formal group laws over R, and consider the associated functors FF and
FG from the category CR to the category Grp. A natural transformation f : FF → FG,
consists of a collection of morphisms fS : FF (S) → FG(S), one for each S ∈ ObCR, such
that for any S1, S2 ∈ CR and any morphisms φ : S1 → S2, the diagram

(5.1)

FF (S1) FG(S1)

FF (S2) FG(S2)

FF (φ)

fS1

fS2

FG(φ)

commutes; that is, fS2 ◦ FF (φ) = FG(φ) ◦ fS1 .
Let f be a homomorphism between the formal group laws F and G. Thus, f is a power

series with no constant term f(t) ∈ RJtK satisfying f(F (X, Y )) = G(f(X), f(Y )). For
f : F → G, define fS : Nil(S) → Nil(S) as fS(r) = f(r) for r ∈ Nil(S), and we want to
show the map fS is well-defined. Take r ∈ Nil(S) such that rn = 0 for some integer n, then
we have fS(r) =

∑∞
i=0 air

i =
∑n

i=0 air
i + 0 =

∑n
i=0 air

i ∈ Nil(S). Hence, the map fS is
well-defined.
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Next we want to show that fS is a group homomorphism from the group FF (S) =
(Nil(S),+F ) to the group FG(S) = (Nil(S),+G). To claim it is a homomorphism, we need
show that for any x, y ∈ Nil(S), it is true that f(x+F y) = f(x) +G f(y). By our definition
of f , it is already correct that f(x+F y) = f(x) +G f(y).

Hence, we have showed that αS is a group homomorphism from FF (S) to FG(S).

Proposition 5.8. If f : F → G is a homomorphism of formal group laws over R, then
(fS)S∈ObCR is a natural transformation from FF to FG.

Proof. To prove the proposition is true, we need to show diagram (5.1) commutes. More
specifically, take r ∈ FF (S1) such that rn = 0, we need to prove that FG(φ) ◦ fS1(r) =
fS2 ◦ FF (φ)(r). Write f as f =

∑∞
i=0 ait

i. Since f is a ring homomorphism, we have

FG(φ) ◦ fS1(r) = FG(φ) ◦ f(r)

= φ(f(r))

= φ

(
∞∑
i=0

air
i

)

= φ

(
n∑
i=0

air
i

)

=
n∑
i=0

φ(air
i)

=
n∑
i=0

aiφ(ri)

=
∞∑
i=0

aiφ(ri)

=
∞∑
i=0

aiφ(r)i

= f(φ(r))

= fS2 ◦ φ(r)

= fS2 ◦ FF (φ)(r).

Hence, the diagram (5.1) commutes and the result follows. �

5.3. Change of Base Rings. Suppose F ∈ RJtK is a formal group law over R and φ : R→
R

′
is a ring homomorphism of commutative rings. Write F as F (u, v) =

∑∞
i,j=0 aiju

ivj and

define F
′
(u, v) =

∑∞
i,j=0 φ(aij)u

ivj. Now we want to check that F
′ ∈ R′JtK is a formal group

law over the ring R
′
.

Firstly, we have

F
′
(u, 0) =

∞∑
i,j=0

φ(aij)u
i0j = φ(1R)u+ 0 = 1R′u = u
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and

F
′
(0, u) = 0 + u = u.

So the axiom FGL1 is satisfied.
Also, since the formal group law F is commutative and

F (u, v) =
∞∑

i,j=0

aiju
ivj =

∞∑
i,j=0

aijv
iuj = F (v, u),

we have

F
′
(u, v) =

∞∑
i,j=0

φ(aij)u
ivj =

∞∑
i,j=0

φ(aij)v
iuj = F

′
(v, u)

because φ is a ring homomorphism. Hence, the axiom FGL2 is satisfied.
Finally, since F (u, F (v, w)) = F (F (u, v), w), we have

∞∑
i,j=0

aiju
i(F (v, w))j =

∞∑
i,j=0

aiju
i

(
∞∑

i,j=0

aijv
iwj

)j

=
∞∑

i,j=0

aij(F (u, v))iwj =
∞∑

i,j=0

aij

(
∞∑

i,j=0

aiju
ivj

)i

wj.

