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Abstract. These are lecture notes for a minicourse given at the Categorification in Representation
Theory Workshop at the University of Sydney, February 6–10, 2023. We examine how the concepts
of symmetry and duality can be formulated in the context of monoidal categories. We begin by
introducing the technique of string diagrams. Then we examine the possible types of dualities and
symmetries that can arise in monoidal categories, using intuitive diagrammatic arguments to deduce
some of their basic properties. All of this will lead us naturally to oriented and unoriented Brauer
categories, which are intimately related to the representation theory of Lie groups. We conclude
with a brief discussion of further directions into the realm of supergroups.
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1. Introduction

The goal of these notes is to introduce the reader to the notions of symmetry and duality in the
context of monoidal categories, with an aim towards the study of representations of Lie groups and
Lie algebras. Throughout, we will use the language of string diagrams for monoidal categories. (For
a more detailed exposition of this formalism, we refer the reader to [TV17, Sel11].) We will motivate
the definitions of the oriented and unoriented Brauer categories by examining how different types
of duality interact with symmetry. This will allow us to give efficient presentations of categories
with nice universality properties. We then explain the connection between these categories and the
representation theory of the classical Lie groups.

Throughout these notes, k denotes a field, and N = Z≥0 is the set of nonnegative integers.

Acknowledgements. These notes were written while the author was visiting the Sydney Mathe-
matical Research Institute.

2. Strict monoidal categories and string diagrams

In this section we briefly review the definition of strict linear monoidal categories. These will be
our main tool for exploring the concepts of symmetry and duality. We then discuss string diagrams,
which are, in many ways, the best language to use to work with monoidal categories.

https://www.maths.usyd.edu.au/u/catrep/#/Workshop
https://www.maths.usyd.edu.au/u/catrep/#/Workshop
https://mathematical-research-institute.sydney.edu.au/
https://mathematical-research-institute.sydney.edu.au/
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2.1. Definitions. Throughout this document, all categories are assumed to be locally small. In
other words, we have a set of morphisms between any two objects.

A strict monoidal category is a category C equipped with
• a bifunctor (the tensor product) ⊗ : C × C → C and
• a unit object 1

such that, for all objects X, Y , and Z of C, we have
• (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) and
• 1⊗X = X = X ⊗ 1,

and, for all morphisms f , g, and h of C, we have
• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) and
• 11 ⊗ f = f = f ⊗ 11.

Here, and throughout the document, 1X denotes the identity endomorphism of an object X.

Remark 2.1. Note that, in a (not necessarily strict) monoidal category, the equalities above are
replaced by isomorphism, and one imposes certain coherence conditions. For example, let Veck be the
category of finite-dimensional k-vector spaces. In this category one has isomorphisms (U⊗V )⊗W ∼=
U ⊗ (V ⊗ W ), but these isomorphisms are not equalities in general. Similarly, the unit object in
this category is the one-dimensional vector space k, and we have k⊗V ∼= V ∼= V ⊗ k for any vector
space V .

We will be building monoidal categories “from scratch” via generators and relations. Thus, we are
free to require them to be strict. In general, Mac Lane’s coherence theorem for monoidal categories
asserts that every monoidal category is monoidally equivalent to a strict one. (For a proof of this
fact, see [Mac98, §VII.2] or [Kas95, §XI.5].) So, in practice, we do not lose much by assuming
monoidal categories are strict. (See also [Sch01].)

A k-linear category is a category C such that
• for any two objects X and Y of C, the hom-set HomC(X,Y ) is a k-module,
• composition of morphisms is bilinear:

f ◦ (αg + βh) = α(f ◦ g) + β(f ◦ h),
(αf + βg) ◦ h = α(f ◦ h) + β(g ◦ h),

for all α, β ∈ k and morphisms f , g, and h such that the above operations are defined.
The category Veck is an example of a k-linear category. For any two k-modules M and N , the space
Homk(M,N) is again a k-module under the usual pointwise operations. Composition is bilinear
with respect to this k-module structure.

A strict k-linear monoidal category is a category that is both strict monoidal and k-linear, and
such that the tensor product of morphisms is k-bilinear. Before discussing some examples, we
mention the important interchange law. Suppose

X1
f−→ X2 and Y1

g−→ Y2

are morphisms in a strict k-linear monoidal category C. Then

(1X2 ⊗ g) ◦ (f ⊗ 1Y1) = ⊗((1X2 , g)) ◦ ⊗((f, 1Y1)) = ⊗((1X2 , g) ◦ (f, 1Y1)) = ⊗((f, g)) = f ⊗ g,

where the second equality uses that the tensor product is a bifunctor. Similarly,

(f ⊗ 1Y2) ◦ (1X1 ⊗ g) = f ⊗ g.
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Thus, the following diagram commutes:

X1 ⊗ Y1
1⊗g //

f⊗1
��

f⊗g

&&

X1 ⊗ Y2

f⊗1
��

X2 ⊗ Y1
1⊗g
// X2 ⊗ Y2

2.2. String diagrams. Strict monoidal categories are especially well suited to being depicted using
the language of string diagrams. These diagrams, which are sometimes also called Penrose diagrams,
have their origins in work of Roger Penrose in physics [Pen71]. Working with strings diagrams helps
build intuition. It also often makes certain arguments obvious, whereas the corresponding algebraic
proof can be a bit opaque. We give here a brief overview of string diagrams, referring the reader
to [TV17, Ch. 2] for a detailed treatment. Throughout this section, C will denote a strict k-linear
monoidal category.

