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Abstract. We give an introduction to category theory and operad theory aimed at the
undergraduate level. We first explore operads in the category of sets, and then generalize
to other familiar categories. Finally, we develop tools to construct operads via generators
and relations, and provide several examples of operads in various categories. Throughout,
we highlight the ways in which operads can be seen to encode the properties of algebraic
structures across different categories.
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1. Introduction

Sets equipped with operations are ubiquitous in mathematics, and many familiar operati-
ons share key properties. For instance, the addition of real numbers, composition of functions,
and concatenation of strings are all associative operations with an identity element. In other
words, all three are examples of monoids. Rather than working with particular examples of
sets and operations directly, it is often more convenient to abstract out their common pro-
perties and work with algebraic structures instead. For instance, one can prove that in any
monoid, arbitrarily long products x1x2 · · ·xn have an unambiguous value, and thus brackets
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may be omitted. By working at the level of algebraic structures, one can prove theorems in
greater generality, and avoid repeating the same arguments for many similar cases.

Much like the sets and operations that they abstract, many common algebraic structures
have similar properties. For instance, semigroups, monoids, groups, rings, and vector spaces
all feature an associative operation, and all but the first of those structures have an identity
element. As such, one can prove similar theorems for many algebraic structures; for example,
the aforementioned generalized associativity holds in any structure that has an associative
operation. We are thus presented with the opportunity to abstract up another level, and
pass to a structure that models other algebraic structures. Operads are precisely this type
of meta-algebraic structure.

Operads were first rigorously defined by J. Peter May in his 1972 book [May72], which
investigated the applications of operads to loop spaces and homotopy analysis. In this
document, we will explore the basic notions of operad theory, with a focus on using operads
to model the properties of other algebraic structures via category theoretic constructions.
This document is aimed at the undergraduate level. We assume that the reader is familiar
with basic linear algebra, group theory, ring theory, and with tensor products of vector
spaces. Knowledge of basic graph theory is needed to understand some of the constructions
in Section 5.1. No background in category theory or operad theory is required. For a more
comprehensive treatment of operads, see, for example, [Lei04].

We begin in Section 2 by recalling the definitions of common algebraic structures, and
then give a brief introduction to category theory. In Section 3, we define and give examples of
operads in the category of sets, and then prove several theorems that show a correspondence
between operads and various algebraic structures. In Section 4, we treat operads defined
over more general categories, and prove similar correspondence theorems for them. Finally,
in Section 5, we develop the necessary machinery to instantiate operads using generators and
relations, and give several examples of the different types of operads that can be constructed
using those methods.

Acknowledgements. The creation of this document was funded by an Undergraduate Stu-
dent Research Award from the Natural Sciences and Engineering Research Council of Canada
(NSERC), and by the NSERC Discovery Grant (RGPIN-2017-03854) of Alistair Savage, who
supervised this project. I would like to thank Professor Savage for his support and guidance.

2. Preliminary Definitions

2.1. Algebraic Structures.
In this section, we give definitions for the algebraic structures that will be used throughout

the document. Note that graded rings and modules are a useful source of examples, but
familiarity with graded structures is not strictly needed for operad theory. For a detailed
introduction to abstract algebra, see, for example, [JB18].

Definition 2.1.1 (Semigroup). A semigroup is a pair (X,m), where X is a set and m is an
associative binary function on X called the semigroup multiplication. That is, m : X2 → X
satisfies m(m(x, y), z) = m(x,m(y, z)) for all x, y, z ∈ X.
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Let (X,m) and (Y, p) be semigroups. A semigroup homomorphism from (X,m) to (Y, p)
is a function f : X → Y such that f(m(x, x′)) = p(f(x), f(x′)) for all x, x′ ∈ X. In other
words, f commutes with the semigroup multiplication.

Definition 2.1.2 (Monoid). A monoid is a triple (X,m, I) such that (X,m) is a semigroup,
and I : {?} → X is a function from a singleton set to X that outputs an identity element
for (X,m). That is, m(I(?), x) = x = m(x, I(?)) for all x ∈ X. This definition is essentially
equivalent to the traditional definition of a monoid as a triple (X,m, i) where i ∈ X is
itself an identity element, but the formulation in terms of maps is easier to work with in a
category-theoretic framework.

Let (X,m, I) and (Y, p, E) be monoids. A monoid homomorphism from (X,m, I) to
(Y, p, E) is a semigroup homomorphism f : X → Y that additionally satisfies f ◦ I = E.

Definition 2.1.3 (Associative Algebra). A associative algebra over a field K is a pair (V,m),
where V is a vector space over K and m is an associative binary K-bilinear operation on V .

Let (V,m) and (W, p) be associative algebras over K. A homomorphism of associative alge-
bras from (V,m) to (W, p) is a K-linear map f : V → W such that f(m(v, v′)) = p(f(v), f(v′))
for all v, v′ ∈ V .

Definition 2.1.4 (Unital Associative Algebra). A unital associative algebra over K is a
triple (V,m, I) such that (V,m) is an associative algebra and I : K→ V is a linear map such
that I(1K) is an identity element for (V,m).

Let (V,m, I) and (W, p,E) be unital associative algebras over K. A homomorphism of
unital associative algebras from (V,m, I) to (W, p,E) is a homomorphism of associative
algebras f : V → W that additionally satisfies f ◦ I = E.

Definition 2.1.5 (Graded Ring, Graded Module). Let Γ be a monoid, and denote its mul-
tiplication by juxtaposition. A Γ-graded ring is a ring A together with a direct sum decom-
position A =

⊕
γ∈Γ

Rγ, where each Rγ is an abelian group with respect to the addition in R,

and RγRα ⊆ Rγα for any γ, α ∈ Γ. That is, for any g ∈ Rγ, a ∈ Rα, we have ga ∈ Rγα.
A Γ-graded A-module is a module M over A (when considered as a non-graded ring)

together with a direct sum decomposition M =
⊕
γ∈Γ

Mγ, where each Mγ is an abelian group

with respect to the addition in M , and AγMα ⊆Mγα for any γ, α ∈ Γ.

Definition 2.1.6. Let A be a Γ-graded ring, and let γ ∈ Γ. Any nonzero element g ∈ Aγ is
called a homogeneous element of grade γ, and we write g = γ to indicate g’s grade. We use
the same notation for elements of graded modules.

Example 2.1.7. Any ring A can be given the structure of a Γ-graded ring by setting Ae = A
for the identity element e of Γ, and Aγ = 0 (denoting the zero subring) for all other γ ∈ Γ.
That is, all nonzero elements of A have grade e. This grading is called the trivial grading.

A polynomial ring A[x] is naturally graded by N; take (A[x])i to be Axi = {axi | a ∈ A}
for each i ∈ N. For instance, x2 = 2. Note that not all elements of A[x] are homogeneous;
one example of an inhomogeneous element is x+ x2, as it doesn’t belong to any (A[x])i.

Definition 2.1.8 (Graded Submodule, Graded Quotient Module). Let A be a Γ-graded
ring, M a Γ-graded A-module, and N a (non-graded) submodule of M . For each γ ∈ Γ,
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define Nγ = N ∩Mγ. If N is a Γ-graded A-module when equipped with the choice of grading
N =

⊕
γ∈Γ

Nγ, we say that N (together with this grading) is a graded submodule of M .

If N is a graded submodule of M , the quotient module M/N is itself a graded A-module,
where the grading is given by (M/N)γ = Mγ/Nγ.

Definition 2.1.9 (Grade-Preserving Module Homomorphism). Let A be a Γ-graded ring,
and M and N two Γ-graded A-modules. A grade-preserving module homomorphism, also
called a graded module homomorphism, is a module homomorphism f : M → N such that
f(Mγ) ⊆ Nγ for all γ ∈ Γ.

Definition 2.1.10 (Super Vector Space). Let K be a field. Then a super K-vector space is
a K-vector space V equipped with a subspace decomposition V = V0 ⊕ V1. In other words,
a super K-vector space is a Z2-graded K-module, where K is given the trivial grading.

2.2. Category Theory.
Category theory is perhaps the most abstract branch of mathematics. Rather than dealing

directly with objects like sets or vector spaces, category theoretic constructions focus on
the maps between those objects. By working at this level of abstraction, the similarities
between different mathematical structures can be more readily and rigorously identified. In
this section, we provide an introduction to basic category theory, with a focus on symmetric
monoidal categories, an essential component of operad theory. For a broader introduction
to category theory at the undergraduate level, see, for example, [Lei14].

Definition 2.2.1 (Category). A category C consists of the following:

• A collection (e.g. a set or proper class) of objects, denoted Ob(C),
• For each pair of objects x, y ∈ Ob(C), a collection of morphisms from x to y, denoted

HomC(x, y) or just Hom(x, y) when the category is clear,
• For any objects x, y, z ∈ Ob(C), a function ◦ : Hom(y, z) × Hom(x, y) → Hom(x, z)

called composition, which we usually write as ◦(g, f) = g ◦ f ,
• For each object x ∈ Ob(C), an element idx ∈ Hom(x, x) called the identity morphism

for x.

Morphisms from x to y are also called morphisms with domain x and codomain y, morphisms
with source x and target y, or arrows from x to y. For any morphism f ∈ Hom(x, y), we
write f : x→ y to indicate its source and target.

We additionally require that the following axioms are satisfied:

• Composition is associative. That is, for each quadruple of objects w, x, y, z ∈ Ob(C)
and triple of morphisms f ∈ Hom(y, z), g ∈ Hom(x, y), h ∈ Hom(w, x), we have
(f ◦ g) ◦ h = f ◦ (g ◦ h).
• Identity morphisms act as identity elements for composition. That is, for any pair of

objects x, y ∈ Ob(C) and a morphism f ∈ Hom(x, y), we have idy ◦f = f = f ◦ idx.

Definition 2.2.2 (Inverse Morphism, Isomorphism). Let C be a category, and f ∈ Hom(x, y)
any morphism in C. A morphism g ∈ Hom(y, x) is said to be the inverse morphism of f
if g ◦ f = idx and f ◦ g = idy. Inverse morphisms, when they exist, are unique. We write
g = f−1 for the inverse of f . A morphism that has an inverse is called an isomorphism.

Example 2.2.3 (Category of Sets). The category of sets, denoted Set, is defined by taking
Ob(Set) to be the collection of all sets, and each Hom(x, y) to be the set of functions from
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x to y. The composition in this category is given by the usual composition of functions,
and the identity morphisms are set-theoretic identity functions. Isomorphisms in Set are
bijections.

Example 2.2.4 (Category of K-Vector Spaces). For any field K, the category of K-vector
spaces, VectK, is defined by taking Ob(VectK) to be the collection of all K-vector spaces,
and each Hom(x, y) to be the set of linear maps from x to y. The composition is given
by the composition of linear maps, and the identity morphisms are identity linear maps.
Isomorphisms in VectK are bijective linear maps.

Example 2.2.5 (Category of Γ-graded A-modules). Let Γ be a monoid, and A a com-
mutative Γ-graded ring. The category of Γ-graded A-modules, ModΓ

A, is defined by taking
Ob(ModΓ

A) to be the collection of all Γ-graded A-modules, and each Hom(x, y) to be the
set of grade-preserving module homomorphisms from x to y. One can also consider the
category of graded modules where the hom-sets consist of all module homomorphisms from
x to y, but it is more convenient to use only grade-preserving maps in the context of ope-
rad theory. The composition is given by the composition of module homomorphisms, and
the identity morphisms are identity module homomorphisms. Isomorphisms in ModΓ

A are
bijective grade-preserving module homomorphisms.

Remark 2.2.6. Let A be a commutative ring, and let Z1 denote the trivial monoid. Then
ModZ1

A is essentially the same as the category of A-modules with no grading; simply forget the
grading on any given module in ModZ1

A . As such, any of the examples in this document that
deal with the category of Γ-graded A-modules can also be applied to ordinary A-modules.
In the same way, as K-vector spaces are simply K-modules, we can view ModZ1

K as being the
same as VectK.

Definition 2.2.7 (Locally Small Category). A category C is called locally small if HomC(x, y)
is a set (i.e. not a proper class or some other larger collection) for all x, y ∈ Ob(C). These
sets of morphisms are called external hom-sets, or just hom-sets. Set, VectK, and ModΓ

A are
all examples of locally small categories.

Definition 2.2.8 (Commutative Diagram). When dealing with equations that involve the
composition of morphisms in a category, we often write the compositions diagrammatically
to serve as a visual aid. In these diagrams, vertices represent objects in a category, and
the arrows between vertices represent morphisms between those objects. A directed path
in a diagram represents the composition of morphisms in the order that the arrows are
traversed. To say that a diagram is commutative means that for any two directed paths with
the same start and endpoints, the composite morphisms corresponding to those paths are
equal. For instance, consider the set of real numbers R ∈ Ob(Set), and the real functions
(i.e. morphisms in Set) given by f(x) = 2x, g(x) = 3x, and h(x) = 6x. Then the following
commutative diagram indicates the fact that g ◦ f = h:

(1)

R
f

��

h // R

R
g

::

.
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Note that the order of composition, g ◦ f , is opposite to the order that the arrows in the
diagram are traversed, corresponding to the fact that g◦f is the function that first applies f ,
then g. For larger diagrams, no bracketing is required due to the fact that the composition
of morphisms in any category is associative.

For another example, take any associative K-algebra (V,m). Let m × idV : V 3 → V 2

denote the function with action (x, y, z) 7→ (m(x, y), z), and similarly let idV × m : V 3 → V 2

denote the function with action (x, y, z) 7→ (x,m(y, z)). Then the following commutative
diagram reflects the associativity of m—namely that m(m(x, y), z) = m(x,m(y, z):

(2)

V 3

idV ×m
��

m×idV // V 2

m

��
V 2

m
// V

.

Definition 2.2.9 (Linear Diagram). A diagram is called linear or formal if each variable
appears at most once in each vertex. For instance, diagram (1) is linear, but diagram
(2) is not, since, for example, the variable V appears three times in the top left vertex:
V 3 = V × V × V .

Definition 2.2.10 (Opposite Category). Let C be a category. The opposite category of C,
denoted Cop, is defined as follows:

• Set Ob(Cop) = Ob(C). That is, the opposite category has the same objects as C. For
any object x ∈ Ob(C), we sometimes denote the corresponding object in Cop as xop

to emphasize the fact we are working in a different category.
• For each pair of objects xop, yop ∈ Ob(Cop), set HomCop(xop, yop) = HomC(y, x). That

is, the morphisms in Cop are the same as those in C, but with the source and target
of each morphism being formally swapped. While objects in opposite categories are
only sometimes written in the form xop in practice, we almost always use the notation
f op ∈ HomCop(x, y) to denote the opposite morphism corresponding to a morphism
f ∈ HomC(y, x).
• For any triple of objects xop, yop, zop ∈ Ob(Cop), define the composition function
◦op : Hom(yop, zop)×Hom(xop, yop)→ Hom(xop, zop) by ◦op(gop, f op) = (◦(f, g))op for
any f op ∈ Hom(xop, yop) and gop ∈ Hom(yop, zop), where ◦ denotes the composition
in C. That is, for any such pair of morphisms we set gop ◦op f

op = (f ◦ g)op; note that
we swap the order of f and g to obtain a pair of composable morphisms in C.
• The identity morphisms in the opposite category are the same as those in C. In other

words, idxop = (idx)
op for all xop ∈ Ob(Cop).