By the property of ring homomorphism, we can show that

F (u, F
′
(v, w)) =

∞∑
i,j=0

aiju
i

(
∞∑

i,j=0

φ(aij)v
iwj

)j

=
∞∑

i,j=0

aij

(
∞∑

i,j=0

φ(aij)u
ivj

)i

wj

= F (F
′
(u, v), w).

So, by applying the homomorphism, we get

∞∑
i,j=0

φ(aij)u
i

(
∞∑

i,j=0

φ(aij)v
iwj

)j

=
∞∑

i,j=0

φ(aij)

(
∞∑

i,j=0

φ(aij)u
ivj

)i

wj.

Hence, we have F
′
(u, F

′
(v, w)) = F

′
(F

′
(u, v), w) and the axiom FGL3 is satisfied.

Now we define a functor Fφ associated with the ring homomorphism φ : R → R
′
. Let

FGLR be the category of formal group laws over the ring R, and FGLR′ be the category of
formal group laws over the ring R

′
. For each object F =

∑∞
i,j=0 aiju

ivj ∈ Ob FGLR, we have

Fφ(F ) =
∑∞

i,j=0 φ(aij)u
ivj ∈ Ob FGLR′ by applying φ to all the coefficients.

Also, for each homomorphism f : F → G where F,G ∈ Ob FGLR, we have f(F (u, v)) =
G(f(u), f(v)) by Definition 5.1. Now, for each f ∈ RJxK, define Fφ(f) ∈ R

′JxK to be the
formal group law obtained by applying φ to all the coefficients of f . For each homomorphism
f : F → G where F,G ∈ Ob FGLR, we want to show Fφ(f) is a homomorphism of formal
group laws from Fφ(F ) to Fφ(G) where Fφ(F ),Fφ(G) ∈ Ob FGLR′ . In other words, we
need to prove that Fφ(f)(u +Fφ(F ) v) = Fφ(f)(u) +Fφ(G) Fφ(f)(v). We define (u +F v) =∑∞

i,j=0 aiju
ivj, define u+G v =

∑∞
i,j=0 biju

ivj and define f(t) =
∑∞

k=0 ckt
k. Also, since f is a
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homomorphism of formal group laws and we have f(F (u, v)) = G(f(u), f(v)), which can be
written as

(5.2)
∞∑
k=0

ck

(
∞∑

i,j=0

ai,ju
ivj

)k

=
∞∑

i,j=0

bij

(
∞∑
k=0

cku
k

)i( ∞∑
k=0

ckv
k

)j

.

Then we have

Fφ(f)(u+Fφ(F ) v) = Fφ(f)

(
∞∑

i,j=0

φ(aij)u
ivj

)

=
∞∑
k=0

φ(ck)

(
∞∑

i,j=0

φ(aij)u
ivj

)k

=
∞∑

i,j=0

φ(bij)

(
∞∑
k=0

φ(ck)u
k

)i( ∞∑
k=0

φ(ck)v
k

)j

(by the equation (5.2) and the fact that φ is a ring homomorphism)

=
∞∑

i,j=0

φ(bij)(Fφ(f)(u))i(Fφ(f)(v))j

= Fφ(f)(u) +Fφ(G) Fφ(f)(v).