We will denote a morphism f : X → Y by a strand with a coupon labeled f :

X

Y

f

Note that we are adopting the convention that diagrams should be read from bottom to top. The
identity map 1X : X → X is a string with no coupon:

X

X

We sometimes omit the object labels (e.g. X and Y above) when they are clear or unimportant.
We will also sometimes distinguish identity maps of different objects by some sort of decoration of
the string (orientation, dashed versus solid, etc.), rather than by adding object labels.

Composition is denoted by vertical stacking (recall that we read pictures bottom to top) and
tensor product is horizontal juxtaposition:

f

g
= f◦g and f ⊗ g = f g .

The interchange law then becomes

f

g
= f g =

f

g
.

This graphical interpretation of the interchange law is one of the main reasons that the two-
dimensional notation of string diagrams works so well for monoidal categories. Much as we may
omit parenthesis when multiplying several elements in an associative algebra, string diagrams allow
us to draw a single diagram

a b

c d
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without specifying if this denotes (a⊗ b)◦ (c⊗d) or (a◦ c)⊗ (b◦d), since both expressions are equal.
A general morphism f : X1 ⊗ · · · ⊗ Xn → Y1 ⊗ · · · ⊗ Ym can be depicted as a coupon with n

strands emanating from the bottom and m strands emanating from the top:

X1

Ym

Xn

Y1

f

· · ·

· · ·

3. Symmetry in monoidal categories

In this section, we discuss how the concept of symmetry can be formalized in the language of
monoidal categories. Using string diagrams, the notion becomes quite intuitive.

3.1. Symmetric monoidal categories. A strict symmetric monoidal category is a strict monoidal
category C equipped with a family of isomorphisms

(3.1)
YX

: X ⊗ Y → Y ⊗X, X, Y ∈ C,

that are natural in X and Y , and such that

(3.2a)
1X

= 1X , (3.2b)

ZX⊗Y

=

ZYX

, (3.2c)

YX

=

X Y

,

for all X,Y, Z ∈ Ob(C). We will refer to the isomorphisms (3.1) as crossings.
The requirement that the crossings (3.1) are natural in X and Y means that

(3.3a)

X

Z

Y

f
=

X

Z

Y

f

, (3.3b)

X

Z

Y

f
=

X

Z

Y

f

,

for all f ∈ HomC(X,Z). In fact, it is enough to require (3.3a), since then attaching a crossing to
the top and bottom of both sides of the relation, then using (3.2c), gives (3.3b).

Taking f in (3.3a) to be a crossing, we see that

(3.4)

ZYX

=

ZYX

for all X,Y, Z ∈ Ob(C). This is called the braid relation.

Exercise 3.1. Suppose C is a strict symmetric monoidal category. Show that

X1

= 1X and

Y⊗ZX

=

Y ZX

for all X,Y, Z ∈ Ob(C).
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3.2. A universal symmetric monoidal category. Define Sym to be the strict k-linear monoidal
category with:

• one generating object ↑;
• one generating morphism

: ↑ ⊗ ↑ → ↑ ⊗ ↑;
• and relations

(3.5) = and = .

One could write these relations in a more traditional algebraic manner, if so desired. For example,
if we let

s = : ↑ ⊗ ↑ → ↑ ⊗ ↑,
then the two relations (3.5) become

s2 = 1↑⊗↑ and (s⊗ 1↑) ◦ (1↑ ⊗ s) ◦ (s⊗ 1↑) = (1↑ ⊗ s) ◦ (s⊗ 1↑) ◦ (1↑ ⊗ s).

The objects of Sym are ↑⊗n, n ∈ N. An example of an endomorphism of ↑⊗4 is

+ 2 .

Using the relations, we see that this morphism is equal to

+ 2 = + 2 .

Fix a positive integer n and recall that the group algebra kSn of the symmetric group on n
letters has a presentation with generators s1, s2, . . . , sn−1 (the simple transpositions) and relations

s2i = 1, 1 ≤ i ≤ n− 1,(3.6)
sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2,(3.7)

sisj = sjsi, 1 ≤ i, j ≤ n− 1, |i− j| > 1.(3.8)

We have an isomorphism of algebras

(3.9) kSn → EndSym(↑⊗n)

where si is sent to the crossing of the i-th and (i + 1)-st strands, labeled from right to left. Note
that the “distant braid relation” (3.8) follows for free from the interchange law:

· · · = · · · .

The category Sym has a universal property; it is the free k-linear symmetric monoidal category
on one object. More precisely, if X is an object in a symmetric monoidal category C, then there
exists a unique monoidal functor

Sym → C, ↑ 7→ X, 7→
XX

.
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It then follows from (3.9) that we have a homomorphism of algebras

kSn → EndC(X
⊗n).

For example, suppose C = Veck is the category of finite-dimensional vector spaces over k. For any
two vector spaces V and W , define

(3.10) flipV,W : V ⊗W → W ⊗ V, v ⊗ w 7→ w ⊗ v.

Then there exists a unique monoidal functor

Sym → Veck, ↑ 7→ V, 7→ flipV,V ,

and we have a homomorphism of algebras

kSn → Endk(V
⊗n).

4. Duality in monoidal categories

We now turn our attention to the concept of duality in monoidal categories. We begin with
a general definition of what it means for two objects to be dual. We then examine the interplay
between duality and symmetry. We will see that, in categories possessing symmetry and duality,
we can define categorical notions of trace and dimension.

4.1. Duals in monoidal categories. Suppose a strict monoidal category has two objects ↑ and
↓. Recalling our convention that we do not draw the identity morphism of the unit object 1, a
morphism ↓ ⊗ ↑ → 1 would have string diagram

: ↓ ⊗ ↑ → 1,

where we may decorate the cap with some symbol if we have more than one such morphism. The
fact that the top of the diagram is empty space indicates that the codomain of this morphism is
the unit object 1. Similarly, we can have

: 1 → ↑⊗ ↓.
We say that ↓ is left dual to ↑ (and ↑ is right dual to ↓ ) if we have morphisms

: ↓ ⊗ ↑ → 1 and : 1 → ↑⊗ ↓
such that

(4.1) = and = .