Definition 2.2.11 (Terminal Object). Let C be a category. An object t ∈ Ob(C) is called
a terminal object if for every object x ∈ Ob(C), there is a unique morphism from x to t.
In Set, any singleton set is a terminal object. In VectK, the zero vector space is a terminal
object. In ModΓ

A, the trivial graded module is a terminal object.

Definition 2.2.12 (Initial Object). Let C be a category. An object i ∈ Ob(C) is called
an initial object if for every object x ∈ Ob(C), there is a unique morphism from i to x.
Equivalently, i is an initial object if and only it is a terminal object in Cop. In Set, the empty
set is the unique initial object. In VectK, the zero vector space is an initial object. In ModΓ

A,
the trivial graded module is an initial object.
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Definition 2.2.13 (Product Category). Let C and D be categories. The product category
C × D is defined as follows:

• The collection of objects in C×D consists of the ordered pairs (c, d), where c ∈ Ob(C)
and d ∈ Ob(D).
• For any (x, x′), (y, y′) ∈ Ob(C×D), define Hom((x, x′), (y, y′)) to consist of the ordered

pairs (f, a), where f ∈ HomC(x, y) and a ∈ HomD(x′, y′).
• For any morphisms (f, a) ∈ Hom((x, x′), (y, y′)) and (g, b) ∈ Hom((y, y′), (z, z′)),

define the composition in C × D by: (g, b) ◦ (f, a) = (g ◦ f, b ◦ a). That is, compose
the morphisms component-wise.
• The identity morphisms in the product category are the pairs of identity morphisms

from C and D. That is, id(c,d) = (idc, idd) for any (c, d) ∈ Ob(C × D).

Definition 2.2.14 (Functor, Identity Functor). Let C and D be categories. A functor F
from C to D, denoted F : C → D, consists of:

• A map FOb : Ob(C)→ Ob(D),
• For each pair of objects x, y ∈ Ob(C), a map Fx,y : HomC(x, y)→ HomD(FOb(x), FOb(y)).

We usually suppress the subscripts and write F (x) = FOb(x) and F (f) = Fx,y(f) for the
action of a functor on either objects or morphisms. We require that these maps respect
composition and identities in the following sense:

• For any composition of morphisms g ◦ f in C, we have F (g ◦ f) = F (g) ◦ F (f),
• For any object x ∈ Ob(C), we have F (idx) = idF (x).

One can easily verify that the composition of two functors F : C → D and G : D → E (that is,
where each of the component maps are composed) results in another functor, G ◦F : C → E .
The identity functor on C, denoted idC : C → C, is defined by idC(x) = x and idC(f) = f for
all objects x and morphisms f .

Definition 2.2.15 (External Hom-Functor). Let C be a locally small category. Then the
external hom-functor for C is the functor Hom: Cop × C → Set that sends a pair of objects
(x, y) to the hom-set Hom(x, y) = HomC(x, y), and sends any pair of morphisms (f op, g)
with f op : x → x′, g : y → y′ to the function Hom(f op, g) : Hom(x, y) → Hom(x′, y′) defined
as follows: for any morphism h : x → y, set Hom(f op, g)(h) = g ◦ h ◦ f . Note that f is a
morphism from x′ to x since f op is a morphism from x to x′, and thus this composition has
the desired source and target.

Definition 2.2.16 (Isomorphism of Categories). Let C and D be categories. A functor
F : C → D is called an isomorphism of categories if there exists a functor G : D → C such
that G ◦ F = idC and F ◦ G = idD. In such a case, we call G the inverse functor to F ,
write G = F−1, and say that C and D are isomorphic categories. Isomorphic categories are
essentially identical in terms of their structure as categories.

Definition 2.2.17 (Natural Transformation, Natural Isomorphism). Let C and D be cate-
gories, and F,G : C → D two functors between them. A natural transformation α from F
to G, denoted α : F → G, is a map α : Ob(C) → HomD(F (−), G(−)), with action deno-
ted α(x) = αx : F (x) → G(x), such that for any morphism f ∈ HomC(x, y), the following
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diagram commutes:

F (x)

αx
��

F (f)
// F (y)

αy

��
G(x)

G(f)
// G(y)

.

That is, we require αy ◦ F (f) = G(f) ◦ αx. One can easily verify that the composition
of two natural transformations results in another natural transformation. For any functor
F : C → D, the identity natural transformation is denoted idF : F → F and defined by
idF (x) = idF (x) for all objects x ∈ Ob(C).

For any natural transformation α : F → G, a natural transformation β : G → F is said
to be the inverse natural transformation of α if β ◦ α = idF and α ◦ β = idG. Such inverses
are unique, and we write β = α−1. Natural transformations that have an inverse are called
natural isomorphisms.

Definition 2.2.18 (Monoidal Category). A monoidal category is a category C equipped
with the following:

• A functor ⊗ : C × C → C, called the tensor product and written ⊗(−,−) = −⊗−,
• An object u ∈ Ob(C), called the unit object or monoidal unit,
• A natural isomorphism α : (−⊗−)⊗− → −⊗(−⊗−) called the associator, natural in

all three of its arguments, with components of the form αx,y,z : (x⊗y)⊗z → x⊗(y⊗z),
• A natural isomorphism λ : u⊗− → − called the left unitor, with components of the

form λx : u⊗ x→ x,
• A natural isomorphism ρ : − ⊗u → − called the right unitor, with components of

the form ρx : x⊗ u→ x,

such that the following two diagrams, respectively called the triangle and pentagon diagrams,
commute for any objects w, x, y, z ∈ Ob(C):

(3)

(x⊗ u)⊗ y
αx,u,y

��

ρx⊗idy // x⊗ y

x⊗ (u⊗ y)

idx⊗λy

77

,

(4)

(w ⊗ x)⊗ (y ⊗ z)
αw,x,y⊗z

**
((w ⊗ x)⊗ y)⊗ z
αw,x,y⊗idz

��

αw⊗x,y,z
44

(w ⊗ (x⊗ (y ⊗ z)))

(w ⊗ (x⊗ y))⊗ z αw,x⊗y,z
// w ⊗ ((x⊗ y)⊗ z)

idw ⊗αx,y,z

OO .

Example 2.2.19. There is a canonical monoidal category structure on each of Set, VectK,
and ModΓ

A. In the first case, the tensor product is defined by sending a pair of sets (X, Y )
to their cartesian product X × Y , and a pair of functions f : X → X ′, g : Y → Y ′ to the
function f × g : X × Y → X ′ × Y ′, defined coordinate-wise: (f × g)(x, y) = (f(x), g(y)) for
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any x ∈ X, y ∈ Y . Any singleton set {?} may be selected as the unit object. The associator
sends any element ((x, y), z) ∈ (X × Y ) × Z to (x, (y, z)) ∈ X × (Y × Z). The left unitor
has action (?, x) 7→ x, and the right unitor has action (x, ?) 7→ x.

For the category of K-vector spaces, the tensor product is given by the usual tensor
product of vector spaces acting on both elements of the vector spaces and on linear maps
between those spaces. The unit object is the field K considered as a one-dimensional K-
vector space. The associator acts on simple tensors by (v ⊗ w) ⊗ u 7→ v ⊗ (w ⊗ u), and is
extended linearly to the rest of (V ⊗W )⊗ U . The left unitor has action k ⊗ v 7→ k · v, and
the right unitor has action v ⊗ k 7→ k · v, where · denotes scaling by k ∈ K.

Finally, in ModΓ
A, the tensor product is given by the usual tensor product of graded

modules—recall from Definition 2.2.5 that A is required to be commutative, so this tensor
product is well-defined. The unit object is the ring A considered as a trivially-graded module
over itself, and the associator and unitors are analogous to those in the case of K-vector
spaces.

Definition 2.2.20 (Symmetric Monoidal Category). A symmetric monoidal category is a
monoidal category C equipped with a natural isomorphism B−,− : − ⊗− → − ⊗ − called
the (symmetric) braiding, with components of the form Bx,y : x⊗ y → y ⊗ x. This braiding
must satisfy By,x ◦ Bx,y = idx⊗y for all x, y ∈ Ob(C), and the following diagram, called the
first hexagon diagram (or just the hexagon diagram) must commute:

(5)

x⊗ (y ⊗ z)
Bx,y⊗z // (y ⊗ z)⊗ x

αy,z,x

))
(x⊗ y)⊗ z

Bx,y⊗idz

))

αx,y,z
55

y ⊗ (z ⊗ x)

(y ⊗ x)⊗ z
αy,x,z // y ⊗ (x⊗ z)

idy ⊗Bx,z
55

.

Example 2.2.21. There is a canonical symmetric braiding in Set given by simply swapping
the order of elements: BX,Y (x, y) = (y, x) for any x ∈ X, y ∈ Y . Similarly, the braiding in
VectK is given by BV,W (v ⊗ w) = (w ⊗ v), and extended linearly to the rest of V ⊗W . The
braiding in ModΓ

A is also given by the linear extension of BN,M(n⊗m) = m⊗ n.
It is important to note that a given category may admit multiple distinct symmetric

monoidal structures, even if the underlying monoidal structure is fixed. For instance, consider
the case of ModZ2

K , the category of Z2-graded K-modules for some field K. The general
braiding defined for any ModΓ

A could be used here, but there is another natural choice.
ModZ2

K can also be seen as the category of K-super vector spaces, which has more structure

than a general category of graded modules. When considering ModZ2
K as the category of

super vector spaces, the braiding is taken to be the one given by BV,W (v⊗w) = (−1)w vw⊗v
for homogeneous elements v ∈ V and w ∈ W , and extended linearly to the rest of V ⊗W .
The definition of this braiding encodes the sign terms that naturally arise when working
with super vector spaces.

Theorem 2.2.22 (Coherence Theorem for (Symmetric) Monoidal Categories). Let C be a
monoidal category. Let D be a diagram in C where each arrow is a composition of identity
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morphisms, associativity morphisms α, unitors λ and ρ, their inverses, and/or arbitrary
tensor products thereof. Then D commutes.

If C is a symmetric monoidal category, a similar result holds. Let D be a linear diagram
in C where each arrow is a composition of identity morphisms, α, λ, ρ, the braiding B, their
inverses, and/or arbitrary tensor products thereof. Then D commutes.

Proof. See [ML63, Proof of Theorem 5.1]. �

Remark 2.2.23. The restriction to only linear diagrams in the symmetric case is necessary.
To illustrate, consider the following non-linear diagram:

(6) X ⊗X

BX,X

��

idX⊗X

AAX .

In general, the braiding in a symmetric monoidal category is not the identity, so this diagram
does not commute. However, the coherence theorem for symmetric monoidal categories can
be used to prove that certain non-linear diagrams commute. For instance, since the following
diagram is linear, the coherence theorem tells us it is commutative for any objects X and Y :

(7)

(X ⊗ Y )⊗ u
BX⊗Y,u
��

αX,Y,u // X ⊗ (Y ⊗ u)

idX ⊗ρY
��

u⊗ (X ⊗ Y )
λX⊗Y

// X ⊗ Y

.

In particular, the diagram commutes if you pick X = Y , giving a non-linear diagram; the
requirement of linearity serves to eliminate diagrams where different paths permute the
factors via the braiding in a fundamentally different way, masked by the fact that two or
more of the factors are equal.

Definition 2.2.24. Let C be a monoidal category, X1, X2, . . . , Xn, Y1, Y2, . . . , Yn ∈ Ob(C)
be objects in C, and f1 : X1 → Y1, f2 : X2 → Y2, . . . , fn : Xn → Yn be morphisms. We define
the unbracketed tensor product X1 ⊗X2 ⊗ · · · ⊗Xn to be interpreted with brackets nested
from left-to-right; for instance, if n = 4, we set X1⊗X2⊗X3⊗X4 = ((X1⊗X2)⊗X3)⊗X4.
We define the unbracketed tensor product of morphisms in the same way. Note then that
f1 ⊗ · · · ⊗ fn is a morphism from X1 ⊗ · · · ⊗ Xn to Y1 ⊗ · · · ⊗ Yn. We often use the “big

tensor” notation
n⊗
i=1

Xi := X1 ⊗X2 ⊗ · · · ⊗Xn for both types of unbracketed tensors.

Now let X and Y be two objects in C, and f : X → Y a morphism. We define tensor
powers by X⊗n = X ⊗ · · · ⊗X︸ ︷︷ ︸

n copies

. In the special case n = 0, we define X⊗0 = u, the monoidal

unit. Similarly, we set f⊗n = f ⊗ · · · ⊗ f︸ ︷︷ ︸
n copies

, with the special case f⊗0 = idu. Note then that

for any n ∈ N, the morphism f⊗n has domain X⊗n and codomain Y ⊗n, even in the n = 0
case.
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Remark 2.2.25. Suppose X1, X2, . . . , Xn, Y1, Y2, . . . , Yn are objects in a monoidal category
C. Let TX be a tensor product of the Xi in the order X1⊗X2⊗ · · · ⊗Xn, but with brackets
inserted arbitrarily between the factors. Similarly, let TY be a tensor product of the Yi in
the order Y1⊗Y2⊗· · ·⊗Yn with an arbitrary bracketing. It is clear that there is at least one
morphism a built up as a composition of associators with domain X1⊗X2⊗ · · · ⊗Xn (with
the left-to-right bracketing specified in Definition 2.2.24) and codomain TX , and similarly
at least one morphism b from TY to Y1 ⊗ Y2 ⊗ · · · ⊗ Yn (again, bracketed left-to-right).
Theorem 2.2.22 guarantees that a and b are unique. Thus for any morphism f : TX → TY ,
the composite b◦f ◦a has domain X1⊗· · ·⊗Xn and codomain Y1⊗· · ·⊗Yn. Throughout the
rest of the document, we identify the morphisms f and b ◦ f ◦ a. This identification together
with the notation of Definition 2.2.24 allows us to completely identify any two iterated tensor
products of the same objects in the same order, and avoid writing any associators explicitly.
In any case where the precise objects and morphisms involved need to be recovered, the
aforementioned uniqueness of a and b ensures that one can simply insert associators in any
way that makes domains and codomains of the morphisms formally match up.

Definition 2.2.26 (Semigroup Object). Let C be a monoidal category. A semigroup object
in C is a pair (O,m), where O is any object in C and m is a morphism from O⊗O to O such
that the following associativity diagram commutes:

(8)

O ⊗O ⊗O
m⊗idO

��

idO ⊗m // O ⊗O
m

��
O ⊗O m

// O

.

Definition 2.2.27 (Monoid Object). Let C be a monoidal category. A monoid object in C
is a triple (O,m, I), such that (O,m) is a semigroup object and I is a morphism from the
monoidal unit u to O such that the following identity diagrams commute:

(9)

u⊗O

λO ''

I⊗idO // O ⊗O
m

��

O ⊗ u idO ⊗I //

ρO
''

O ⊗O
m

��
O O

.

Definition 2.2.28 (Commutative Semigroup Object, Commutative Monoid Object). Let
C be a symmetric monoidal category. A commutative semigroup object in C is a semigroup
object (O,m) such that the following commutativity diagram commutes:

(10)

O ⊗O

m
''

BO,O // O ⊗O
m

��
O

.

A commutative monoid object in C is a monoid object (O,m, I) such that diagram 10 com-
mutes.