Hence, we proved that Fφ(f)(u +Fφ(F ) v) = Fφ(f)(u) +Fφ(G) Fφ(f)(v). So each homo-
morphism f : F → G where F,G ∈ Ob FGLR is sent by the functor Fφ to a homomorphism
Fφ(f) : Fφ(F ) → Fφ(G). In addition, it is straightforward to verify that Fφ(IdF ) = IdFφ(F )

for each object F ∈ Ob FGLR. It remains to show that for a homomorphism f : F → G and a
homomorphism g : G→ H, we have Fφ(f ◦g) = Fφ(f)◦Fφ(g). Now, define f(u) =

∑∞
i=0 aiu

i

and g(u) =
∑∞

i=0 biu
i. Then take u ∈ R, and we have

Fφ(f ◦ g)(u) = Fφ

(
∞∑
i=0

ai(g(u))i

)

= Fφ

 ∞∑
i=0

ai

(
∞∑
i=0

bju
j

)i


=
∞∑
i=0

φ(ai)

(
∞∑
i=0

φ(bj)u
j

)i

because φ is a ring homomorphism

=
∞∑
i=0

φ(ai) (Fφ(g)(u))i

= Fφ(f) ◦ Fφ(g)(u).

Hence, we have showed that Fφ is a functor from FGLR to FGLR′ .

6. Higher-Dimensional Formal Group Laws

6.1. Concepts of Higher-Dimensional Formal Group Laws.
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Definition 6.1 (n-Dimensional Formal Group Law). An n-dimensional commutative formal
group law is a pair (R,F ), where R is a commutative ring, called the coefficient ring, and F is
a collection of n power series Fi(u1, u2, · · · , un, v1, v2, · · · , vn) ∈ RJu1, u2 · · · , un, v1, v2, · · · , vnK
for 1 ≤ i ≤ n in 2n variables such that it satisfies the following axioms:

FGL1: F (u, 0) = F (0, u) = u. (Existence of an identity)
FGL2: F (u, v) = F (v, u). (Commutativity)
FGL3: F (u, F (v, w)) = F (F (u, v), w). (Associativity)

where we write F for (F1, · · · , Fn), u for (u1, · · · , un), and so on.

Remark 6.2. We frequently use the notation u+F v := F (u, v) where F means (F1, dotsc, Fn)
and u means (u1, dotsc, un). So the axioms for a formal group law can be expressed as follows:

FGL1: u+F 0 = 0 +F u = u. (Existence of an identity )
FGL2: u+F v = v +F u. (Commutativity)
FGL3: u+F (v +F w) = (u+F v) +F w. (Associativity)

Definition 6.3. Let F (u, v) ∈ RJu, vK be a formal group law. A formal inverse of F is a
collection of power series Gi(t) ∈ RJtK for 1 ≤ i ≤ n such that u +F G(u) = 0. We will
therefore put −Fu := G(u).

Example 6.4 (Additive formal group law). The additive formal group law is defined as

FA(u1, u2, · · · , un, v1, v2, · · · , vn) = (u1 + v1, u2 + v2, · · · , un + vn),

we need check it satisfies all three axioms.
Firstly, we have

FA(u1, u2, · · · , un, 0, 0, · · · , 0) = (u1 + 0, u2 + 0, · · · , un + 0) = (u1, u2, · · · , un)

and

FA(0, 0, · · · , 0, u1, u2, · · · , un) = (0 + u1, 0 + u2, · · · , 0 + un) = (u1, u2, · · · , un),

So

FA(u1, u2, · · · , un, 0, 0, · · · , 0) = FA(0, 0, · · · , 0, u1, u2, · · · , un) = (u1, u2, · · · , un).

and the axiom FGL1 is satisfied.
Also, FA(u1, u2, · · · , un, v1, v2, · · · , vn) = (u1 + v1, u2 + v2, · · · , un + vn) = (v1 + u1, v2 +

u2, · · · , vn + un) = FA(v1, v2, · · · , vn, u1, u2, · · · , un), so the axiom FGL2 is satisfied.
Finally, we have

FA(u1, u2, · · · , un, FA(v1, v2, · · · , vn, w1, w2, · · · , wn, ))
= (u1 + (v1 + w1), u2 + (v2 + w2), · · · , un + (vn + wn))

= (u1 + v1 + w1, u2 + v2 + w2, · · · , un + vn + wn)

= ((u1 + v1) + w1, (u2 + v2) + w2, · · · , (un + vn) + wn)

= FA(FA(u1, u2, · · · , un, v1, v2, · · · , vn, ), w1, w2, · · · , wn, ),
so the axiom FGL3 is satisfied.