The morphisms and are called the unit and the counit, respectively, of the duality. (The
relations (4.1) are a generalization of the unit-counit formulation of adjunction of functors.) A
monoidal category in which every object has both left and right duals is called a rigid, or autonomous,
category.

If ↑ and ↓ are both left and right dual to each other, then, in addition to the above, we also have

: ↑ ⊗ ↓ → 1 and : 1 → ↓ → ↑
such that

(4.2) = and = .

To give a concrete example of duality in a monoidal category, consider the category Veck of
finite-dimensional k-vector spaces. (The category Veck is not strict, but this will not cause any
problems for us. See Remark 2.1.) In this category, the unit object is k. We claim that, if V is
any finite-dimensional k-vector space, the dual vector space V ∗ is left and dual to V in the sense
defined above.
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Define the evaluation map

(4.3) evV : V ∗ ⊗ V → k, f ⊗ v 7→ f(v),

and the coevaluation map

(4.4) coevV : k → V ⊗ V ∗, 1 7→
∑
v∈BV

v ⊗ δv,

where BV is a basis of V and {δv : v ∈ BV } is the dual basis of V ∗.
Taking ↑ = V and ↓ = V ∗, we define

= evV and = coevV .

Let us check the left-hand relation in (4.1). The left-hand side is the composition

V ∼= k⊗ V
⊗1V−−−−−→ V ⊗ V ∗ ⊗ V

1V ⊗−−−−−→ V ⊗ k ∼= V,

w 7→ 1⊗ w 7→
∑
v∈BV

v ⊗ δv ⊗ w 7→
∑
v∈BV

δv(w)⊗ v 7→
∑
v∈BV

δv(w)v = w.

Thus, this composition is precisely the identity map 1V , and so the right-hand relation in (4.1) is
satisfied. The verification of the left-hand equality in (4.1) is analogous and is left as an exercise
for the reader.

In fact, V ∗ is also right dual to V . This can be shown directly by computations analogous to
those above, or can be seen as a consequence of the more general result in symmetric monoidal
categories (Proposition 4.5).

Exercise 4.1. Show that the coevaluation map coevV defined in (4.4) is independent of the choice
of basis BV .

From now on, cups and caps in string diagrams will always denote units and counits giving the
data of duality between objects.

Exercise 4.2. Units and counits are not unique. For instance, if we fix α ∈ k×, then α coevV and
α−1 evV are also units and counits expressing that V ∗ is left dual to a finite-dimensional vector
space V . However, fixing the unit uniquely determines the counit, and vice versa. Indeed, let ↑ and
↓ be objects in a monoidal category C.

(a) Suppose that : ↓ ⊗ ↑ → 1 is a morphism in C. Show that there exists at most one
morphism : 1 → ↑⊗ ↓ satisfying (4.1).

(b) Suppose that : 1 → ↑ ⊗ ↓ is a morphism in C. Show that there exists at most one
morphism : ↓ ⊗ ↑ → 1 satisfying (4.1).

4.2. A universal category with duals. The oriented Temperley–Lieb category OTLk is the strict
k-linear monoidal category with

• two generating objects ↑ and ↓;
• four generating morphisms,

: ↓ ⊗ ↑ → 1, : 1 → ↑⊗ ↓, : ↑ ⊗ ↓ → 1, : 1⊗ ↓ ⊗ ↑;
• and relations

= = , = = .

Objects in OTLk are finite tensor products of ↑ and ↓. An example of a morphism in OTLk is

3 − ∈ HomOTLk(↑ ⊗ ↑ ⊗ ↓ ⊗ ↑ ⊗ ↓ ⊗ ↓, ↑ ⊗ ↓ ⊗ ↑ ⊗ ↓).
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The category OTLk is the free k-linear monoidal category on one object with a two-sided dual.
If X and Y are two objects in a k-linear monoidal category C that are both left and right dual to
each other, then there exists a unique monoidal functor

OTLk → C, ↑ 7→ X, ↓ 7→ Y,

sending , , , and to the units and counits of the dualities between X and Y .

Exercise 4.3. Show that OTLk is a rigid monoidal category. Hint : To show that arbitrary objects
have duals, nest cups and caps.

4.3. Duals in symmetric monoidal categories. We now examine how duality behaves in sym-
metric monoidal categories. Throughout this subsection we work in a rigid strict symmetric
monoidal category C. Suppose ↑ is an object of C with left dual ↓. For any object X in C, taking f
in (3.3) to be gives

(4.5)
X

=
X

and
X

=
X

.

Similarly, taking f in (3.3) to be gives

(4.6)
X

=
X

and
X

=
X

.

Exercise 4.4. Use (4.5) and (4.6) to show that

(4.7)
X

=

X

and
X

=

X

for every object X.

Proposition 4.5. Suppose C is a symmetric monoidal category containing an object ↓ left dual to
an object ↑. Then ↓ is also right dual to ↑.

Proof. Define
= and = .

We claim that these morphisms satisfy (4.2). Indeed, for the left-hand relation in (4.2), we have

=
(3.2c)
=

(3.4)
=

(4.5)
=

(4.6)
=

(4.1)
= .

The proof of the right-hand relation in (4.2) is analogous; we simply reflect all our diagrams in the
horizontal axis. □

Proposition 4.5 implies that a symmetric monoidal category is rigid if and only if all objects have
left duals. From now on, when working in a rigid symmetric monoidal category, for every object ↑
with dual ↓, we assume that the duality data is related by

(4.8) = and = .