Example 2.2.29. In the category of sets with the usual monoidal structure, semigroup
objects are just semigroups, and monoid objects are monoids. In VectK, semigroup objects
are associative algebras, and monoid objects are unital associative algebras. In the category
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of super vector spaces, semigroup objects are superalgebras, and monoid objects are unital
superalgebras. The commutative versions of these objects give commutative semigroups,
monoids, algebras, etc. If one chooses the general ModΓ

A braiding for ModZ2
K , commuta-

tive semigroup and monoid objects are commutative superalgebras and commutative unital
superalgebras, respectively. Taking the super vector space braiding instead results in super-
commutative superalgebras and supercommutative unital superalgebras.

Definition 2.2.30 (Morphism of Semigroup Objects, Morphism of Monoid Objects). Let
C be a monoidal category, and (O,m), (P, n) two semigroup objects in C. A morphism of
semigroup objects from (O,m) to (P, n) is a morphism f : O → P such that the following
diagram commutes:

(11)

O ⊗O
m

��

f⊗f // P ⊗ P
n

��
O

f
// P

.

For any monoid objects (O,m, I) and (P, n, J) in C, a morphism of monoid objects from
(O,m, I) to (P, n, J) is a morphism f : O → P such that diagram (11) commutes and the
following diagram commutes:

(12)

u

J
$$

I // O

f
��
P

.

It can easily be verified that morphisms of semigroup and monoid objects are each closed
under composition, and that identity morphisms are morphisms of both semigroup and
monoid objects.

Definition 2.2.31 (Category of (Commutative) Semigroup Objects, Category of (Commu-
tative) Monoid Objects). Let C be a monoidal category. The category of semigroup objects
in C, denoted SemiC, is the category with C-semigroup objects as objects, morphisms of semi-
group objects as morphisms, and composition given by the composition of those morphisms
in C.

Similarly, the category of monoid objects in C, denoted MonC, is the category with C-
monoid objects as objects, morphisms of monoid objects as morphisms, and composition
given by the composition in C.

The categories of commutative semigroup and commutative monoid objects in C are deno-
ted CSemiC and CMonC. They have commutative semigroup or monoid objects as objects,
morphisms of semigroup or monoid objects as morphisms, and composition given by the
composition in C.

When working in the category of sets, we omit the symbol C and write just Semi,Mon,CSemi,
or CMon.

3. Operads in the Category of Sets

In this section, we explore operads in the familiar context of sets and functions. We
examine the most fundamental examples of operads, and use the language of category theory



AN INTRODUCTION TO OPERAD THEORY 13

to prove that they encode the properties of different algebraic structures. Along the way, we
use tree diagrams to visualize and better understand the axioms of an operad.

3.1. Basic Definitions.

Definition 3.1.1 (Nonsymmetric Operad). A nonsymmetric operad X, sometimes called
an operad without permutations, is a family {Xn}n∈N of sets whose elements are called n-ary
operations, together with a distinguished element I ∈ X1 and a collection of composition
functions ◦i1,...,ik : Xk × Xi1 × · · · × Xik → Xi1+···+ik (one for each k ≥ 1 and sequence of
natural numbers i1, . . . , ik) satisfying the associativity and identity axioms below. We denote
the action of the composition maps by:

(f, g1, . . . , gk) 7→ f ◦i1,...,ik (g1, . . . , gk),

and sometimes write just ◦ for a composition map when the subscript is clear from context.

(Associativity) Let n ∈ N, and f ∈ Xn. For each i ∈ {1, 2, . . . , n}, let ai ∈ N and gi ∈ Xai .
Then for each ai, for each j ∈ {1, 2, . . . , ai}, let hi,j ∈ Xki,j for some arbitrary ki,j ∈ N.
Then:

f◦(k1,1+···+k1,a1 ),··· ,(kn,1+···+kn,an )(g1◦k1,1,...,k1,a1 (h1,1, . . . , h1,a1), . . . , gn◦kn,1,...,kn,an (hn,1, . . . , hn,an))

= (f ◦a1,...,an (g1, . . . , gn)) ◦k1,1,...,k1,n,k2,1,...,kn,an (h1,1, . . . , h1,ai , h2,1, . . . , hn,an).

(Identity) For any n ∈ N and f ∈ Xn, we have f ◦ 1,...,1︸︷︷︸
n copies

(I, . . . , I︸ ︷︷ ︸
n copies

) = f = I ◦n (f).

A graphical interpretation of the operad axioms is outlined in Section 3.2.

Definition 3.1.2 (Symmetric Operad). A symmetric operad, sometimes just called an ope-
rad, is a nonsymmetric operad X equipped with a right action ∗ of the symmetric group Sn
on each Xn that satisfies the following equivariance axioms:

(Equivariance 1) Let n ∈ N, f ∈ Xn, and g1 ∈ Xa1 , . . . , gn ∈ Xan for some arbitrary
ai ∈ N. Let τ ∈ Sn, and let σ be its inverse. Then:

(f ∗ τ) ◦a1,...,an (g1, . . . , gn) = (f ◦aσ(1),...,aσ(n) (gσ(1), . . . , gσ(n))) ∗ τ ′,
where σ ∈ Sn acts on the subscripts {1, 2, . . . , n} as usual, and τ ′ ∈ Sa1+···+an is the
block permutation that applies the action of τ , but treats the first aσ(1) elements as
the first element, treats the next aσ(2) elements as the second element, and so on.
For instance, if τ = (12)(34) ∈ S4 and the aσ(i) values in order are (3, 4, 2, 1), then
τ ′ = ( 1 2 3 4 5 6 7 8 9 10

4 5 6 7 1 2 3 10 8 9 ).
(Equivariance 2) Let n, f , and the gi and ai be as above. Let σ1 ∈ Sa1 , . . . σn ∈ San . Then:

f ◦a1,...,an (g1 ∗ σ1, . . . , gn ∗ σn) = (f ◦a1,...,an (g1, . . . , gn)) ∗ (σ1, . . . , σn),

where (σ1, . . . , σn) ∈ Sa1,...,an is the disjoint union of the σi. For instance, if we set
σ1 = (12) ∈ S2, σ2 = (123) ∈ S3, and σ3 = (12)(34) ∈ S4, then the disjoint union is
(σ1, σ2, σ3) = (12)(345)(67)(89) ∈ S9.

Example 3.1.3 (Endomorphism Operad over a Set). Let X be a set. For each n ∈ N, define
EndX(n) = Hom(Xn, X), the set of all functions from Xn to X. By the convention outlined
in Definition 2.2.24, this means that EndX(0) = Hom(X0, X) = Hom({?}, X), where {?} is
an arbitrary singleton set. We consider the elements of EndX(0) as zero-argument functions,
identifying a function with the unique element in its image: for any f ∈ EndX(0), we denote
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f(?) = f(), with no argument. The notion of a zero-argument function is made more precise
in Remark 4.1.8. Equip the family EndX = (EndX(0),EndX(1), . . . ) with compositions maps
given by the usual composition of multivariable functions. That is, for n, f, gi, and ai as in
the definition of an operad, we define:

f ◦a1,...,an (g1, . . . , gn) = f(g1, . . . , gn),

where f(g1, . . . , gn) represents the function with action given by:

(x1, . . . , xi1 , . . . , xi1+...in) 7→ f(g1(x1, . . . , xi1), . . . gk(xin−1+1, . . . , xin)).

That is, the function is f composed with the gi in each argument. The identity element
in EndX is I = idX , the set-theoretic identity function. Finally, define the group action
∗ of Sn on EndX(n) as permutation of the arguments of a given function. Concretely,
if f : Xn → X is a function and τ ∈ Sn has inverse σ, then f ∗ τ is the function that
maps (x1, . . . , xn) 7→ f(xσ(1), . . . , xσ(n)). Equipped with this group action and collection
of composition maps, EndX is a symmetric operad, called the endomorphism operad over
X. The definition of an operad is designed to mimic the key properties of this kind of
multivariable function composition. As such, some authors refer to endomorphism operads
as “tautological operads” or “canonical operads”.

Example 3.1.4 (Associative Operad of Sets). For each n ≥ 1, define Assoc(n) = {αn},
where each αn is a formal symbol that we think of as an n-input operation on some set. For
the special case n = 0, set Assoc(0) = ∅. Define the composition maps by:

αn ◦i1,...,in (αi1 , . . . , αin) = αi1+···+in ∈ Associ1+···+in .

That is, there is only one element in each Assocn, so composition outputs the unique element
in the codomain of the composition map. Equivalently, composition in Assoc is given by
adding the subscripts of the αi in the parentheses. With the identity being I = α1, the
family Assoc = (Assoc(0),Assoc(1), . . . ) forms a nonsymmetric operad called the associative
operad. One can easily see that Assoc is indeed an operad; see Theorem 4.1.13 for a proof
in a more general context.

The associative operad encodes the notion of a binary operation being associative: by
the definition of composition in Assoc, we know that α2 ◦1,2 (α1, α2) = α2 ◦2,1 (α2, α1). If
we interpret each αn as an actual n-ary operation in some endomorphism operad EndX and
assume that α1 is the identity on X, (a correspondence made formal in Theorem 3.3.6),
this tells us that α2(x, α2(y, z)) = α2(α2(x, y), z) for any x, y, z ∈ X. In other words, α2 is
associative.

3.2. Tree Diagram Visualizations.
Operads can be visualized using tree diagrams. Here, we introduce such diagrams infor-

mally in the context of endomorphism operads, but the same types of diagrams can be used
for any operad. The connection between trees and general operads is made more precise in
Definition 5.1.6. Working in the endomorphism operad over a set X, let f : X → X be some
unary function on X. In the usual way, we draw f and picture its action on some element
x ∈ X as follows:
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f , f

x

f(x)

.

We can extend this notation to multivariable functions and arbitrary compositions in EndX .
For example, if f, f ′ : X → X are unary functions and g : X2 → X is a binary function, we
would draw the composition g ◦ (f, f ′) like this:

f f ′

g

.

In general, one views these tree diagrams as being n-ary functions whose action is given by
inserting n inputs at the top of the diagram, moving them downwards, and applying the
functions indicated at each vertex. The symmetric action is shown by the permutation of
the topmost edges. For instance, if f is a ternary function and we take the permutation
(123) ∈ S3, we would draw f ∗ (123) as:

f

.

For simplicity, we omit the vertex labels in the following diagrams. The axioms of sym-
metric and nonsymmetric operads can be visualized using trees. For example, a general
instance of the associativity axiom asserts that the following diagram commutes:
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compose //

compose

�� compose

��

compose
//

.

That is, it is equivalent to compose the three rows of functions from either top-to-bottom
or from bottom-to-top. In much the same way as the associativity in a monoid allows one
to unambiguously write an iterated product x1x2 · · ·xn without brackets, the associativity
axiom for an operad allows us to write these multi-step compositions without specifying
the order of composition. Graphically, this means that one can draw arbitrarily large tree
diagrams without the need for brackets.

A generic instance of the first equivariance axiom looks like this:

= .

One can verify that these two trees indeed represent the same composite function by tracing
the inputs as they move through the diagram. The second equivariance axiom tells us that
it is equivalent to first permute the edges on trees and then compose them, or compose and
then permute. One instance of this axiom says that the following diagram commutes:
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permute //

compose
##

compose //

permute

;;

.

3.3. Morphisms and Algebras over Operads of Sets.
Much like linear maps in linear algebra, homomorphisms in ring theory, and continuous

functions in the study of topology, structure-preserving maps between operads are an integral
part of operad theory. In this section, we define morphisms of nonsymmetric and symme-
tric operads, and then see how these morphisms can encode the data of various algebraic
structures.

Definition 3.3.1 (Morphism of Nonsymmetric Operads). Let X and Y be nonsymmetric
operads, with identities I and J and families of composite maps ◦ and ◦′ respectively. Then
a morphism of nonsymmetric operads F : X → Y is a family of functions {Fn : Xn → Yn}n∈N
that satisfy the following:

(MO1) F1(I) = J . That is, F preserves the identity.
(MO2) For n, f, gi, and ai as in the definition of an operad,

Fa1+···+an(f ◦a1,...,an (g1, . . . , gn)) = Fn(f) ◦′a1,...,an (Fa1(g1), . . . , Fan(gn)).

That is, F commutes with the composition maps in X and Y .

We often write F (f) without a subscript when the context is clear.

Definition 3.3.2 (Morphism of Symmetric Operads). Let X and Y be symmetric operads
with group actions ∗ and ? respectively. Then a morphism of operads F : X → Y is a
morphism of nonsymmetric operads that additionally satisfies:

(MO3) For any n ∈ N, f ∈ Xn, and τ ∈ Sn, we have Fn(f ∗ τ) = Fn(f) ? τ .

Definition 3.3.3 (Algebra over an Operad). Let X be an operad. An algebra over X, also
called an X-algebra, is a morphism of operads F : X → EndO for some set O. This may
either be a morphism of nonsymmetric or symmetric operads, depending on the type of
X. Such a map associates to each formal n−ary operation in X a concrete function in the
endomorphism operad.
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Definition 3.3.4 (Morphism of Algebras over an Operad). Let X be an operad, and let
F : X → EndO and G : X → EndP be two X-algebras. A morphism of algebras M : F → G
is a function M : O → P such that for all f ∈ Xn and o1, o2, . . . , on ∈ O, the following
equivariance property holds:

M([F (f)](o1, o2, . . . , on)) = [G(f)](M(o1),M(o2), . . . ,M(on)).

Definition 3.3.5 (Category of Algebras over an Operad). Let X be an operad. Then
the category of algebras over X, denoted AlgX , is the category with algebras over X as
objects, morphisms between X-algebras as arrows, and composition of arrows given by the
composition of those morphisms.

Theorem 3.3.6. AlgAssoc is isomorphic to the category of semigroups. The isomorphism
functor is denoted ϕ : AlgAssoc → Semi, with inverse σ : Semi → AlgAssoc. The actions on
objects and arrows are as follows: let F : Assoc → EndX and G : Assoc → EndY be two
algebras over Assoc (for some sets X, Y ), and let M : F → G be a morphism of Assoc-
algebras. Then:

ϕ(F ) =
(
X,F (α2)

)
,

ϕ(M) = M,

where the image of M is interpreted as the underlying map M : X → Y . Next, let (X,m)
and (Y, p) be semigroups, and M : X → Y a semigroup homomorphism. Then:

σ(X,m) = F,

σ(M) = M,

where the image of M is interpreted as a morphism of the Assoc-algebras σ(X,m) and
σ(Y, p), and F is an algebra over Assoc defined inductively as follows: F1(α1) = idX , and
Fn(αn) = m ◦n−1,1 (Fn−1(αn−1), idX) for all n ≥ 2. For instance, F2(α2) = m, and F3(α3) is
the ternary function on X that maps (x, y, z) 7→ m(m(x, y), z).