Hence, it is a formal group law.
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Example 6.5 (Mulplicative formal group law). The mulplicative formal group law is defined
as

FM(u, v) = u+ v + βuv, β ∈ R, β 6= 0,

More precisely, define FM(u, v) as

u+ v + βuv = (u1 + v1 + βu1v1, u2 + v2 + βu2v2, · · · , un + vn + βunvn).

We need to check it satisfies all three axioms. The proof is the same as for the one-dimensional
case in Example 3.7. Hence, it is a formal group law.

Example 6.6 (Lorentz formal group law). The Lorentz formal group law is defined as

FL(u, v) =
u+ v

1 + βuv

Thus, we define u + v = (u1 + v1, u2 + v2, · · · , un + vn), define 1 + βuv = (1 + βu1v1, 1 +
βu2v2, · · · , 1 + βunvn) and define u+v

1+βuv
= ( u1+v1

1+βu1v1
, u2+v2
1+βu2v2

, · · · , un+vn
1+βunvn

). By u1+v1
1+βu1v1

, we

actually mean the power series (u1 + v1)
∑

i≥0(−βu1v1)i. Recall Definition 2.13 of geo-
metric series, here we have r = −βu1v1, so the power series can be written as (u1 +
v1)
∑

i≥0(−βu1v1)i = u1+v1
1+βu1v1

. Now, we want to check that it satisfies the three conditions.

The proof is the same as for the one-dimensional case in Example 3.8. Hence, it is a formal
group law.

Definition 6.7 (Homomorphism between higher-dimensional FGLs). A homomorphism
from a formal group law F of dimension m to a formal group law G of dimension n is
a collection f of n power series in m variables, such that G(f(u), f(v)) = f(F (u, v)). More
precisely, the homomorphism f needs to satisfy

Gi(f1(u1, u2, · · · , um), f2(u1, u2, · · · , um), · · · , fn(u1, u2, · · · , um),

f1(v1, v2, · · · , vm), f2(v1, v2, · · · , vm), · · · , fn(v1, v2, · · · , vm))

= fi(F1(u1, u2, · · · , un, v1, v2, · · · , vn), F2(u1, u2, · · · , un, v1, v2, · · · , vn), · · · ,
Fm(u1, u2, · · · , un, v1, v2, · · · , vn))

where 1 ≥ i ≥ m.

Definition 6.8 (Category of higher-dimensional FGLs). For a fixed ring R, we have the
category of formal group laws FGLR. The objects of FGLR are higher-dimensional formal
group laws over R, and the morphisms between formal group laws are the homomorphisms
defined in Definition 6.7.

Suppose we have morphisms over formal group laws f : A → B, g : B → C, h : C → D
where A is of dimension n, B is of dimension m and C is of dimension p. Then we have

h ◦ (g ◦ f)(t1, t2, · · · , tn) = h ◦ (g(f(t1, t2, · · · , tn)))

= h(g(f(t1, t2, · · · , tn)))

and

(h ◦ g)f(t1, t2, · · · , tn) = (h(g))(f(t1, t2, · · · , tn))

= h(g(f(t1, t2, · · · , tn))).

Hence, (h ◦ g) ◦ f = h ◦ (g ◦ f).
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Also, define the identity morphism Id: F → F as IdF = t. For any f : B → C we have
f ◦ IdB = f = IdC ◦f .

6.2. Formal Group Laws as Functors for Higher-Dimensional FGLs. Let S be a
commutative R-algebra. We will show that any n-dimensional formal group law F over S
gives a group structure on the set Nil(S)n. Denote the category of commutativeR-algebras by
CR. We want to show that the associative formal group law F gives a functor FF : CR → Grp
from the category of commutative R-algebras to the category of groups.