Exercise 4.6. Using (4.8), show that

(4.9) = and = .
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Since we assume that C is a rigid symmetric monoidal category, it follows from Proposition 4.5
that, for every object X in C, there is an object X∗ that is both left and right dual to X.

We will denote the identity endomorphisms of X and X∗ by upward and downward strands
labeled X:

1X =

X

and 1X∗ =

X

.

So we have morphisms

X

: X∗ ⊗X → 1,
X

: 1 → X ⊗X∗,
X

: X ⊗X∗ → 1,
X

: 1 → X ⊗X∗

such that

(4.10)

X

=

X

=

X

,

X

=

X

=

X

.

Furthermore, we may choose our cups and caps such that

X

=
X∗

,
X

=
X∗

,
X

=
X∗

,
X

=
X

.

Proposition 4.7. For all objects X and Y in C, we have

(4.11)
X Y

=

YX

,
X Y

=

X Y

.

Proof. By the right-hand relation in (4.7), we have

XY

=

XY

.

Attaching a left cup to the rightmost bottom endpoint gives

YX

=

YX

.

Using (4.10) to straighten the string on the left-hand side then gives the left-hand relation in (4.11).
The proof of the right-hand relation in (4.11) is analogous. □

4.4. Trace and categorical dimension. Throughout this subsection we work in a strict k-linear
rigid symmetric monoidal category C. Furthermore, we assume that we have an isomorphism of
k-algebras

(4.12) k
∼=−→ EndC(1), α 7→ α11.

For instance, (4.12) is satisfied in any category of modules over a Hopf algebra, where 1 is the
one-dimensional trivial module. We use the isomorphism (4.12) to identify EndC(1) with k.

Suppose ↑ is an object with dual ↓. Then, for all f ∈ EndC(↑), we may form the closed diagram

(4.13) tr(f) := f ∈ k,

which we call the trace of f .

Exercise 4.8. Show that
f = f

for all f ∈ EndC(↑).
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To justify the use of the term trace, consider the category Veck of finite-dimensional vector spaces
over k. If f ∈ Endk(V ), then the diagram (4.13) is the composite

k −−→ V ∗ ⊗ V
1V ∗⊗f−−−−→ V ∗ ⊗ V −−→ k,

1 7→
∑
v∈BV

δv ⊗ v 7→
∑
v∈BV

δv ⊗ f(v) 7→
∑
v∈BV

δv(f(v)).

The sum
∑

v∈BV
δv(f(v)) is the usual trace of a linear operator f . Thus, under the isomorphism

(4.12), the diagram (4.13) corresponds to the trace.
In the category Veck, the trace of the identity map of a vector space V is its dimension. Thus,

in a general rigid symmetric monoidal category, we define the categorical dimension of an object ↑
to be

dimC(↑) := ∈ k.
It follows from Exercise 4.8 that

= ,

and so the categorical dimension of an object is equal to the categorical dimension of its dual.

5. The oriented Brauer category

Our goal in this section is to define the free k-linear rigid symmetric monoidal category on a
single object. We will spend some time motivating the definition. Once we have arrived at a concise
definition of this category, we will examine applications to representation theory.

5.1. Motivating the definition. Let us call the generating object ↑. Since we want our category
to be rigid, this object has a left dual ↓, together with morphisms

: ↓ ⊗ ↑ → 1, : 1 → ↑⊗ ↓,

such that

(5.1) = , = .

We know from Proposition 4.5 that, as long as our category is symmetric monoidal, ↓ will also
be right dual to ↑. So we now focus on making our category symmetric monoidal. We begin by
adding another generating morphism

: ↑ ⊗ ↑ → ↑ ⊗ ↑

satisfying

(5.2) = .

We also need morphisms , , and , subject to similar relations. However, we would like
to give as efficient a presentation of our category as possible. Instead of introducing all of these
crossings as generating morphisms, Proposition 4.7 suggests that we should define

(5.3) := and then := .

Exercise 5.1. Using the left cup and cap to rotate the relation (5.2), show that

= .
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We are still missing a right crossing , which we cannot obtain from as in (4.11), since we
do not have right cups and caps. Similarly, we cannot define the right cup and cap as in (4.8) since
we do not have a right crossing! So we must introduce another generating morphism

: ↑ ⊗ ↓ → ↓ ⊗ ↑,

and impose the relations

(5.4) = , = .

We now have the relations (3.2c) for all choices of X,Y ∈ {↑, ↓}. We can then use (3.2a)
and (3.2b) to define crossings between arbitrary tensor products of ↑ and ↓ (including the empty
tensor product, which is 1). For instance, for X = ↑ ⊗ ↑ ⊗ ↓ and Y = ↓ ⊗ ↓, we have

YX

= .

To obtain a symmetric monoidal category, it remains to consider the naturality of the crossings.
To do this we need the relation (3.3a) as f ranges over all generating morphisms and Y ∈ {↑, ↓}.
Let us begin with the cups and caps. In this case, naturality already follows from the relations that
we have imposed.

Lemma 5.2. We have

(5.5) = , = , = , = .

Proof. By definition, we have
= .

Tensoring on the right with ↑, then composing on the top with and using (5.1), gives

= .

Composing on the bottom with and using (5.2) then gives the first relation in (5.5). The proof
of the second relation in (5.5) is similar, starting from

= .

Now start again with
= .

Tensor on the left ↑, then compose on the bottom with and use (5.1), to obtain

= .

Then compose on the top with and use (5.2) to obtain the third relation in (5.5). The proof
of the last relation in (5.5) is analogous, starting from

= . □

It remains to consider the naturality relation (3.3a) when f ∈ { , } and Y ∈ {↑, ↓}. We
cannot obtain any of these relations from what we have so far. So we impose an additional relation

(5.6) = .