Proof. We will use ◦ to denote composition in EndX and ◦′ to denote composition in Assoc.
We first need to verify that ϕ and σ actually map objects into the claimed categories.
Let F : Assoc → EndX be an algebra over Assoc for some set X. We need to show that
(X,F (α2)) is a semigroup. For each n ∈ N, we know that Fn(αn) ∈ Hom(Xn, X). Thus
m := F (α2) is automatically a binary operation on X, and it remains to show that m is
associative. Let x, y, z ∈ X. Then we have:

m
(
m(x, y), z

)
= m

(
m(x, y), idX(z)

)
= [F2(α2)]

(
[F2(α2)](x, y), [F1(α1)](z)

)
By (MO1)

=
[
F2(α2) ◦2,1

(
F2(α2), F1(α1)

)]
(x, y, z)

=
[
F3

(
α2 ◦′2,1 (α2, α1)

)]
(x, y, z) By (MO2)

= [F3(α3)](x, y, z) By the definition of ◦′

=
[
F3

(
α2 ◦′1,2 (α1, α2)

)]
(x, y, z) By the definition of ◦′

=
[
F2(α2) ◦1,2

(
F1(α1), F2(α2)

)]
(x, y, z) By (MO2)

= [F2(α2)]
(
[F1(α1)](x), [F2(α2)](y, z)

)
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= m
(

idX(x),m(y, z)
)

By (MO1)

= m
(
x,m(y, z)

)
.

Thus m is associative, and ϕ indeed maps algebras over Assoc to semigroups over X.
Now suppose that (X,m) is any semigroup. Set F = σ(X,m). Then F preserves the

identity by the definition of σ. It also respects composition since all possible compositions
of m with the same number of arguments are equal by the assumption that m is associative.
Thus F is a morphism of operads, and is in turn an algebra over Assoc.

Let M : (X,m) → (Y, p) be a homomorphism of semigroups. We need to show that
σ(M) is a morphism of Assoc-algebras. In particular, we must verify that any semigroup
homomorphism satisfies the equivariance property of Definition 3.3.3. So let n ∈ N, αn ∈
Assocn, and x1, . . . , xn ∈ X. Write F = σ(X,m) and G = σ(Y, p). We first check the n = 1
case of the equivariance property:

M
(
[F (α1)](x1)

)
= M(idX(x1)) By the definition of F

= M(x1)

= idY (M(x1)

= [G(α1)]
(
M(x1)

)
, By the definition of G

and so the equivariance property holds. We prove the other cases inductively. Let n ≥ 2,
and suppose the equivariance property holds for all smaller natural numbers. Then we have
the following:

M
([
F (αn)

]
(x1, . . . , xn)

)
= M

([
F
(
α2 ◦′n−1,1 (αn−1, α1)

)]
(x1, . . . , xn)

)
By the definition of ◦′

= M
([
F (α2) ◦n−1,1

(
F (αn−1), F (α1)

)]
(x1, . . . , xn)

)
By (MO2)

= M
([
m ◦n−1,1 (F (αn−1), idX)

]
(x1, . . . , xn)

)
By the definition of F

= M
(
m
(
[F (αn−1)](x1, . . . , xn−1), xn

))
By the definition of ◦

= p
(
M
(
[F (αn−1)](x1, . . . , xn−1)

)
,M(xn)

)
Since M is a semigroup ho-
momorphism

= p
(

[G(αn−1)]
(
M(x1), . . . ,M(xn−1)

)
, [G(α1)]

(
M(xn)

))
By the inductive hypothesis

= [G(α2)]
(

[G(αn−1)]
(
M(x1), . . . ,M(xn−1)

)
, [G(α1)]

(
M(xn)

))
By the definition of G

= [G(α2) ◦n−1,1

(
G(αn−1), G(α1)

)
]
(
M(x1), . . . ,M(xn)

)
= [G

(
α2 ◦′n−1,1 (αn−1, α1)

)
]
(
M(x1), . . . ,M(xn)

)
By (MO2)

= [G(αn)]
(
M(x1), . . . ,M(xn)

)
, By the definition of ◦′

and so the equivariance property holds for n, completing the inductive proof that M is a
morphism of Assoc-algebras.

Finally, we need to show that ϕ maps morphisms as claimed, sending morphisms of Assoc-
algebras to semigroup homomorphisms. Let M : F → G be a morphism of Assoc-algebras,



20 SAIMA SAMCHUCK-SCHNARCH

write (X,m) = ϕ(F ) and (Y, p) = ϕ(G), and let x, y ∈ X. Then:

M
(
m(x, y)

)
= M

(
[F (α2)](x, y)

)
By the definition of m

= [G(α2)]
(
M(x),M(y)

)
By the equivariance property

= p
(
M(x),M(y)

)
. By the definition of p

Thus M is a semigroup morphism. We conclude that ϕ and σ are indeed functors between
AlgAssoc and Semi, as claimed.

The functors ϕ and σ are clearly inverses by their definition. Thus ϕ is an isomorphism
of categories, as desired. �

Definition 3.3.7 (Unital Associative Operad). For each n ≥ 0, define Assocu(n) = {αn},
where each αn is a formal symbol as in the case of the non-unital associative operad; the only
difference is that we include a formal nullary operation α0. Define the composition maps
and identity as in the non-unital case. Then the family Assocu = (Assocu(0),Assocu(1), . . . )
forms a nonsymmetric operad called the unital associative operad.

Theorem 3.3.8. AlgAssocu is isomorphic to the category of monoids. The isomorphism
functors ϕ and σ are defined as in Theorem 3.3.6, with the following modifications:

ϕ(F ) =
(
X,F2(α2), F0(α0)

)
,

σ(X,m, I) = F,

where (X,m, I) is a monoid, and F is defined as in the aforementioned theorem, but with
the addition F (α0) = I.

Proof. By the same arguments as in the proof of Theorem 3.3.6, ϕ maps algebras over
Assocu to semigroups. It remains to show that all of these semigroups are monoids; that
is, we have to prove that the product induced by any algebra over Assocu has an identity.
So let F : Assocu→ EndX be an algebra over Assoc. Denote the induced product on X by
m : X2 → X. Note that, by definition, F (α0) is a nullary function mapping into X. Write
I = F (α0). We claim that (X,m, I) is a monoid. Let x ∈ X. Then we have:

m
(
x, I(?)

)
= F (α2)

(
idX(x), I()

)
= [F (α2)]

(
[F (α1)](x), [F (α0)]()

)
=
[
F (α2) ◦1,0

(
F (α1), F (α0)

)]
(x)

= [F
(
α2 ◦′1,0 (α1, α0)

)
](x) By (MO2)

= [F (α1)](x) By the definition of ◦′ in Assocu

= idX(x)

= x.

An analogous argument shows that m(I(?), x) = x, and thus that I is indeed an identity.
So ϕ does map into the category of monoids.

We also need to show that σ has the correct target. Let (X,m, I) be a monoid, and write
σ(X,m, I) = F . The same arguments as in the proof of Theorem 3.3.6 show that F is an
algebra over Assocu.

Next, we have to verify that ϕ sends morphisms of Assocu-algebras to monoid homomor-
phisms. Let M : F → G be a morphism of Assocu-algebras, write (X,m, I) = ϕ(F ) and
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(Y, p, E) = ϕ(G), and let x ∈ X. The proof of Theorem 3.3.6 shows that M respects the
monoid multiplication, so it remains to check that M preserves the identity. We have:

M(I) = M(F (α0))

= G(α0) By the equivariance property

= E.

So ϕ does indeed output monoid homomorphisms.
Finally, we need to check that σ sends monoid homomorphisms to morphisms of Assocu-

algebras. Let M : (X,m, I) → (Y, p, E) be a monoid homomorphism. The proof of Theo-
rem 3.3.6 shows that σ(M) satisfies the equivariance property for n ≥ 1. It remains to show
that the property is also satisfied for n = 0:

M(F (α0)) = M(I)

= E Since M is a monoid homomorphism

= G(α0).

So M is indeed a morphism of Assocu-algebras. We conclude that ϕ and σ are functors as
claimed. They are clearly inverses by their definition, so ϕ is an isomorphism of categories,
as desired. �

Example 3.3.9 ((Unital) Commutative Operad). Define Comm(n) = Assoc(n) for each
n ∈ N, and equip each with the trivial group action ∗ of Sn; that is, f ∗ τ = f for all
n ∈ N, f ∈ Comm(n), and τ ∈ Sn. Then Comm = (Comm(0),Comm(1), . . . ) together with
the same composition maps and identity as in Assoc forms a symmetric operad called the
commutative operad.

Define Commu identically to Comm, but with Commu(n) = Assocu(n). This forms a
symmetric operad called the unital commutative operad.

Theorem 3.3.10.

(A) AlgComm is isomorphic to the category of commutative semigroups.
(B) AlgCommu is isomorphic to the category of commutative monoids.

In both cases, the isomorphisms ϕ and σ are the same as in the respective non-commutative
theorems.

Proof. Part (A): Proceeding from what has been proved in Theorem 3.3.6, it remains
to show that ϕ produces commutative semigroups, and that the algebras σ produces are
morphisms of symmetric operads. Let F : Comm → EndX be an algebra over Comm, and
write ϕ(F ) = (X,m). Let x, y ∈ X, and let σ = (12) be the nontrivial element in S2. Then
we have:

m(x, y) =
[
F2(α2)

]
(x, y)

=
[
F2(α2 ∗ σ)

]
(x, y) Since the action of Sn on Comm is trivial

=
[
F2(α2) ∗ σ

]
(x, y) By (MO3)

= [m ∗ σ](x, y)

= m(y, x). By the definition of the group action on EndX
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Thus m is commutative. Now suppose (X,m) is a commutative semigroup. We need to show
that σ(X,m) = F is a morphism of symmetric operads. The proof of Theorem 3.3.6 shows
that it is a morphism of nonsymmetric operads, so it remains to check property (MO3). By
assumption, m is commutative, so the trivial group action of Comm is indeed respected.

The actions of ϕ and σ on morphisms are exactly the same as in Theorem 3.3.6, so we
again conclude that they are inverse functors, and that ϕ is an isomorphism.

Part (B) Combine the arguments of Part (A) and Theorem 3.3.8. �

Theorems 3.3.6, 3.3.8, and 3.3.10 tell us that algebras over the associative, unital associative,
commutative, and unital commutative operads are essentially the same thing as semigroups,
monoids, commutative semigroups, and commutative monoids, respectively. The existence
of these theorems raises a natural question: can one construct operads that model other
common algebraic structures like algebras and superalgebras? In fact, as we will see in the
following section, the same operads can be used for this purpose.

4. General Operads

All of the definitions, examples, and theorems from Section 3 can be directly transferred
into more general categories. We first work in the context of a symmetric monoidal category,
and then direct our focus to a handful of familiar categories with extra structure for the
remainder of the document. For a treatment of operads in categories without that extra
structure, see, for example, [Sun07].

4.1. Basic Definitions.

Definition 4.1.1 (Action of Sn on Symmetric Monoidal Categories). Let C be a symmetric

monoidal category with braiding Bx,y : x ⊗ y → y ⊗ x. For any iterated product
n⊗
i=1

xi and

any σ ∈ Sn, we want to define a morphism µ(σ) :
n⊗
i=1

xi →
n⊗
i=1

xσ−1(i), which we think of as

permuting the factors of the iterated product as σ permutes the elements of {1, 2, . . . , n}.
We want these morphisms to form a group with respect to composition, and for µ to then
be a group homomorphism.

First, recall that the symmetric group Sn is generated by the set of simple transpositions
{σk | 1 ≤ k ≤ n − 1}, where σk swaps the k and k + 1’th elements. Further, Sn is totally
specified by that set of generators and the following relations:

(SYM1) σ2
k = 1 for all 1 ≤ k ≤ n− 1,

(SYM2) σkσj = σjσk for all 1 ≤ k ≤ n− 1 and 1 ≤ j ≤ n− 1 such that j 6= k ± 1,
(SYM3) σkσk+1σk = σk+1σkσk+1 for all 1 ≤ k ≤ n− 2.

Thus to show that µ is a group homomorphism, we will simply need to map the generators
and show that those morphisms µ(σk) satisfy the three relations above.

Define µ(σk) =

(
k−1⊗
i=1

idxi

)
⊗Bxk,xk+1

⊗
(

n⊗
i=k+2

idxi

)
; that is, use the braiding to swap the

k and k+1’th factors, and apply the identity morphism to the other factors. For any Sn, it’s
clear that the set of all finite sequences of compositions of the morphisms µ(σk) does indeed
form a group, where the multiplication is given by composition, and the identity element
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is simply
n⊗
i=1

idxi . Each µ(σk) is its own inverse since we’re assuming that the braiding is

symmetric, so (SYM1) holds. Further, one can see that µ(σk)µ(σj) = µ(σj)µ(σk) holds for
all j 6= k ± 1 by noting that µ(σk) leaves all but the k and k + 1’th factors unchanged, and
thus relation (SYM2) is satisfied.

Working towards the third relation, note that if we ignore the associators in the hexagon
diagram (5) as outlined in Remark 2.2.25, we obtain:

(13)

x⊗ y ⊗ z
Bx,y⊗idz

��

Bx,y⊗z // y ⊗ z ⊗ x

y ⊗ x⊗ z
idy ⊗Bx,z

66
,

For (SYM3) to hold, we want the following diagram to commute:

(14)

y ⊗ x⊗ z
idy ⊗Bx,z // y ⊗ z ⊗ x

By,z⊗idx

((
x⊗ y ⊗ z

Bx,y⊗idz
66

idx⊗By,z ((

z ⊗ y ⊗ x

x⊗ z ⊗ y
Bx,z⊗idy

// z ⊗ x⊗ y
idz ⊗Bx,y

66
,

since this corresponds to the equality µ(σk) ◦ µ(σk+1) ◦ µ(σk) = µ(σk+1) ◦ µ(σk) ◦ µ(σk+1).
Using the equality (13), we can replace the first two arrows on the upper path and the second
two arrows on the lower path to obtain the following equivalent diagram:

(15)

y ⊗ z ⊗ x
By,z⊗idx

((
x⊗ y ⊗ z

Bx,y⊗z
22

idx⊗By,z ((

z ⊗ y ⊗ x

x⊗ z ⊗ y
Bx,z⊗y

22 .

Consider functors F,G : C × C → C given by F (x, y) = x ⊗ y and G(x, y) = y ⊗ x, and
the morphism (idx, By,z) : (x, y ⊗ z) → (x, z ⊗ y) in C × C. Then the above diagram can
equivalently be written (flipped along the diagonal) as:

(16)

F (x, y ⊗ z)

Bx,y⊗z
��

F (idx,By,z)
// F (x, z ⊗ y)

Bx,z⊗y
��

G(x, y ⊗ z)
G(idx,By,z)

// G(x, z ⊗ y)

,

and the fact that this diagram commutes is precisely given by the fact that B is natural.
We conclude that the group generated by the µ(σk) satisfies all three of the generating
relations of Sn, and thus µ is a group homomorphism. We take these morphisms µ(σ) to be
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the canonical action of the symmetric groups Sn on any symmetric monoidal category. For

brevity, we usually omit the symbol µ and just write σ :
n⊗
i=1

xi →
n⊗
i=1

xσ−1(i).

Definition 4.1.2 (Nonsymmetric Operad). Let C be a symmetric monoidal category. A
nonsymmetric operad X over C is a family {Xn}n∈N of objects from C together with a unit
morphism I : u→ X1 and a collection of morphisms:

γi1,...,ik : Xk ⊗Xi1 ⊗Xi2 ⊗ · · · ⊗Xik → Xi1+···+ik ,

where the indices range as in Definition 3.1.1 (we use γ rather than ◦ to avoid confusion
with categorical composition) satisfying the associativity and identity axioms below.