More precisely, for each object S ∈ ObCR, it associates FF (S) = (Nil(S)n,+F ) ∈ Ob Grp,
which is analogous to the structure defined in the Lemma 5.7.

Also, for each homomorphism φ : S1 → S2 where S1, S2 ∈ ObCR, we know that φ(Nil(S1)
n) ⊆

Nil(S2)
n by Lemma 2.10. Take x, y ∈ Nil(S1)

n where x means (x1, x2, · · · , xn) and y means
(y1, y2, · · · , yn). Let m ∈ N such that xm = (0, 0, · · · , 0) = vm. We want to show that
φ(x+F y) = φ(x) +F φ(y). So we have

φ(x+F y) = φ

(
∞∑

i,j=0

aijx
iyj

)

= φ

(
m∑

i,j=0

aijx
iyj

)

=
m∑

i,j=0

φ
(
aijx

iyj
)

=
m∑

i,j=0

aijφ
(
xiyj

)
=

m∑
i,j=0

aijφ
(
xi
)
φ
(
yj
)

=
∞∑

i,j=0

aijφ
(
xi
)
φ
(
yj
)

=
∞∑

i,j=0

aijφ(x)iφ(y)j

= φ(x) +F φ(y).

Hence, it is proved that φ(u +F v) = φ(u) +F φ(v). For a ring homomorphism φ : S1 → S2,
define FF (φ) as φ restricted to Nil(S1)

n. Hence, each homomorphism φ : S1 → S2 where
S1, S2 ∈ ObCR is sent by the functor to a homomorphism FF (φ) : FF (S1)→ FF (S2).

In addition, it is straightforward to verify that FF (IdX) = IdFF (X) for each object X ∈
ObCR. Also, it is true that for a homomorphism φ : S1 → S2 and a homomorphism η : S2 →
S3, we have FF (φ ◦ η) = FF (φ) ◦ FF (η).

Therefore, we have showed that the formal group law F defines a functor FF : CR → Grp
from the category of commutative R-algebras to the category of groups.



A CATEGORY THEORETIC APPROACH TO FORMAL GROUP LAWS 23

Furthermore, we will be talking about the natural transformation given by the morphisms
of formal group laws of functors.

Let FF ,FG be functors from the category CR to the category Grp. A natural transfor-
mation f : F → G, consists of a collection of morphisms fS : FF (S)→ FG(S), one for each
S ∈ ObCR, such that for any S1, S2 ∈ CR and any morphisms φ : S1 → S2, the diagram

(6.1)

FF (S1) FG(S1)

FF (S2) FG(S2)

FF (φ)

fS1

fS2

FG(φ)

commutes; that is, fS2 ◦ FF (φ) = FG(φ) ◦ fS1 .
Let f be a homomorphism between the formal group laws F of dimension m and G of

dimension n. Thus, f = (f1, . . . , fn) is a collection of power series with no constant term

fi(t1, t2, · · · , tm) =
∑∞

i1,i2,··· ,in=0 a
(i)
i1,i2,··· ,inr

i1
1 , r

i2
2 ∈ RJt1, t2, · · · , tmK satisfying f(F (X, Y )) =

G(f(X), f(Y )) where 1 ≥ i ≥ m. For f : F → G, define fS : Nil(S)m → Nil(S)n as
fS(r) = f(r) for r ∈ Nil(S)n where r stands for (r1, r2, · · · , rn), and we want to show the
map fS is well-defined. Take r ∈ Nil(S)n such that rk = 0 for some integer k, then we have