As the next result shows, this is enough to deduce the rest of the cases.
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Lemma 5.3. We have

(5.7) = , = , = .

Proof. Starting with (5.6), we tensor on the left and right with , then compose on the top with
and on the bottom with , to obtain

= .

Using (5.3) then gives

= .

Composing on the top with and on the bottom with gives

= .

Then using (5.4) yields the first equality in (5.7).
Next, starting with the first equality in (5.7), we compose on the top with and on the

bottom with . Using (5.4) then yields the second equality in (5.7).
It remains to prove the third equality in (5.7). Starting with the first equality in (5.7), we tensor

on the left and right with , then compose on the top with and on the bottom with
to get

= .

Using (5.3) then gives

= .

Now compose on the top with and on the bottom with , then use (5.4), to obtain the last
equality in (5.7). □

We now have a symmetric monoidal category. Following the discussion in Section 4.3, we can
now define

(5.8) := and := .

As in the proof Proposition 4.5, we then have

= , = .

5.2. Definition. We now summarize the above discussion with the following definition.

Definition 5.4. The oriented Brauer category OBk is the strict k-linear monoidal category gener-
ated by objects ↑ and ↓ and morphisms

: ↑ ⊗ ↑ → ↑ ⊗ ↑, : ↑ ⊗ ↓ → ↓ ⊗ ↑, : ↓ ⊗ ↑ → 1, : 1 → ↑⊗ ↓,

subject to the relations

= , = , = , = ,(5.9)

= , = .(5.10)
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In the above, the left crossing is defined by

(5.11) := .

For d ∈ k, we define OBk(d) to be the quotient of OBk by the relation

(5.12) = d11.

We call d the specialization parameter, and we call OBk(d) the specialized oriented Brauer category.

Note that, using (5.8), relation (5.12) becomes

= d11,

which means that ↑ has categorical dimension d.
It follows from our discussion that OBk is the free k-linear rigid symmetric monoidal category on

one object. Similarly, OBk(d) is the free k-linear rigid symmetric monoidal category on an object
of categorical dimension d. These categories then have the corresponding universal properties.

Objects in OBk(d) are finite tensor products of ↑ and ↓. An example of a morphism in OBk(d) is

+ 2

∈ HomOBk(d)(↑ ⊗ ↓ ⊗ ↑ ⊗ ↓ ⊗ ↑ ⊗ ↑ ⊗ ↓ ⊗ ↑ ⊗ ↑, ↓ ⊗ ↑ ⊗ ↓ ⊗ ↑ ⊗ ↑ ⊗ ↑ ⊗ ↑).

Remark 5.5. In our motivation of the definition of the oriented Brauer category, we first added a left
dual ↓ to our generating object ↑ and then added morphisms and relations to make it symmetric
monoidal. It followed that ↓ was also right dual to ↑. Alternatively, we could have first added
morphisms and relations ensuring that ↓ is both left and right dual to ↑, and then made the
category symmetric monoidal. This approach leads to an alternative, but equivalent, definition of
the oriented Brauer category. Precisely, OBk is the strict k-linear monoidal category generated by
objects ↑ and ↓ and morphisms

: ↑ ⊗ ↑ → ↑ ⊗ ↑ , : ↓ ⊗ ↑ → 1, : 1 → ↑⊗ ↓, : ↑ ⊗ ↓ → 1, : 1 → ↓⊗ ↑,

subject to the relations

= , = ,

= , = , = = ,

= , = .

In the above, the left and right crossings are defined by

(5.13) := , := .

For d ∈ k, we then define OBk(d) to be the quotient of OBk by the relation

(5.14) = d11.
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5.3. Application to the general linear group. Let us now use the universal property of the
oriented Brauer category to study the representation theory of the general linear group. Let V = kd
be the natural module for the general linear group GL(d,k). Since the category GL(d,k)-mod of
finite-dimensional GL(d,k)-modules is a k-linear rigid symmetric monoidal category, and V is an
object of dimension d in this category, we have a monoidal functor

(5.15) F : OBk(d) → GL(d,k)-mod

determined on objects by
↑ 7→ V, ↓ 7→ V ∗,

and on morphisms by

F
( )

= flipV,V , F
( )

= flipV,V ∗ , F ( ) = evV , F ( ) = coevV ,(5.16)

where evV and coevV are the evaluation and coevaluation maps from (4.3) and (4.4), and flip is
defined in (3.10).

Remark 5.6. In fact, the functor F is uniquely determined by the first three equalities in (5.16);
see Exercise 4.2.

Exercise 5.7. Show that

F
( )

= flipV ∗,V ∗ , F
( )

= flipV ∗,V , F ( ) = evV ∗ , F ( ) = coevV ∗ ,

where we identify (V ∗)∗ with V in the usual way, so that

evV ∗ : V ⊗ V ∗ → k and coevV ∗ : k → V ∗ ⊗ V.

Exercise 5.8. Instead of using the universal property of the oriented Brauer category, show directly
that the defining relations (5.9), (5.10), and (5.12) are respected by F.

Theorem 5.9. If the field k is infinite, then the functor F is full.