(Associativity) Let n ∈ N, let a1, . . . , an ∈ N, and for each ai, for each j ∈ {1, 2, . . . , ai}
let ki,j ∈ N. For brevity, we denote the list a1, . . . , an by A and the lists ki,1, . . . , ki,ai
by Ki. Write ΣA and ΣKi for the sum of the entries in those lists. Let σ be the
permutation that rearranges factors as follows:

σ : Xn ⊗ (Xa1 ⊗Xk1,1 ⊗ · · · ⊗Xk1,a1
)⊗ (Xa2 ⊗ · · · ⊗Xk2,a2

)⊗ (· · · ⊗Xkn,an )

→ (Xn ⊗Xa1 ⊗Xa2 ⊗ · · · ⊗Xan)⊗Xk1,1 ⊗ · · · ⊗Xkn,an .

Then the following diagram commutes:

Xn ⊗
n⊗
i=1

(
Xai ⊗

ai⊗
j=1

Xki,j

)
σ //

idXn ⊗γK1
⊗···⊗γKn

��

Xn ⊗Xa1 ⊗ · · · ⊗Xan ⊗
( n⊗
i=1

ai⊗
j=1

Xki,j

)
γA⊗idXk1,1

⊗···⊗idXkn,an
��

X∑
A ⊗

( n⊗
i=1

ai⊗
j=1

Xki,j

)
γK1,...,Kn

��
Xn ⊗X∑

K1 ⊗ · · · ⊗X∑
Kn γ∑K1,...,

∑
Kn

// X∑
K1+···+

∑
Kn

.

(Identity) For every n ∈ N, the following diagrams commute:

u⊗Xn

λ
��

I⊗idXn // X1 ⊗Xn

γn

��
Xn

idXn

// Xn

,

Xn ⊗ u⊗n

idXn ⊗I⊗n
��

ρ // Xn ⊗ u⊗n−1 ρ // . . .
ρ // Xn

idXn
��

Xn ⊗X⊗n1 γ1,...,1
// Xn

.

Definition 4.1.3 (Group Action). Let C be any category, and G a group. Let x be an object
in C. A right group action of G on x is a group antihomomorphism ∗ : G → Aut(x), where
Aut(x) is the automorphism group of x in C. That is, if e is the identity in G and a, b ∈ G
are any elements, then ∗(e) = idx and ∗(ab) = ∗(b) ◦ ∗(a), where ◦ denotes the composition
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of morphisms in C. Throughout this document, we refer to right group actions simply as
group actions.

Definition 4.1.4 (Symmetric Operad). A symmetric operad over C is a nonsymmetric ope-
rad X over C together with a group action ∗ : Sn → Aut(Xn) for each n ∈ N that satisfies
the equivariance axioms below. As in the case for iterated tensor products, we often write
just σ instead of ∗(σ) for the action of the symmetric group on each Xn.

(Equivariance 1) Let n ∈ N, and a1, . . . , an ∈ N. Let τ ∈ Sn have inverse σ, and let
τ ′ ∈ Sa1+···+an denote the associated block permutation as defined in Definition 3.1.2.
Then the following diagram commutes:

Xn ⊗Xa1 ⊗ · · · ⊗Xan

τ⊗idXa1
⊗···⊗idXan

��

γa1,...,an // Xa1+···+an

τ ′

��

Xn ⊗ (Xa1 ⊗ · · · ⊗Xan)

idXn ⊗µ(τ)

��
Xn ⊗Xaσ(1) ⊗ · · · ⊗Xaσ(n) γaσ(1),...,aσ(n)

// Xa1+···+an

.

(Equivariance 2) Let n and the ai be as above. Let σ1 ∈ Sa1 , . . . σn ∈ San . Then the
following diagram commutes:

Xn ⊗Xa1 ⊗ · · · ⊗Xan

γa1,...,an //

idXn ⊗σ1⊗···⊗σn
��

Xa1+···+an

(σ1,...,σn)

��
Xn ⊗Xa1 ⊗ · · · ⊗Xan γa1,...,an

// Xa1+···+an

,

where (σ1, . . . , σn) is the disjoint union defined in Definition 3.1.2.

Remark 4.1.5. The categories Set,VectK, and ModΓ
A have extra structure beyond that of

a general symmetric monoidal category. We use the following:

(Underlying Sets) The objects in this category can naturally be regarded as structured
sets. This means that for any object O, there is some underlying set O′ ∈ Ob(Set)
for O. For instance, the underlying set of a vector space (V,K,+, ·) is the set of its
vectors, V . Similarly, the underlying set of a Γ-graded A-module is the set of elements
in that module. Objects in Set are their own underlying sets. We identify objects
in these categories with their underlying sets; for instance, we refer to a vector space
(V,K,+, ·) simply as V , and write v ∈ V to mean that v is a vector in the underlying
set.

(Underlying Functions) The morphisms from x to y in any of these categories are simply
functions from the underlying set of x to the underlying set of y; for instance, linear
maps are functions between underlying sets of vectors. We identify morphisms with
their underlying functions.

(Internal Hom-Sets) The hom-sets in these categories can canonically be interpreted as
objects in the same category. For instance, the set of linear maps between two K-
vector spaces is itself a K-vector space when equipped with pointwise operations.
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The same is true for the sets of grade-preserving maps in ModΓ
A, and the set of all

functions between two sets is tautologically an object in Set.
(Tensor Map) There is a tensor map ⊗ : X × Y → X ⊗ Y , from the cartesian product

of (the underlying sets of) any two objects X, Y to (the underlying set of) their
tensor product. Thus it makes sense to speak of simple tensors in these categories;
for any x ∈ X, y ∈ Y , we write ⊗(x, y) = x ⊗ y. We require each of these maps
to satisfy the universal property of a tensor product. That is, for any function
f : X × Y → Z such that fixing either coordinate gives a morphism X → Z or
Y → Z in the underlying category, there exists a unique morphism f̃ : X ⊗ Y → Z
such that f = f̃ ◦ ⊗. Note that this tensor map commutes with the tensor product
of morphisms in the following sense: for any morphisms f : x→ x′ and g : y → y′, we
have (f ⊗ g)(x⊗ y) = f(x)⊗ g(y). Further, any morphisms a, b : X ⊗ Y → X ′ ⊗ Y ′
that agree on all simple tensors must be equal.

(Unit) The monoidal units in these categories contain a distinguished element 1 ∈ u such
that for every object X ∈ C and every element x ∈ X, there is exactly one morphism
f : u → X such that f(1) = x. Further, λ(1 ⊗ x) = x = ρ(x ⊗ 1). In ModΓ

A,
this distinguished element is the multiplicative unit in A. In Set, the distinguished
element is the unique element in the monoidal unit.

In the remainder of this document, we will focus on categories that possess this structure.

Definition 4.1.6 (Closed Symmetric Monoidal Category of Structured Sets). A closed sym-
metric monoidal category of structured sets is a symmetric monoidal category C that has all
of the structure described in Remark 4.1.5.

Example 4.1.7 (Endomorphism Operad over Closed Symmetric Monoidal Categories of
Structured Sets). Let C be a closed symmetric monoidal category of structured sets. For
any object O in C, we define the endomorphism operad over O as follows: for each n ∈ N,
set EndO(n) = Hom(O⊗n, O). The composition morphisms βi1,...,ik are defined by setting
βi1,...,ik(f ⊗ g1 ⊗ · · · ⊗ gn) = f ◦ (g1 ⊗ · · · ⊗ gn) for any given morphisms f ∈ EndO(n) and
g1 ∈ EndO(i1), . . . , gn ∈ EndO(in). The assumption (Tensor Map) ensures that this uniquely
defines β.

In this operad, the identity map I : u → EndO(1) is defined to be the unique morphism
from u to Hom(O,O) such that I(1) = idO; the existence and uniqueness of such a morphism
is guaranteed by the assumption (Unit).

The action of Sn on EndO(n) is given by ∗(σ) = σ = Hom(µ(σ)op, idO), the image of the
pair of morphisms (µ(σ)op, idO) in the external hom-functor. In other words, the action is
given by precomposition with σ = µ(σ).

Remark 4.1.8. The definition of β in the previous example, interpreted strictly, does not
output the correct type of morphisms when one or more of the subscripts is equal to 0. For
instance, β0,1 should be a morphism from EndO(2)⊗EndO(0)⊗EndO(1) to EndO(1) (that is,
to Hom(O,O)), but the definition sends a tensor of morphisms f⊗g⊗h to f ◦ (g⊗h), which
is a morphism from u ⊗ O to O. Note, however, that a natural precomposition with λ−1

O

transforms this morphism into an element of Hom(O,O), the desired hom-set. In general,
we set βi1,...,ik(f ⊗ g1 ⊗ · · · ⊗ gn) = f ◦ (g1 ⊗ · · · ⊗ gn) ◦ p, where p is the morphism from
O⊗i1+···+ik to the domain of f ◦(g1⊗· · ·⊗gn) built up from identity morphisms, λ−1, and ρ−1;
the existence of such a morphism is clear, and Theorem 2.2.22 guarantees its uniqueness.
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Example 4.1.9 (Associative Operad over C). Let C be a monoidal category with an initial
object i. For each n ≥ 1, define AssocC(n) = u and set AssocC(0) = i. We define the
composition maps inductively: for any n ≥ 0, define γn : AssocC(1)⊗AssocC(n)→ AssocC(n)

by γn = λ. Then for any iterated product A =
k⊗
i=1

AssocC(ai) with k ≥ 2, we define

γa1,...,ak : AssocC(k)⊗ A→ AssocC(a1 + · · ·+ ak) by γa1,...,ak = γa2,...,ak ◦ λ⊗ (
k⊗
i=2

idAssocC(ai)
).

The identity is idu. Then AssocC forms a nonsymmetric operad called the associative operad
over C.

Example 4.1.10 (Unital Associative Operad over C). Let C be a monoidal category. For
each n ∈ N, define AssocuC(n) = u. The composition maps and identity are the same as
those in the non-unital associative operad. Then AssocuC forms a nonsymmetric operad
called them unital associative operad over C.

Example 4.1.11 ((Unital) Commutative Operad over C). Let C be a monoidal category.
If C has an initial object, define CommC = AssocC for each n ∈ N, and equip each with
the trivial group action of Sn. Then CommC together with the same composition maps and
identity as in AssocC forms a symmetric operad called the commutative operad over C.

Even if C doesn’t have an initial object, define CommuC in the same way, but with
CommuC(n) = AssocuC(n). This forms a symmetric operad called the unital commutative
operad over C.

Lemma 4.1.12. In both AssocC and AssocuC, we have γa1,...,an = γb1,...,bn for any ai, bi ∈ N
such that a1 + · · ·+ an = b1 + · · ·+ bn. For AssocC, we also require that ai = 0 if any only if
bi = 0 for all i; that is, any zeroes in the subscripts must appear at the same positions.

Proof. The result follows from Theorem 2.2.22, as both γ morphisms are built up from λ
and the identity, and they both have the same domain and codomain. �

Theorem 4.1.13. AssocC,AssocuC,CommC, and CommuC are operads. That is, they all
satisfy the axioms of Definition 4.1.2, and the latter two satisfy the axioms of Definition 4.1.4.

Proof. Note that by the definition of the composition maps in AssocC (which are the same
as those in the other three operads in question), the associativity axiom is given by a linear
diagram consisting of only braidings, associators, unitors, and tensors and compositions
thereof. Thus by Theorem 2.2.22, the diagram commutes. The same is true for the identity
and equivariance axioms. �

4.2. Morphisms and Algebras over General Operads.
In this section, we give the definitions of morphisms and algebras for general operads, and

then prove general versions of the category isomorphisms from Section 3.

Definition 4.2.1 (Morphism of Nonsymmetric Operads). Let X and Y be two nonsymme-
tric operads over the symmetric monoidal category C, with identities I and J and families
of composition maps γ and β respectively. Then a morphism of nonsymmetric operads
F : X → Y is a family of C-morphisms {Fn : Xn → Yn}n∈N that satisfy the following:
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(MO1) F preserves the identity. That is, the following diagram commutes:

u

I

��

J // Y1

X1

F1

::

.

(MO2) F commutes with the composition maps in X and Y . Concretely, for any n ∈ N
and a1, . . . , an ∈ N, the following diagram commutes:

Xn ⊗
( n⊗
i=1

Xai

)
Fn⊗
( n⊗
i=1

Fai

)
��

γa1,...,an // Xa1+···+an

Fa1+···+an

��
Yn ⊗

( n⊗
i=1

Yai

)
βa1,...,an // Ya1+···+an

.

Definition 4.2.2 (Morphism of Symmetric Operads). Let X and Y be symmetric operads
over the symmetric monoidal category C. Then a morphism of symmetric operads F : X → Y
is a morphism of nonsymmetric operads that additionally satisfies:

(MO3) F commutes with the action of Sn. That is, for any n ∈ N and τ ∈ Sn, the following
diagram commutes:

Xn

Fn
��

τ // Xn

Fn
��

Yn
τ // Yn

.

Definition 4.2.3 (Algebra over an Operad). Let X be an operad over a symmetric monoidal
closed category of structured sets C. An algebra over X, also called an X-algebra, is a
morphism of operads F : X → EndO for some object O ∈ C; this may either be a morphism
of nonsymmetric or symmetric operads, depending on which type of operad X is.

Definition 4.2.4 (Morphism of Algebras over an Operad). Let X be an operad over a
symmetric monoidal closed category of structured sets C. A morphism M : F → G between
two X-algebras F : X → EndO and G : X → EndP is a C-morphism M : O → P such that
for all n ∈ N and any f ∈ Xn, the following diagram commutes:

(17)

O⊗n

M⊗n

��

F (f)
// O

M
��

P⊗n
G(f)

// P

.

Definition 4.2.5 (Category of Algebras over an Operad). The definition of AlgX for an
operad over a general symmetric monoidal category is exactly the same as the one given in
the context of sets in Definition 3.3.5

Theorem 4.2.6. For any symmetric monoidal closed category of structured sets C with
an initial object, AlgAssocC is isomorphic to SemiC. We denote the isomorphism functor by
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ϕ : AlgAssocC → SemiC, with inverse σ : SemiC → AlgAssocC . The actions on objects and
morphisms are as follows: let F : AssocC → EndO and G : AssocC → EndP be algebras over
AssocC, and let M : F → G be a morphism of AssocC-algebras. Then:

ϕ(F ) = (O,F2(1)),

ϕ(M) = M.

Next, let (O,m) and (P, p) be semigroup objects, and M : O → P a morphism of semigroup
objects. Then:

σ(O,m) = F,

σ(M) = M,

where F is an algebra over AssocC defined inductively as follows: set F1 = J , where J is
the identity map for EndO. Then, for any n ≥ 2, define Fn to be the unique map from u to
Hom(O⊗n, O) such that Fn(1) = m ◦ (Fn−1(1)⊗ idO). In the special case n = 0, we have no
choice to make; by definition, AssocC(0) is an initial object, and thus there is a unique map
F0 : AssocC(0)→ EndO(0).