fS(r) =

(
∞∑

i1,i2,··· ,in=0

a
(1)
i1,i2,··· ,inr

i1
1 , r

i2
2 , · · · , rinn ,

∞∑
i1,i2,··· ,in=0

a
(2)
i1,i2,··· ,inr

i1
1 , r

i2
2 , · · · , rinn , · · ·

∞∑
i1,i2,··· ,in=0

a
(m)
i1,i2,··· ,inr

i1
1 , r

i2
2 , · · · , rinn

)
=

(
k∑

i1,i2,··· ,in=0

a
(1)
i1,i2,··· ,inr

i1
1 , r

i2
2 , · · · , rinn ,

k∑
i1,i2,··· ,in=0

a
(2)
i1,i2,··· ,inr

i1
1 , r

i2
2 , · · · , rinn , · · · ,

k∑
i1,i2,··· ,in=0

a
(m)
i1,i2,··· ,inr

i1
1 , r

i2
2 , · · · , rinn

)
∈ Nil(S)n.

Hence, the map fS is well-defined.
Next we want to show that fS is a group homomorphism from the group FF (S) =

(Nil(S)m,+F ) to the group FG(S) = (Nil(S)n,+G). To claim it is a homomorphism, we
need show that for any u, v ∈ Nil(S)m, it is true that f(x +F y) = f(x) +G f(y). By our
definition of f , it is already correct that f(x+F y) = f(x) +G f(y).

Hence, we have showed that fS is a group homomorphism from FF (S) to FG(S).

Proposition 6.9. If f : F → G is a homomorphism of higher-dimensional formal group
laws over R, then (fS)S∈ObCR is a natural transformation from FF to FG.

Proof. To prove the proposition is true, we need to show diagram (6.1) commutes. More
specifically, take r ∈ FF (S1) such that rn = 0, we need to prove that FG(φ) ◦ fS1(r) =
fS2 ◦ FF (φ)(r). Write f as f =

∑∞
i=0 ait

i. Since φ is a ring homomorphism, we have

FG(φ) ◦ fS1(r) = FG(φ) ◦ f(r)

= φ(f(r))
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= φ

(
∞∑
i=0

air
i

)

= φ

(
n∑
i=0

air
i

)

=
n∑
i=0

φ(air
i)

=
n∑
i=0

aiφ(ri)

=
∞∑
i=0

aiφ(ri)

=
∞∑
i=0

aiφ(r)i

= f(φ(r))

= fS2 ◦ φ(r)

= fS2 ◦ FF (φ)(r).

Hence, the diagram (6.1) commutes and the result follows. �

6.3. Change of Base Rings with Higher-Dimensional FGLs. Suppose F ∈ RJt1, t2, · · · , tnK
is a higher-dimensional formal group law over R and φ : R→ R

′
is a ring homomorphism of

commutative rings. Take u, v ∈ R, then write F as

F (u, v) =

(
∞∑

i1,··· ,in,j1,··· ,jn=0

a
(1)
i1,··· ,in,i1,··· ,inu

i1
1 , · · · , uinn , v

j1
1 , · · · , vjnn , · · · ,

∞∑
i1,··· ,in,j1,··· ,jn=0

a
(m)
i1,··· ,in,i1,··· ,inu

i1
1 , · · · , uinn , v

j1
1 , · · · , vjnn

)
and define

F
′
(u, v) =

(
∞∑

i1,··· ,in,j1,··· ,jn=0

φ(a
(1)
i1,··· ,in,i1,··· ,in)ui11 , · · · , uinn , v

j1
1 , · · · , vjnn , · · · ,

∞∑
i1,··· ,in,j1,··· ,jn=0

φ(a
(m)
i1,··· ,in,i1,··· ,in)ui11 , · · · , uinn , v

j1
1 , · · · , vjnn

)

Now we want to check that F
′ ∈ R′Jt1, t2, · · · , tnK is a formal group law over the ring R

′
.

The proof for higher-dimensional FGLs is analogous to the one-dimensional case, as proved
in Section 5.3.

Finally we can get the conclusion that Fφ is a functor from FGLR to FGLR′ .
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