Proof. We need to show that, for all X,Y ∈ Ob(OBk(d)), the k-linear map

F : HomOBk(d)(X,Y ) → HomGL(d,k)(F (X), F (Y ))

is surjective. Suppose that X (respectively, Y ) is a tensor product of rX (respectively, rY ) copies
of ↑ and sX (respectively, sY ) copies of ↓. Consider the following commutative diagram:

HomOBk(d)(X,Y ) HomGL(d,k)
(
F (X), F (Y )

)
HomOBk(d)(↓

⊗sX ⊗ ↑⊗rX , ↑⊗rY ⊗ ↓⊗sY ) HomGL(d,k)
(
(V ∗)⊗sX ⊗ V ⊗rX , V ⊗rY ⊗ (V ∗)⊗sY

)

HomOBk(d)(↑
⊗(rX+sY ), ↑⊗(rY +sX )) HomGL(d,k)

(
V ⊗(rX+sY ), V ⊗(rY +sX)

)

F

∼= ∼=

F

∼= ∼=

F

The top-left vertical map is given by composing on the top and bottom of diagrams with to
move ↑’s on the top to the left and ↑’s on the bottom to the right. The top-right vertical map is
given analogously, using F( ) = flipV ∗,V . The bottom vertical maps are the usual isomorphisms
that hold in any rigid monoidal supercategory. In particular, the bottom-left vertical map is the
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k-linear isomorphism given on diagrams by

· · · · · ·

· · · · · ·
7→

· · ·
...· · ·

...
· · · · · ·

with inverse

· · · · · ·

· · · · · ·
7→

... · · ·

· · ·· · · ...

· · ·

where the rectangle denotes some diagram.
Since all the horizontal maps are isomorphisms, it suffices to show that the bottommost horizontal

map has the desired properties. Thus, we must show that the map

(5.17) F : HomOBk(d)(↑
⊗r, ↑⊗s) → HomGL(d,k)(V

⊗r, V ⊗s)

is surjective for all r, s ∈ N. For α ∈ k×, the central element αI ∈ GL(d,k) acts on V ⊗r as αr.
Thus

HomGL(d,k)(V
⊗r, V ⊗s) = 0 for r ̸= s.

So it suffices to consider the case r = s. In this case, we have an algebra homomorphism

kSr → EndOBk(↑
⊗r)

sending the simple transposition si to the crossing of strings i and i+ 1. Composition with (5.17)
corresponds to the action of kSr on V ⊗r by permutation of the factors. Then surjectivity of the
map (5.17) follows from Schur–Weyl duality. (See [dCP76, Th. 4.1] for a proof that holds in the
generality of an infinite ground field. In fact, the result there is more general.) □

Remark 5.10. (a) When d ≥ r = s, the map (5.17) is also injective.
(b) The endomorphism algebra EndOBk(d)(↑

⊗r ⊗ ↓⊗s) is sometimes called the walled Brauer
algebra in the literature.

(c) One can give an explicit basis of each morphism space of OBk(d) in terms of oriented Brauer
diagrams.

(d) The semisimplification of the idempotent completion of OBk(d) is Deligne’s interpolating
category for the general linear groups.

6. Self-duality in monoidal categories

We continue to assume that C is a rigid strict symmetric monoidal category with our conventions
from Section 4. It often occurs in representation theory that a representation is dual to itself. In
this case, the discussion of Section 4 still applies, but it is no longer useful to orient strings to
distinguish between and object and its dual. Instead, we use unoriented strings. In other words, X
is self-dual if we have morphisms

X

: X ⊗X → 1 and
X

: 1 → X ⊗X

such that

(6.1)

X

=

X

=

X

.
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6.1. A universal category with a self-dual object. The Temperley–Lieb category TL is the
strict k-linear monoidal category with one generating object I, two generating morphisms

: I⊗ I → 1, : 1 → I⊗ I,

and relations
= = .

For d ∈ k, we define the specialized Temperley–Lieb category TLk(d) to be the quotient of TLk by
the relation

= d11.

Objects in TLk and TLk(d) are of the form I⊗n, n ∈ N. For n ∈ N, the endomorphism algebra
EndTLk(d)(I

⊗n) is the Temperley–Lieb algebra TLn(d). An example of a morphism in TLk is

2 + 4 ∈ HomOTLk(I
⊗6, I⊗4).

The category TLk(d) is the free k-linear monoidal category on a self-dual object of categorical
dimension d. If X is a self-dual object of categorical dimension d in a k-linear monoidal category
C, then there exists a unique monoidal functor

TLk(d) → C, I → X,

sending and to the unit and counit of the self-duality of X.

6.2. Symmetry and self-duality. Now let us examine the interaction between self-duality and
symmetry. Suppose that X is a self-dual object with

(6.2) EndC(X) = k1X ∼= k.
As motivation for this assumption, one should keep in mind the case where k is algebraically
closed and X is a simple object in some category of modules. Then Schur’s lemma implies that
End(X) ∼= k.

Lemma 6.1. There exists α ∈ {±1} such that

X

= α
X

and
X

= α
X

.

Proof. It follows from (6.1) that the k-linear maps

HomC(X ⊗X,1) → EndC(X) and EndC(X) → HomC(X ⊗X,1)

given by

f 7→ f and g 7→ g

are mutually inverse. Here f and g represent arbitrary morphisms in HomC(X⊗X,1) and EndC(X),
respectively.

Thus HomC(X ⊗X,1) ∼= k, with basis

X

.

It follows that

X

= α
X
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for some α ∈ k. Attaching a crossing to the bottom then gives

X

= α

X

= α2

X

.

Hence α2 = 1, and so α ∈ {±1}.
An analogous argument shows that

X

= β
X

for some β ∈ {±1}. It remains to show that α = β. To see this, note that

α

X

(6.1)
= α

X

=

X

(4.7)
=

X

(4.7)
=

X

= β

X

(6.1)
= β

X

.

Hence α = β, as desired. □

7. The unoriented Brauer category

We now define the analogue of the oriented Brauer category where the generating object is
self-dual.