Proof. As in the proof of Theorem 3.3.6, we first need to verify that ϕ and σ actually map
objects into the claimed categories. Let F : AssocC → EndO be an algebra over AssocC.
We label the claimed semigroup object product m = F2(1). By construction, we have
m ∈ EndO(2) = Hom(O⊗O,O). So m is a morphism from O⊗O to O. It remains to show
that the associativity diagram (8) commutes—that is, m ◦ (idO⊗m) = m ◦ (m⊗ idO). Here,
we use γ and I to denote the composition and identity maps in AssocC, and β and J for the
maps in EndO. Note that since F is a morphism of operads, we must have F1 ◦ I = J due
to (MO1). But I = idu, so this condition says that F1 = J . We then have the following:

m ◦ (idO⊗m) = F2(1) ◦
(
J(1)⊗ F2(1)

)
By the definition of m and J

= F2(1) ◦
(
F1(1)⊗ F2(1)

)
= β1,2

(
F2(1)⊗ F1(1)⊗ F2(1)

)
By the definition of β

= β1,2

(
[F2 ⊗ F1 ⊗ F2](1⊗ 1⊗ 1)

)
By (Tensor Map)

= [β1,2 ◦ (F2 ⊗ F1 ⊗ F2)](1⊗ 1⊗ 1) By the definition of the composition
of functions

= [F3 ◦ γ1,2](1⊗ 1⊗ 1) By (MO2)

= [F3 ◦ γ2,1](1⊗ 1⊗ 1) By Lemma 4.1.12

=
[
β2,1 ◦ (F2 ⊗ F2 ⊗ F1)

]
(1⊗ 1⊗ 1) By (MO2)

= β2,1

(
[F2 ⊗ F2 ⊗ F1](1⊗ 1⊗ 1)

)
= β2,1

(
F2(1)⊗ F2(1)⊗ F1(1)

)
= F2(1) ◦

(
F2(1)⊗ F1(1)

)
= m ◦ (m⊗ idO),

as desired.
Now suppose that (O,m) is a semigroup object. Set F = σ(O,m). Then F satisfies (MO1)

since, by definition, F1 = J and I = idu, and so F1 ◦ I = J holds trivially. Property (MO2)
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amounts to Fa1+···+an = βa1+···+an ◦ Fn ⊗
(

n⊗
i=1

Fai

)
based on the definition of composition in

AssocC. By assumption, m is associative, so any iterated compositions of m are equal. Thus
by the definition of F , the desired equality holds, and F is indeed an algebra over AssocC.

Now let M : (O,m)→ (P, p) be a morphism of semigroup objects. We need to verify that
σ(M) = M is a morphism of AssocC-algebras. In particular, we need to check that diagram
(17) commutes. Set F = σ(O,m) and G = σ(P, p). An identical argument to that in the
proof of Theorem 3.3.6 shows that M ◦ Fn(1) = Gn(1) ◦M⊗n; simply replace each αn with
1. Note then that M ◦Fn(−) and Gn(−) ◦M⊗n are both functions from u to Hom(O⊗n, P ),
and they agree on the input 1 ∈ u. By the assumption (Unit), the two functions are equal.
Thus M ◦ Fn(f) = Gn(f) ◦M⊗n holds for all f ∈ u = AssocC(n), as desired.

Next, let M : F → G be a morphism of AssocC-algebras, and set (O,m) = ϕ(F ) and
(P, p) = ϕ(G). Diagram (11) (with f = M) is the case n = 2 of diagram (17) with f = 1, as
F2(1) = m and G2(1) = p by construction. Thus M is a morphism of semigroup objects.

Finally, we show that ϕ and σ are inverse functors. They act as the identity on morphisms,
so it suffices to check the action on objects. Let (O,m) be a semigroup object. Then
ϕ(σ(O,m)) = ϕ(F ) = (O,F2(1)) = (O,m), since F2(1) = m by the definition of σ. Now let
F : AssocC → EndO be an algebra over AssocC. Write σ(ϕ(F )) = σ(O,F2(1)) = G. We’ve
already verified that G is an algebra over AssocC, so we know that G1(1) = F1(1) = idO,
and G2(1) = F2(1) holds by the definition of σ. Further, G0(1) = F0(1) must hold, since
both are morphisms from the initial object. Let n > 2, and suppose that Gn−1(1) = Fn−1(1)
holds. We then have the following:

Gn(1) = F2(1) ◦
(
Gn−1(1)⊗ idO

)
By the definition of σ

= F2(1) ◦
(
Fn−1(1)⊗ F1(1)

)
= βn−1,1

(
F2(1)⊗ Fn−1(1)⊗ F1(1)

)
By the definition of β

= βn−1,1

(
[F2 ⊗ Fn−1 ⊗ F1](1⊗ 1⊗ 1)

)
= [βn−1,1 ◦ (F2 ⊗ Fn−1 ⊗ F1)](1⊗ 1⊗ 1)

= [Fn ◦ γn−1,1](1⊗ 1⊗ 1) By (MO2)

= Fn
(
γn−1,1(1⊗ 1⊗ 1)

)
= Fn

(
γ1

(
[λ⊗ idu](1⊗ 1⊗ 1)

))
By the definition of γ

= Fn

(
λ
(
[λ⊗ idu](1⊗ 1⊗ 1)

))
By the definition of γ

= Fn
(
λ(1⊗ 1)

)
By (Unit)

= Fn(1), By (Unit)

and thus Gn(1) = Fn(1) holds for all n by induction. Then Fn and Gn are morphisms with
domain u that agree on the input 1 ∈ u, so (Unit) tells us that they are equal. We conclude
that F = G, and that ϕ and σ are indeed inverses. �

Theorem 4.2.7. For any closed symmetric monoidal concrete category C, AlgAssocuC is iso-
morphic to MonC. The isomorphism functors ϕ and σ are the same as in Theorem 4.2.6,
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with the following modifications:

ϕ(F ) =
(
O,F2(1), F0(1)

)
,

σ(O,m,H) = F,

where F is defined as in the aforementioned theorem except in the n = 0 case, where we
define F0 : AssocuC(0)→ EndO(0) to be the unique morphism such that F0(1) = H.

Proof. By the same arguments as in the proof of Theorem 4.2.6, we know that ϕ(F ) is a
semigroup object. It remains to show that F0(1) is indeed an identity map, or in other words,
that the diagrams (9) commute. We will prove that the first diagram commutes; the proof
for the other diagram is completely analogous. We need to show that m ◦ (H ⊗ idO) = λO,
or, equivalently, m ◦ (H ⊗ idO) ◦ λ−1

O = idO. We have the following:

m ◦ (H ⊗ idO) ◦ λ−1
O = F2(1) ◦

(
F0(1)⊗ F1(1)

)
◦ λ−1

O By the definition of F

= β0,1

(
F2(1)⊗ F0(1)⊗ F1(1)

)
By the definition of β

= β0,1

(
[F2 ⊗ F0 ⊗ F1](1⊗ 1⊗ 1)

)
=
[
β0,1 ◦ (F2 ⊗ F0 ⊗ F1)

]
(1⊗ 1⊗ 1)

= [F1 ◦ γ0,1](1⊗ 1⊗ 1) Using (MO2)

= F1

(
γ0,1(1⊗ 1⊗ 1)

)
= F1

([
γ1 ◦ (λ⊗ idu)

]
(1⊗ 1⊗ 1)

)
By the definition of γ

= F1

([
λ ◦ (λ⊗ idu)

]
(1⊗ 1⊗ 1)

)
By the definition of γ

= F1

(
λ
(
[λ⊗ idu](1⊗ 1⊗ 1)

))
= F1

(
λ
(
λ(1⊗ 1)⊗ idu(1)

))
Using (Tensor Map)

= F1

(
λ(1⊗ 1)

)
Using (Unit)

= F1(1) Using (Unit)

= idO, By the definition of F

as desired.
Analogous arguments to those in the proof of Theorem 4.2.6 show that the action of σ

sends monoid objects to algebras over AssocuC.
Now let M : (O,m,H)→ (P, p,K) be a morphism of monoid objects. The same argument

as in the proof of Theorem 4.2.6 (where the proof of M ◦ Fn(1) = Gn(1) ◦ M⊗n is now
inherited from Theorem 3.3.8 to account for the n = 0 case) shows that σ(M) is a morphism
of AssocuC-algebras.

Next, let M : F → G be a morphism of AssocuC-algebras. Write ϕ(F ) = (O,m,H) and
ϕ(G) = (P, p,K). We need to show that diagram (12) commutes, where M is the morphism
of monoid objects in this case. That is, we want to show M ◦H = K. We have:

M ◦H = M ◦ F0(1) By the definition of H

= G0(1) ◦M⊗0 Using the n = 0 case of diagram
(17)
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= G0(1) Since M⊗0 = idu by definition

= K, By the definition of K

as desired.
Finally, we must show that ϕ and σ are inverse functors. Let (O,m,H) be a semigroup

object. Then ϕ(σ(O,m,H)) = ϕ(F ) = (O,m,H), since F2(1) = m and F0(1) = H by
the definition of σ. Now let F : AssocuC → EndO be an algebra over AssocuC. Write
σ(ϕ(F )) = σ(O,F2(1), F0(1)) = G. We know that F1(1) = G1(1) = idO since F and G are
both AssocuC-algebras. Further, F0(1) = G0(1) and F2(1) = G2(1) hold by the definition
of σ. By the same inductive argument as in the proof of Theorem 4.2.6, we conclude that
F = G, as desired. Thus ϕ and σ are indeed inverses. �

Theorem 4.2.8. For any closed symmetric monoidal concrete category C, AlgCommC is iso-
morphic to CSemiC. The isomorphism functors ϕ and σ are the same as those in Theo-
rem 4.2.6.

Proof. First, note that ϕ and σ are inverses since they have exactly the same actions as the
functors in Theorem 4.2.6. Similarly, since the morphisms in CSemiC are just morphisms of
semigroup objects like in SemiC, we don’t need to do any further work to verify that these
two functors map morphisms appropriately. We thus proceed by checking only that the
targets for objects are correct.

Let F : CommC → EndO be an algebra over CommC. The aforementioned theorem shows
that ϕ(F ) = (O,m) is a semigroup object, so it remains to show that (O,m) is commutative
in the sense of diagram (10). That is, we want to showm◦BO,O = m. Denote the permutation
(12) ∈ S2 by τ . We have:

m ◦BO,O = F2(1) ◦BO,O By the definition of F

= F2(1) ◦ τ By the definition of the symmetric
action in EndO

= τ ◦ F2(1) Using (MO3)

= F2(1) Since the symmetric action in
CommC is trivial

= m,

as desired.
Now let (O,m) be a commutative semigroup object. The proof of 4.2.6 shows that σ(O,m)

satisfies conditions (MO1) and (MO2), so it remains to show that (MO3) also holds. The
fact that m is commutative means that the trivial group action of CommC is respected, and
thus we conclude that ϕ and σ are indeed isomorphism functors. �

Theorem 4.2.9. For any closed symmetric monoidal concrete category C, AlgCommuC is
isomorphic to CMonC. The isomorphism functors ϕ and σ are the same as those in Theo-
rem 4.2.7.

Proof. Combine the arguments used in the proofs of Theorems 4.2.7 and 4.2.8. �

When applied to VectK, the previous four theorems provide a characterization of various
types of algebras in terms of operads. Specifically, Theorem 4.2.6 says that algebras over
the associative operad correspond exactly to associative algebras, Theorem 4.2.7 says that
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algebras over the unital associative operad correspond to unital associative algebras, and
Theorems 4.2.8 and 4.2.9 give the same correspondence for commutative algebras. The same
is true in the category of super vector spaces, where these theorems give correspondences
with superalgebras, unital superalgebras, and their commutative versions.

The operads AssocC,AssocuC,CommC, and CommuC abstract out the basic notions of an
algebraic structure being associative, having a unit, and being commutative. To properly
treat structures with more complex properties, we need more powerful operad theoretic
techniques.

5. Operads via Generators and Relations

The concept of “free” mathematical objects appears often in abstract algebra. Examples
include free groups, free semigroups, and free modules. Free objects are the most generic
examples of a particular structure, in a sense usually made precise by some sort of universal
property. Some algebraic structures also admit the notion of quotient objects—for example,
quotient vector spaces and quotient groups. In this section, we develop the tools necessary to
construct both quotient operads and free operads, and then use those objects to instantiate
various operads via generators and relations.

5.1. Quotient Operads and Free Operads.
Throughout this section, we write V = ModΓ

A for brevity. In any applications of general
results, we will specify A and Γ explicitly.

Definition 5.1.1 (Operadic Ideals). Let X be a symmetric operad over V . Let {Yn}n∈N
be a family of objects in V such that Yn is a graded submodule of Xn for all n ∈ N, and
each Yn is Sn-invariant with respect to the symmetric action from X. Suppose further that
(f ◦a1,...,an (g1, . . . , gn)) ∈ Y for any f, g1, . . . , gn ∈ X where at least one of those elements is
in Y . Then Y is called an operadic ideal of X.

Definition 5.1.2 (Quotient Operad). Let Y be an operadic ideal of X. Define the quotient
operad X/Y as follows: set (X/Y )n = Xn/Yn for each n ∈ N, where this represents a
quotient of graded modules. We designate I + Y1 as the identity, where I is the identity of
X, and define the composition maps by:

(f + Yn) ◦a1,...,an (g1 + Ya1 , . . . , gn + Yan) = (f ◦a1,...,an (g1, . . . , gn)) + Ya1+···+an .

If X is a symmetric operad, define a symmetric action on X/Y by: (f+Yn)∗σ = (f ∗σ)+Yn
for all σ ∈ Sn.

We often write elements f + Yn ∈ (X/Y )n simply as f ∈ (X/Y )n when it is clear that we
are working in the quotient operad.

Theorem 5.1.3 (Quotient Operads are Operads). The quotient operad X/Y defined above
is an operad.

Proof. We need to show that the composition maps are well-defined. Associativity then
follows immediately from the associativity of composition in X, and the same is true for
the identity axiom. We will show that partial compositions, that is, those of the form
f ◦ig := f ◦(I, . . . , I, g︸︷︷︸

position i

, I, . . . , I) are well-defined. Any composition can be expressed as

a sequence of partial compositions, so it suffices to consider this special case. Let f, f ′ ∈ Xn,
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and g, g′ ∈ Xk for some n, k ∈ N, and suppose that f ∼ f ′ and g ∼ g′, where ∼ is the usual
equivalence relation of coset membership used in a quotient module. That is, f − f ′ ∈ Yn,
and g − g′ ∈ Yk. Then we need to show that:

(f ◦i g) + Yn+k−1 = (f ′ ◦i g′) + Yn+k−1,

or equivalently,

(f ◦i g)− (f ′ ◦i g′) ∈ Yn+k−1.

Note that ◦ is a grade-preserving multi-A-linear map by the definition of an operad, as we
are working in the category of graded A-modules. We thus proceed by expansion:

(f − f ′) ◦i (g − g′) = (f ◦i g)− (f ′ ◦i g)− (f ◦i g′) + (f ′ ◦i g′)
= (f ◦i g)− (f ′ ◦i g)− (f ◦i g′) + (f ′ ◦i g′)− (f ′ ◦i g′) + (f ′ ◦i g′)
=
[
(f ◦i g)− (f ′ ◦i g′)

]
+
[
(f ′ ◦i g′)− (f ′ ◦i g)

]
+
[
(f ′ ◦i g′)− (f ◦i g′)

]
=
[
(f ◦i g)− (f ′ ◦i g′)

]
+
[
f ′ ◦i (g′ − g)

]
+
[
(f ′ − f) ◦i g′

]
.

Re-writing this equality, we obtain:[
(f ◦i g)− (f ′ ◦i g′)

]
=
[
(f − f ′) ◦i (g − g′)

]
−
[
f ′ ◦ (g′ − g)

]
−
[
(f ′ − f) ◦i g′

]
=
[
(f − f ′) ◦i (g − g′)

]
+
[
f ′ ◦ (g − g′)

]
+
[
(f − f ′) ◦i g′

]
.

Note that all three of the terms on the final line are elements of Yn+k−1: by assumption,
f − f ′ and g− g′ are elements of Y , which is an operadic ideal. By the closure of rings under
addition, we conclude that

[
(f ◦i g)− (f ′ ◦i g′)

]
is an element of Yn+k−1, as desired.

Now we check that the symmetric action is well-defined. The equivariance properties of
a symmetric operad then follow from those in X. Let f, f ′ ∈ Xn with f ∼ f ′, and σ ∈ Sn.
We need to verify that (f ∗ σ) + Yn = (f ′ ∗ σ) + Yn, or equivalently, (f ∗ σ)− (f ′ ∗ σ) ∈ Yn.
By assumption, f = f ′ + y for some y ∈ Yn. Then:

(f ∗ σ)− (f ′ ∗ σ) = (f ′ + y) ∗ σ − (f ′ ∗ σ)

= (f ′ ∗ σ) + (y ∗ σ)− (f ′ ∗ σ) Since ∗σ is an automorphism

= y ∗ σ
= y′, For some y′ ∈ Yn, since Yn is Sn-invariant

so this action is indeed well-defined. �

Theorem 5.1.4. Let X and Y be V-operads, and F : X → Y a morphism of operads. Then
the kernel of F , defined as kern(F ) := {f ∈ Xn | F (f) = 0 ∈ Yn}, is an operadic ideal.

Proof. By the definition of a morphism of operads, F is required to be a family of grade-
preserving linear maps. Thus each kern(F ) is a graded submodule of Xn. It remains to check
the absorption property. Suppose that f ∈ kern(F ), and use Zk to denote the zero map in
Yk for each k ∈ N. Then:

F
(
f ◦a1,...,an (g1, . . . , gn)

)
= F (f) ◦a1,...,an

(
F (g1), . . . , F (gn)

) Since F is a morphism of
operads

= Zn ◦a1,...,an
(
F (g1), . . . , F (gn)

)
Since f ∈ kern(F )

= (0AZn) ◦a1,...,an
(
F (g1), . . . , F (gn)

)
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= 0A ·
(
Z ◦a1,...,an

(
F (g1), . . . , F (gn)

))
Since ◦ is multilinear

= Za1+···+an .

So this composition is in ker(F ). The case where one of the gi is in the kernel is analogous.
Thus ker(F ) is indeed an operadic ideal. �

Definition 5.1.5 (Rooted Trees). Recall that a tree is an acyclic connected graph. Equiva-
lently, trees are those graphs such that there is a unique path between any two vertices.

A rooted tree is a tree together with a distinguished vertex called the root.
The depth of a vertex in a rooted tree is the length of its path to the root.
The height of a rooted tree is the greatest depth of any vertex in that tree.
In a rooted tree, an edge joining two vertices u and v is called an outgoing edge from u if

the depth of u is less than the depth of v. In such a case, v is called an out-neighbour of u.

Definition 5.1.6 (Free Operad). For each n ∈ N, let Pn be a (potentially empty) set, such
that the Pn are pairwise disjoint. We require P1 to contain a distinguished element that we
denote I. In practice, since every free operad must contain such an element, we usually do
not explicitly define P1 to contain I. Let P = (P0, P1, . . . ) denote the family of these sets.
Define T (P ) to be the set of all finite rooted trees subject to the following extra structure:

The root must be labeled with some p ∈ Pk, where k is the degree of the root. Further,
every vertex of degree d ≥ 2 must be labeled with some p ∈ Pd−1. Leaves (other than the
root) may either be labeled with an element of P0 or be unlabeled, in which case we call
it an input vertex. All input vertices are required to have depth equal to the height of the
tree. Every non-input vertex must be equipped with a total ordering on its outgoing edges.
Finally, each tree in T (P ) must be equipped with a total ordering on its input vertices. We
consider these trees up to graph isomorphisms that preserve the total orders and labels.

Let f ∈ T (P ). If all vertices in f with depth n ≥ 1 are labeled with I, note that
each of these vertices must have exactly one out-neighbour. Consider the tree obtained by
identifying each vertex of depth n with its unique out-neighbour, replacing each label I with
the labels of those out-neighbours. In the special case where the out-neighbours are input
vertices (and are thus not labeled), we instead leave the identified vertices unlabeled and
maintain the total order on input vertices that previously existed in f . Call the tree obtained
by repeating this reduction process until no depth n ≥ 1 of vertices are all labeled with I
the identity-reduced form of f .

Let T (P ) be the set of trees from T (P ) that have been transformed to identity-reduced
form. Partition T (P ) into the collection {Tn(P ) | n ∈ N}, where each Tn(P ) consists of the
trees in T (P ) with exactly n input vertices.

Define the composition f ◦ (g1, . . . , gn) of trees by concatenation, replacing each input
vertex of f with the root of the gi in order of the total ordering on the input vertices of
f . Define the total ordering on the input vertices of f ◦ (g1, . . . , gn) to be the lexicographic
one. That is, all of the input vertices from gi are smaller than those from gj precisely
when i < j, and the vertices in each gi are locally ordered as they were before composition.
After performing this concatenation, reduce the resulting tree to identity-reduced form. By
this definition, the composition in T (P ) is clearly associative since concatenation of trees
is associative, and it also satisfies the identity axioms of Definition 3.1.1 via the identity-
reduction process.
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Define the right action ∗ of the symmetric group Sn on Tn(P ) by permuting the total
order on the input vertices. Explicitly, if f ∈ Tn(P ) and τ ∈ Sn, then f ∗ τ is the tree
where the least input vertex from f is now the τ(1)’th least in the new ordering, the second
least input is now the τ(2)’th least, and so on. This definition can be seen to satisfy the
equivariance axioms of Definition 3.1.2.

For each p ∈ Pn, we identify p with the tree in Tn(P ) that consists of the root labeled
by p and n input vertices, with the order on the outgoing edges from p agreeing with the
order on the input vertices at the end of each of those edges. With this structure, the family
T (P ) = {T0(P ), T1(P ), . . . } forms a symmetric operad of sets called the free operad generated
by P .

For each n ∈ N, define TAn (P ) to be the free graded A-module generated by taking
Tn(P ) as a basis and giving that module the trivial grading. Define the composition and
symmetric action by extending the composition and symmetric action from T (P ) linearly.
Then TA(P ) = {TA0 (P ), TA1 (P ), . . . } forms a symmetric operad in V called the free graded
operad over A generated by P .

Note that the composition and symmetric action for free operads are the same as the ope-
rations on tree diagrams outlined in Section 3.2, with only cosmetic differences. Specifically,
in those diagrams, the input vertices are omitted, and an additional edge at the bottom of
each tree is included for illustrative purposes. The total order on each set of outgoing edges
corresponds to the left-to-right ordering of the edges as drawn in the plane, and the same is
true for the order on the input vertices.

Lemma 5.1.7. Let T (P ) be a free operad. Let f ∈ T (P ). Then f can be expressed as a
finite sequence of compositions of elements in P followed by a symmetric action.

The same is true for any free graded operad TA(P ), where elements can be expressed as
a linear combination of finite compositions of elements in P , each followed by a symmetric
action.

Proof. We proceed by induction on the height of f . If f has height 0, then it consists of just
a root vertex. This root must then be labeled with some p ∈ P0 by the definition of T (P ),
and is thus equal to p itself via the identification specified in Definition 5.1.6; we consider
this to be a zero-step sequence of compositions. If f has height 1, then it consists of a root
vertex labeled with some p ∈ Pn that is adjacent to n input vertices, for some n ∈ N. Thus
f is equal to p followed by the unique symmetric action that results in the desired order on
the input vertices.

Now suppose that the statement of this lemma holds for all elements of T (P ) with height
k or less, for some fixed k ≥ 1. Suppose f has height k + 1. First, collect the labels of
the vertices with depth k in some arbitrary order. Write this list of labels as h1, h2, . . . , hn.
Consider the tree obtained by taking the subtree of f consisting of vertices with depth k or
less, unlabeling all of the vertices with depth k, and giving them the same order that the
labels hi were collected in. That tree, which we will call g, is then an element of T (P ) with
depth k, so the induction hypothesis tells us that it can be expressed as a finite sequence of
compositions of elements in P followed by a symmetric action. We write this as:

g = g1,1 ◦ (g2,1, g2,2, . . . , g2,n2) ◦ · · · ◦ (gk,1, . . . , gk,nk) ∗ τ,
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for some gi,j ∈ P and a permutation τ . Then by the definition of composition in T (P ), we
have f = g ◦ (h1, . . . , hn) ∗ σ, where σ is the unique permutation that will reorder the input
vertices to match the order in f . The first equivariance axiom of a symmetric operad (and
the fact that ∗ is a group action) then tells us that we can rewrite this composition as:

f = g1,1 ◦ (g2,1, . . . , g2,n2) ◦ · · · ◦ (gk,1, . . . , gk,nk) ◦ (hτ−1(1), . . . , hτ−1(n)) ∗ στ ′,

where each of the gi,j and hi are in P , as desired.
The result for TA(P ) follows from the fact that Tn(P ) is taken as a basis for TAn (P ). �

Theorem 5.1.8. The free operads of Definition 5.1.6 are free, in the sense that they satisfy
the following universal property: let P be as in the definition of a free operad (without the
element I included), and let X be a symmetric operad over the category of sets. For any
family of functions Fn : Pn → Xn (with n ranging over N), there exists a unique morphism
of operads G : T (P )→ X that extends the Fn.

Similarly, if X is instead a symmetric V-operad, there exists a unique morphism of operads
G : TA(P )→ X that extends the Fn.

Proof. Set G1(I) to be the identity in X1. For every f ∈ Pn, set Gn(f) = Fn(f). For any
other f ∈ Tn(P ), Lemma 5.1.7 tells us that we can write:

f = a ◦ (a1,1, . . . , a1,k1) ◦ . . . ◦ (am,1, . . . , am,km) ∗ σ

for some a, ai,j ∈ P and σ ∈ Sn. We define:

Gn(f) = F (a) ◦ (F (a1,1), . . . , F (a1,k1)) ◦ . . . ◦ (F (am,1), . . . , F (am,km)) ∗ σ,

where in each case F stands for the relevant function Fi, according to which Pi each element
belongs to. By this definition, G clearly satisfies the properties of a morphism of symmetric
operads. Since any other morphism G′ : T (P )→ X that extends the Fn must agree with G
on elements of P and satisfy the equivariance property used to define G, this morphism is
unique.

The morphism is constructed analogously for the case with TA(P ); simply define each
Gn to be A-multilinear. The uniqueness of these morphisms follows from uniqueness in the
T (P ) case and the fact that any other G′ would also be required to be A-multilinear. �

Theorem 5.1.9. The intersection of an arbitrary number of operadic ideals is an operadic
ideal.

Proof. Let X be a V-operad, and let {Y (i) | i ∈ I} be a collection of operadic ideals of X for
some index set I. Set Y =

⋂
i∈I
Y (i), where this denotes the operad given by Yn =

⋂
i∈I
Yn(i).

We know that each Yn is a graded submodule of Xn by a theorem from abstract algebra,
so it remains to check the absorption property. So let f, g1, . . . , gn ∈ X with at least one of
them being an element of Y . Without loss of generality, we assume that f ∈ Y . Take any
i ∈ I. Then f ∈ Y (i), so f ◦ (g1, . . . , gn) ∈ Y (i) since Y (i) is an operadic ideal. This holds
for all i, so we conclude f ◦ (g1, . . . , gn) ∈ Y , as desired. �

Definition 5.1.10. Let X be a V-operad, and for each n ∈ N, let Rn be a subset (not
necessarily a submodule) of Xn. Consider the collection {Y (i) | i ∈ I} of operadic ideals of
X satisfying Rn ⊆ Yn(i) for all n and all i. This collection is non-empty, as X itself is such
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an operadic ideal. Define (R) =
⋂
i∈I
Y (i). Then by Theorem 5.1.9, (R) is an operadic ideal

of X, which we call the ideal generated by R.

Definition 5.1.11 (Operad from Generators and Relations). Let P be a family of sets as
in Definition 5.1.6. For each n ∈ N, let Rn be a (possibly empty) set of vectors in TAn (P ).
Then define 〈P | R〉 = TA(P )/(R). We call 〈P | R〉 the operad generated by P subject to R,
and call P the family of generators and R the family of relations.

In practice, the Rn are often specified by sets of equalities rather than vectors. In this
case, an equality of vectors v = w is interpreted as the vector v−w, since taking the quotient
TA(P )/(R) will then set v − w = 0, giving the desired equality.

Theorem 5.1.12. Let X/Q be a quotient operad, and let Y be any symmetric V-operad. Let
F : X → Y be a morphism of operads such that Q ⊆ ker(F ). Then there exists a morphism
of operads G : X/Q → Y such that F = G ◦ π, where π : X → X/Q is the usual quotient
map.

Proof. Define Gn(f+Qn) = Fn(f). Note G is then well-defined since if f+Qn = f ′+Qn, then
f = f ′+q for some q ∈ Qn, by definition. Then Fn(f) = Fn(f ′+q) = Fn(f ′)+Fn(q) = Fn(f ′)
by assumption on F . It’s clear that G extends F , and it inherits all of the morphism
properties from F , so it’s a morphism of operads itself. It’s clear that F = G ◦ π. �

Corollary 5.1.13. Let P be a family of generators, R a family of relations, and X a symme-
tric V-operad. Suppose that Fn : Pn → Xn is a family of functions that maps every element
of R to zero. Then there exists a morphism of operads G : TA(P )/(R)→ X that extends the
Fn.

Proof. Using Theorem 5.1.8, there is a unique morphism of operads G : TA(P ) → X that
extends the Fn. Then Theorem 5.1.4 tells us that ker(G) is an operadic ideal. By assumption,
Rn ⊆ kern(G) for each n. Since (R) is defined to be the intersection of all operadic ideals
that contain R, we have (R) ⊆ ker(G). Thus by Theorem 5.1.12, there exists a morphism of
operads H : TA(P )/(R)→ X that extends the Fn, as desired. �

5.2. More Examples of Operads.
In the final two sections, we give several examples to illustrate the power (and limitations)

of the techniques developed above.

Definition 5.2.1 (Lie Algebra). A Lie algebra over K is a pair (V, [·, ·]), where V is a vector
space over K and [·, ·] is a bilinear operation on V (called the Lie bracket) that satisfies the
following properties for all x, y, z ∈ V :

(Alternativity) [x, x] = 0,
(Jacobi Identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

If K is a field of any characteristic other than 2, alternativity is equivalent to skew symmetry:

(Skew Symmetry) [x, y] = −[y, x].