Definition 7.1. The Brauer category Bk is the strict k-linear monoidal category generated by an
object I and morphisms

: I⊗ I → I⊗ I, : I⊗ I → 1, : 1 → I⊗ I,

subject to the relations

= , = ,(7.1)

= , = ,(7.2)

= = .(7.3)

For d ∈ k, we define the specialized Brauer category Bk(d) to be the quotient of Bk by the relation

(7.4) = d11.

We call d the dimension parameter. When we wish to emphasize the difference from the oriented
Brauer category, we will call Bk and Bk(d) the unoriented Brauer category and the specialized
unoriented Brauer category, respectively.

Remark 7.2. Lemma 6.1 suggests that another natural definition of the Brauer category would
come from replacing the first relation in (7.2) by the relation

= − .

However, the category B ′
k obtained this way is isomorphic to Bk via the monoidal functor defined

by
B ′
k → Bk, 7→ − , 7→ , 7→ .

The category Bk is the free k-linear rigid symmetric monoidal category on a symmetrically self-
dual object. Similarly, Bk(d) is the free k-linear rigid symmetric monoidal category on a symmetri-
cally self-dual object of categorical dimension d. These categories have the corresponding universal
properties.
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Objects in Bk(d) are of the form I⊗n, n ∈ N. An example of a morphism in Bk(d) is

− ∈ HomBk(d)

(
I⊗9, I⊗7

)
.

The endomorphism algebras EndBk(d)(I
⊗n), n ∈ N, d ∈ k, are called Brauer algebras.

7.1. Application to the orthogonal and symplectic groups. Let us now use the universal
property of the Brauer category to study the representation theory of the orthogonal group. Let
V = kd be the natural module for the orthogonal group O(d,k). By definition, O(d,k) is the
subgroup of GL(d,k) fixing a nondegenerate symmetric bilinear form

φ : V ⊗ V → k.
Choose an orthonormal basis BV of V , and define

φ′ : k → V ⊗ V, 1 7→
∑
v∈BV

v ⊗ v.

Exercise 7.3. Show that φ′ is independent of the choice of BV .

The bilinear form φ identifies V with its dual V ∗. In other words, V is a self-dual object of the
category O(d,k)-mod of finite-dimensional O(d,k)-modules. Since V has dimension d, we have a
monoidal functor

(7.5) Bk(d) → O(d,k)-mod

determined on objects by
I 7→ V

and on morphisms by
7→ flipV,V , 7→ φ, 7→ φ′.

An analogous construction works for the symplectic groups. Let V = k2d be the natural module
for the symplectic group Sp(2d,k). By definition, Sp(2d,k) is the subgroup of GL(2d,k) fixing a
nondegenerate skew-symmetric bilinear form

ω : V ⊗ V → k.
Choose a basis BV of V , and let {v∨ : v ∈ BV } be the left dual basis given by

ω(v∨, w) = δvw, v, w ∈ BV .

Then define
ω′ : k → V ⊗ V, 1 7→

∑
v∈BV

v ⊗ v∨.

We have a monoidal functor

(7.6) Bk(−2d) → Sp(2d,k)-mod

determined on objects by
I 7→ V

and on morphisms by
7→ −flipV,V , 7→ ω, 7→ ω′.

Exercise 7.4. Show directly that relations (7.1) to (7.3) are respected by the functor (7.6).

Theorem 7.5. If k is an infinite field of characteristic not equal to two, then the functors (7.5)
and (7.6) are full.
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Proof. The proof of this theorem is similar to the proof of Theorem 5.9. One uses the cups and
caps to reduce the statement to a classical one about the Brauer algebra; see [DH09]. □

Remark 7.6. In Theorem 7.5, it is crucial that the target is the category of modules for the
orthogonal group O(d,C). If we replaced the group by its Lie algebra so(d,C), which would be
equivalent to replacing O(d,C) by SO(d,C), then the functor would not be full in general. For
example, if d ≥ 3 is an odd integer, then Λd(V ) is isomorphic to the trivial module as SO(d,C)-
modules, but not as O(d,C)-modules, since the negative of the identity matrix acts on Λd(V ) as
−1. Thus, the isomorphism Λd(V ) ∼= C of SO(d,C)-modules is not in the image of F.

Note that, in the symplectic case, V has negative categorical dimension since

(7.7) F
( )

=
∑
v∈BV

φ(v, v∨)11 = −
∑
v∈BV

φ(v∨, v)11 = −2d11.

This suggests another approach to the symplectic case. If we view V as a purely odd vector
superspace, then it has superdimension −2d and ω is a nondegenerate supersymmetric bilinear
form. In fact, the orthogonal and symplectic cases can be unified in this way. If V = km|2n is a
vector superspace and φ is nondegenerate supersymmetric bilinear form, then we have a monoidal
functor

Bk(m− 2n) → OSp(m|2n)-smod,

I 7→ V, 7→ flipV,V , 7→ φ, 7→ φ′,

where OSp(m|2n)-smod is the category of finite-dimensional modules over the orthosymplectic group
OSp(m|2n), and flip is now given by

(7.8) flipV,W : V ⊗W → W ⊗ V, v ⊗ w 7→ (−1)v̄w̄w ⊗ v,

for vector superspaces V and W . This functor is full; see [DLZ18, LZ17].

8. Going further

In this final section, we briefly examine generalizations of the theory we have examined so far.
In particular, we look at the setting of monoidal supercategories. Another further direction, which
we do not discuss here, is to the setting of quantized enveloping (super)algebras. To simplify our
discussion, we work over the ground field k = C throughout this section.

8.1. Monoidal supercategories. As noted in Section 7.1, we have a full functor

BC(m− 2n) → OSp(m|2n,C)-smod.

The functor of (5.15) can also be extended to the super setting, yielding a full functor

OBC(m− n) → GL(m|n,C)-smod.

Once we have moved to the super setting, it makes sense to generalize our discussion of symmetric
and duality from the setting of monoidal categories to that of monoidal supercategories. For a
detailed treatment of monoidal supercategories, we refer the reader to [BE17]. The main difference
is that, in a monoidal supercategory C, we have that HomC(X,Y ) is a vector superspace for all
objects X and Y . The interchange law becomes

(8.1)
f

g
= f g = (−1)f̄ ḡ

f

g
.
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8.2. The periplectic Brauer supercategory. Our discussion of symmetric monoidal supercate-
gories is almost identical to that for symmetric monoidal categories. The only difference is that, in
our applications to representation theory, the crossing is sent to the super analogue (7.8) of the flip
map.

When we discuss duality in monoidal supercategories, some genuinely new possibilities arise.
In particular, the unit and counit morphisms could be odd. This happens when an object X is
isomorphic to the parity shift of the dual of an object Y . If X ≇ Y , then we can replace Y by its
parity shift ΠY to return to the situation of even units and counits. However, for self -dual objects,
this trick does not work. This leads to the following variation of the Brauer category.

Definition 8.1 (Periplectic Brauer category). The periplectic Brauer category PBk is the strict
monoidal supercategory generated by one object I and morphisms

: I⊗2 → I⊗2, : I⊗2 → 1, : 1 → I⊗2,

subject to the relations

= , = , = = − , = , = .(8.2)

The morphisms and are both odd, and is even.

Proposition 8.2. In PBk, we have

(8.3) = , = − , = 0.

Proof. For the first relation in (8.3), we have

=
(8.1)
= − = − = .

Then, for the second relation in (8.3), we compute

= − = − (8.1)
= = = = − .

Finally, for the third relation in (8.3), we have

= = − =⇒ = 0.

In the first equality above, we used the fifth equality in (8.2) and, in the second equality above, we
used the second equality in (8.3). □

The third relation in (8.3) tells us that the generating object I in PBk has categorical dimension
zero. In fact, this should not surprise us. If vector superspace V is isomorphic to the parity shift of
its dual, then the dimension of its even part is equal to the dimension of its odd part. Hence, the
superdimension of V is zero.

The periplectic Brauer supercategory is the free symmetric monoidal supercategory on a super-
symmetrically odd-self-dual object. This leads to the fact that there exists a monoidal superfunctor

PBC → P(n)-smod

where P(n) is the periplectic supergroup, which is the automorphism supergroup of Cn|n preserving
a nondegenerate supersymmetric odd bilinear form. This functor is full. This result was proved
in [CE21, Th. 6.2.1], with the key ingredient being [DLZ18, §4.9]. Note that fullness holds for all
n ∈ N, with the supercategory PBC not depending on n.
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8.3. The oriented Brauer–Clifford supercategory. In the monoidal (super)categories OBk(d),
Bk(d), and PBk(d), the endomorphism algebras of the generating objects consist of scalar multiples
of the identity. We even explicitly considered this type of assumption in (6.2). As mentioned
in Section 6.2, this assumption is natural if k is algebraically closed and we want our generating
object to map to a simple object V in some category of modules, since Schur’s lemma implies that
End(V ) ∼= k.

In the super world, the situation is a bit different. If V is a simple module, then Schur’s lemma
implies that End(V ) is a complex division superalgebra. There are precisely two such complex
division superalgebras: C itself and the Clifford superalgebra Cl generated by an odd element ε
satisfying ε2 = −1. We say that a simple module V is of type M if End(V ) ∼= k and of type Q if
End(V ) ∼= Cl. This leads to the following variation of the oriented Brauer category.

Definition 8.3 (The oriented Brauer–Clifford supercategory). The oriented Brauer–Clifford su-
percategory OBCC is the strict monoidal supercategory obtained from OBC by adjoining an odd
morphism

: ↑ → ↑,
and imposing the additional relations

= − , = , = 0.

One can show that, in OBCC, we have

= 0.

(For details, see [BCK19, (3.16)].) Thus, as for the periplectic Brauer category, the categorical
dimension of the generating object ↑ is zero. Again, this should not surprise us. If V is a simple
module of type Q, then the odd element ε of the Clifford superalgebra gives an odd automorphism
of V . Hence, the even and odd parts of V have the same dimension, and so the superdimension of
V is zero.

The oriented Brauer–Clifford supercategory is the free symmetric monoidal supercategory on an
object of type Q. This leads to the fact that there exists a monoidal superfunctor

OBCC → Q(n)-smod

where Q(n) is the isomeric supergroup (also known as the queer supergroup), which is the auto-
morphism group of a simple module of type Q and dimension n|n. This functor is full; see [BCK19,
Th. 4.1]. Note that this holds for all n ∈ N, with the supercategory OBCC not depending on n.

One might also expect that there should be an isomeric version of the unoriented Brauer category.
However, one can show that such a category collapses to the zero category.

8.4. More general ground fields. What happens if we want to use the methods described in
these notes to representation theory over more general fields? If we want our generating objects to
correspond to simple objects, then Schur’s lemma tells us that our strands should carry decorations
labelled by elements in a division superalgebra over our ground field k. When k is not algebraically
closed, there can be many such division superalgebras. For instance, when k = R, there are exactly
three real division algebras: the real numbers, the complex numbers, and the quaternions. If we
move to the super setting, there are ten real division superalgebras. This leads to ten versions of
the oriented Brauer category. For the unoriented case, our division superalgebra must carry and
anti-involution. Exactly four of the ten real division superalgebras admit an anti-involution. So,
when k = R, we are led to four versions of the Brauer category. These variations of the oriented
and unoriented Brauer categories are related to the representation theory of real supergroups. We
refer the reader to [SSS23] for details.
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