Let (V, [·, ·]) and (W, [·, ·]′) be Lie algebras over K. A homomorphism of Lie algebras from
(V, [·, ·]) to (W, [·, ·]′) is a K-linear map f : V → W such that f([v, v′]) = [f(v), f(v′)]′ for all
v, v′ ∈ V .
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Example 5.2.2 (Lie Operad). Let m be a formal symbol. Define a family of generators by
P2 = {m} with all other Pi = ∅, and a family of relations by:

R2 = {m = −m ∗ (12)},
R3 = {(m ◦ (I,m)) + (m ◦ (I,m)) ∗ (123) + (m ◦ (I,m)) ∗ (132) = 0},

with all other Ri = ∅. Then we define LieOp = 〈P | R〉, and call it the Lie operad.

Theorem 5.2.3. Let K be a field of any characteristic other than 2, and fix the underlying
category for LieOp to be VectK. Then AlgLieOp is isomorphic to the category of Lie algebras
over K, which we denote L. The isomorphism functor is denoted ϕ : AlgLieOp → L, with
inverse σ : L → LieOp. These functors are defined as in Theorem 3.3.6 (where the Lie
bracket takes the place of the semigroup multiplication), with the following modification to
σ: let (V, [·, ·]) be a Lie algebra. Then:

σ(V, [·, ·]) = F,

where F is the algebra over LieOp induced by the mapping m 7→ [·, ·] via Corollary 5.1.13.

Proof. As in the previous proofs of category isomorphisms, we need to verify that ϕ and σ
map objects and arrows into the claimed categories; that they are inverses is clear from the
definitions. So let F : LieOp → EndV be an algebra over LieOp. Then ϕ(F ) = (V, F (m)).
We will write F (m) = [·, ·] for brevity. We have to verify that [·, ·] satisfies the axioms of a
Lie bracket. As K is not of characteristic 2, we can use the characterization of Lie brackets
that requires [·, ·] to be bilinear, anticommutative, and satisfy the Jacobi identity. Since F
is an algebra over LieOp, we know that [·, ·] ∈ EndV (2), so [·, ·] is bilinear. Next we check
the Jacobi identity. Let x, y, z ∈ V . Then:

[x, [y, z]] + [z, [x, y]] + [y, [z, x]]

=
(

[·, ·] ◦ (idV , [·, ·])
)

(x, y, z) +
(

[·, ·] ◦ (idV , [·, ·]) ∗ (123)
)

(x, y, z)

+
(

[·, ·] ◦ (idV , [·, ·]) ∗ (132)
)

(x, y, z)

=
(

[·, ·] ◦ (idV , [·, ·]) + [·, ·] ◦ (idV , [·, ·]) ∗ (123)

+ [·, ·] ◦ (idV , [·, ·]) ∗ (132)
)

(x, y, z)

=
(
F2(m) ◦ (F1(I), F2(m)) + F2(m) ◦ (F1(I), F2(m)) ∗ (123)

+ F2(m) ◦ (F1(I), F2(m)) ∗ (132)
)

(x, y, z)

=
(
F3(m ◦ (I,m)) + F3(m ◦ (I,m)) ∗ (123)

+ F3(m ◦ (I,m)) ∗ (132)
)

(x, y, z)
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=
(
F3(Z3)

)
(x, y, z)

Where Z3 denotes
the zero in LieOp3,
by the definition
of the relations in
LieOp

=0(x, y, z)
Where 0 denotes
the zero in EndV (3),
since F is linear

=0 ∈ V.
Thus the Jacobi identity holds. Now we check anticommutativity.

[x, y] =
(
F (m)

)
(x, y)

=
(
F2(−m ∗ (12))

)
(x, y) By the definition of the relations in LieOp

=
(
− F2(m) ∗ (12)

)
(x, y) Since F is a morphism of operads

=
(
− [·, ·] ∗ (12)

)
(x, y)

= −[y, x].

So anticommutativity holds. Thus ϕ(F ) is indeed a Lie algebra over K.
Next, let (V, [·, ·]) be a Lie algebra, and set σ(V, [·, ·]) = F , as defined in the theorem sta-

tement. By definition, F preserves the identity, so it remains to check that it also commutes
with composition and the symmetric action. But F is in fact defined as commuting with the
composition in LieOp, and the symmetric action is respected due to the properties of a Lie
bracket. So F is indeed an algebra over LieOp.

That σ(V, [·, ·]) is an algebra over LieOp is guaranteed by Corollary 5.1.13.
Now let M : (V, [·, ·]) → (W, [·, ·]′) be a homomorphism between two Lie algebras, and

denote F = σ(V, [·, ·]) and G = σ(W, [·, ·]′). Then by definition, M respects the Lie brackets
[·, ·] and [·, ·]′. That is, M ◦ [·, ·] = [·, ·]′ ◦ M ⊗ M . Additionally, it’s clear that we have
M ◦ idV = idW ◦M . Considering that LieOp is generated by I and m, this precisely says
that σ(M) is a morphism of LieOp-algebras.

Finally, le M : F → G be a morphism of LieOp-algebras, and write ϕ(F ) = (V, [·, ·]) and
ϕ(G) = (W, [·, ·]′). Then for any x, y ∈ V , we have:

M([x, y]) = M(F2(m)(x, y))

= G2(m)(M(x),M(y)) Since M is a morphism of LieOp-algebras

= [M(x),M(y)]′.

So M respects the Lie brackets, and thus ϕ(M) is a homomorphism of Lie algebras. We
conclude that ϕ is an isomorphism of categories. �

Theorem 5.2.4. Let K be a field of characteristic different from 2, and fix the underlying
category for LieOp to be the category of super K-vector spaces. Then AlgLieOp is isomorphic
to the category of Lie superalgebras over K. The isomorphism functors ϕ and σ are defined
as in Theorem 5.2.3.

Proof. Repeat the arguments of Theorem 5.2.3, noting that the symmetric action in the
endomorphism operad over a super vector space provides the sign terms needed for super
skew-symmetry and the super Jacobi identity. �
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Remark 5.2.5. Any type of algebra defined using multilinear equations (that is, where each
side of the equality is linear in each of its variables) can be directly translated into a corre-
sponding operad as in Example 5.2.2. Some non-multilinear equations can be transformed
into multilinear ones for this purpose. For instance, assuming the Jacobi identity in a field
of characteristic other than 2, the non-multilinear equation [x, x] = 0 for alternativity is
equivalent to the multilinear equation [x, y] = −[y, x] for skew symmetry. Sometimes this
conversion into multilinear terms results in a much more complicated expression; for exam-
ple, see Definition 16 on page 9 of [DMR17] for a multilinear version of the Jordan identity,
(xy)(xx) = x(y(xx)).

Operads can also model the properties of algebraic structures with operations of more
than two arguments, as shown by the following example.

Definition 5.2.6 (Lie Triple System). Let K be a field and V be a vector space over K.
Then a Lie triple system is a pair (V, [·, ·, ·]), where [·, ·, ·] is a K-trilinear map satisfying the
following properties, for all u, v, w, x, y ∈ V :

(LT1) [u, v, w] = −[v, u, w],
(LT2) [u, v, w] + [w, u, v] + [v, w, u] = 0,
(LT3) [u, v, [w, x, y]] = [[u, v, w]x, y] + [w, [u, v, x], y] + [w, x, [u, v, y]].

Example 5.2.7 (Lie Triple Operad). Let m be a formal symbol. Define a family of genera-
tors by P3 = {m} with all other Pi = ∅, and a family of relations by:

R3 = {m = −m ∗ (12),m+m ∗ (123) +m ∗ (132) = 0},
R5 = {m ◦ (I, I,m) = m ◦ (m, I, I) +m ◦ (I,m, I) ∗ (123) +m ◦ (I, I,m) ∗ (13)(24)},

with all other Ri = ∅. Then we define LieTr = 〈P | R〉, and call it the Lie triple operad.

Theorem 5.2.8. Let K be a field and fix the underlying category for LieTr to be VectK.
Then AlgLieTr is isomorphic to the category of Lie triple systems over K. The isomorphism
functors are defined as in Theorem 5.2.3.

Proof. Use analogous arguments to those in the proof of Theorem 5.2.3. �

The previous theorems suggest a natural definition for “Lie triple super systems”; simply
take these systems to be the images of algebras over LieTr via the functor ϕ in the context
of the category of super vector spaces. An explicit definition of these systems follows, which
agrees with the standard definition in e.g. [ZWCZ14, Definition 2.1]. In general, one can
use operads in this way to determine the natural analogues of familiar algebraic structures
in different categories.

Definition 5.2.9 (Lie Triple Super System). Let K be a field and V be a super vector space
over K. Then a Lie triple super system is a pair (V, [·, ·, ·]), where [·, ·, ·] is a grade-preserving
K-trilinear map satisfying the following properties, for all homogeneous u, v, w, x, y ∈ V :

(ST1) [u, v, w] = −(−1)u v[v, u, w],
(ST2) [u, v, w] + (−1)(v+u)w[w, u, v] + (−1)u(v+w)[v, w, u] = 0,
(ST3) [u, v, [w, x, y]] = [[u, v, w], x, y]+(−1)(v+u)w[w, [u, v, x], y]+(−1)(v+u)(w+x)[w, x, [u, v, y]].

Remark 5.2.10. If C is a monoidal category, Cop is also monoidal in a canonical way: the
tensor functor ⊗op is defined by Xop ⊗op Y op = Y ⊗X, the monoidal unit is the same, the
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associator and unitors are replaced by their inverses, and the left and right unitors switch
roles. If C is symmetric, the opposite category can also be made symmetric by simply taking
(BX,Y )op = BY,X .

Definition 5.2.11 (Cosemigroup Object, Comonoid Object). Let C be a monoidal category.
A cosemigroup object is a pair (O,∆), where O is an object in C and ∆: O → O ⊗ O is a
morphism called the comultiplication such that the following diagram commutes:

(18)

O

∆
��

∆ // O ⊗O
idO ⊗∆
��

O ⊗O
∆⊗idO

// O ⊗O ⊗O
.

A comonoid object is a triple (O,∆, ε) such that (O,∆) is a cosemigroup object and ε : O → u
is a morphism called the counit that makes the following diagrams commute:

(19)

O

λ−1
O &&

∆ // O ⊗O
ε⊗idO
��

O

ρ−1
O &&

∆ // O ⊗O
idO ⊗ε
��

u⊗O O

.

Alternatively, one can note that the previous three diagrams are exactly the diagrams that
define semigroup and monoid objects according to Definitions 2.2.26 and 2.2.27, only with
the arrows reversed and the unitors inverted. Thus cosemigroup and comonoid objects can
equivalently be defined as semigroup and monoid objects in Cop. This way of thinking
provides an immediate definition of co-commutative objects of both types if C is symmetric;
we simply require the following diagram—namely, Diagram (10) with the arrows reversed—to
commute:

(20)

O

∆ &&

∆ // O ⊗O
BO,O
��

O ⊗O

.

Applying Theorems 4.2.6 through 4.2.9 to various opposite categories gives a characteri-
zation of these types of co-objects in terms of algebras over operads. In general, given any
type of algebraic structure characterized by an operad in this way, one can obtain a natural
definition of the dual (the “co-version”) of that structure by looking at the algebras over
that operad in the opposite category.

Definition 5.2.12 (Derivation). Let K be a field and V an associative K-algebra whose
multiplication is denoted by juxtaposition. A derivation for V is a linear map D : V → V
that satisfies the Leibniz rule: D(vw) = D(v)w + vD(w) for all v, w ∈ V .

If W is an associative K-superalgebra, an even superderivation for W is a grade-preserving
linear map D : W → W that satisfies the same Leibniz rule. An odd superderivation for W
is a grade-reversing linear map D : W → W that satisfies the following graded Leibniz rule:
D(vw) = D(a)b+ (−1)|a|aD(b).
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Example 5.2.13 (Derivation Operad). Let m and D be formal symbols. Define a family of
generators by P1 = {D} and P2 = {m}, with all other Pi = ∅, and a family of relations by:

R2 = {D ◦ (m) = m ◦ (D, I) +m ◦ (I,D)}
R3 = {m ◦ (m, I) = m ◦ (I,m)},

with all other Ri = ∅. Then we define Deriv = 〈P | R〉, and call it the derivation operad.
Similarly to the result in Theorem 5.2.3, algebras over Deriv in the category VectK cor-

respond to associative K-algebras equipped with a derivation. The relation in R3 is the
associativity condition, and the relation in R2 forces the image of D to be a derivation.
Likewise, algebras over Deriv in the category of K-super vector spaces correspond to asso-
ciative K-superalgebras equipped with an even superderivation. Note that a similar result
does not hold for K-superalgebras equipped with odd superderivations, as by definition, the
category of super K-vector spaces that we are working with contains only grade-preserving
linear maps.

5.3. Coloured Operads.
The techniques developed in this document are insufficient to construct an operad whose

algebras correspond to groups, or more generally, to any algebraic structure wherein every
element is required to have an inverse. One can view a group (G,m, i) as being a monoid
equipped with an inverse map, −−1 : G → G, such that m(x, x−1) = i = m(x−1, x) holds
for all x ∈ G. It would be simple to construct an operad corresponding to the product m,
identity i, and a map from G to G. However, the defining property of the inverse map is
inherently non-linear. As such, there is no straightforward way to translate the equation into
operad theoretic terms. A composition like m ◦ (idG,−−1) gives the two-variable function
(x, y) 7→ m(x, y−1), and not the desired one-variable function x 7→ m(x, x−1). The repetition
of a variable in a formula cannot be encoded using plain generators and relations.

One generalization of the concept of an operad is that of a coloured operad. We will give a
brief introduction to coloured operads here; for a more technical definition, see, for example,
[nLa18].

Elements of a coloured operad can, as in a usual operad, be thought of as functions with
n inputs and one output. Such n-ary functions are drawn similarly to the trees in Section
3.2, but with each edge given a colour. For instance:

f

.

The colours indicate the “type” of variable being input or output along each edge. When
working in the category of sets, each colour corresponds to a set. Thus, if we label the sets
corresponding to the colours orange, red, blue, and green as O,R,B, and G, respectively,
the above diagram represents some function f : O×R×B ×R→ G. The composition in a
coloured operad is more restricted than in a non-coloured one—the input and output colours
in each composition must match up. To illustrate, consider functions g : O × R → O and
h : B ×G→ R. The composition h ◦ (g, g),
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g g

h

,

does not make sense. The two instances of g each output a variable from O, but h requires
inputs from B and G. Thus the expression h ◦ (g, g) is left undefined. On the other hand,
the composition g ◦ (g, h),

g h

g

,

does make sense, as the domains and codomains of each function (that is, the colours of their
associated edges) match up correctly. A coloured operad comes equipped with an identity
element for each colour, and may or may not be equipped with a symmetric action. Coloured
operads must satisfy associativity, identity, and equivariance axioms analogous to those for
non-coloured operads. The definitions for morphisms between coloured operads and other
related notions are also analogous to the non-coloured versions. Coloured operads with only
one colour are equivalent to ordinary operads.

The archetypal coloured operad is the endomorphism operad over multiple sets. Let
{Xi}i∈I be a family of sets for some (usually finite) index set I. The endomorphism operad
over the Xi consists of all functions whose domain is an iterated cartesian product of the
sets Xi, and whose codomain is one of the Xi. There is one colour in this operad for each
i ∈ I. The compositions (when defined, as per the note on coloured composition above) and
symmetric action in this operad are defined as in Example 3.1.3.
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