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EDUARDO MONTEIRO MENDONCA

Abstract. We present an introduction to the basic concepts of projective representations
of groups and representation groups, and discuss their relations with group cohomology. We
conclude the text by discussing the projective representation theory of symmetric groups
and its relation to Sergeev and Hecke-Clifford Superalgebras.
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Introduction

The theory of group representations emerged as a tool for investigating the structure of
a finite group and became one of the central areas of algebra, with important connections
to several areas of study such as topology, Lie theory, and mathematical physics. Schur was
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the first to realize that, for many of these applications, a new kind of representation had to
be introduced, namely, projective representations. The theory of projective representations
involves homomorphisms into projective linear groups. Not only do such representations
appear naturally in the study of representations of groups, their study showed to be of great
importance in the study of quantum mechanics.

Schur [Sch04] laid the foundations for the general theory of projective representations,
showing the existence of a certain finite central extension G̃ of a group G, which is called
a representation group of G. Such a central extension reduces the problem of determining
all projective representations of G to the determination of all linear representations of G̃.
In [Sch07, Sch11], Schur gave an estimation for the number of non-isomorphic representa-
tion groups and determined all irreducible projective representations of the symmetric and
alternating groups.

The representation theory of symmetric group is a special case of the representation theory
of finite groups that provides a vast range of applications, ranging from theoretical physics,
through geometry and combinatorics. Recently, new approaches to the study of projective
representations of the symmetric group have been born, including the study of Sergeev and
Hecke-Clifford superalgebras.

The goal of this paper is to give an introduction to the theory of projective representations
of groups accessible to undergraduates. We assume only basic knowledge of group theory
and linear algebra.

In the first section, we introduce the basic concepts of group cohomology, and we give
some important properties of the 2nd-cohomology group.

In the second section, we define projective representations and the concept of equivalence.
Then we define Schur multipliers and show their relation with 2nd-cohomology groups. We
finish the section by showing that the cohomology class associated with a projective repre-
sentation depends only on the equivalence class of the projective representation.

We define central extensions of a group in Section 3, and and show the bijection between
the set of equivalence classes of central extensions and the 2nd-cohomology group.

In Section 4, we show the existence of representation groups and the equivalence of two
possible definitions. At the end of the section, we discuss the uniqueness of representation
groups in the specific case of perfect groups.

We finish the text by discussing projective representations of symmetric groups in the last
section. We discuss two representation groups for Sn (for n ¥ 4), that are isomorphic only
for n � 6, developing the discussion to show how the study of Sergeev and Hecke-Clifford
superalgebras is equivalent to the study of spin representations of symmetric groups.

Acknowledgements. I would like to thank Professor Alistair Savage at the University of
Ottawa for his guidance and support. I would also like to thank Mitacs Globalink Program
and the University of Ottawa for providing me such an amazing opportunity to conduct an
undergraduate research internship.

1. Group cohomology

When we study projective representations, the cohomology of groups naturally appears.
So we will introduce in the first subsection the basic concepts of group cohomology, following
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the approach of MacLane and Eilenberg in [EM47], and in the second subsection some
important properties of the 2nd-cohomology group.

1.1. Cohomology groups. Throughout this subsection, let G be an arbitrary group and
M an abelian group. In groups cohomology studies, there exists a more general approach
where G acts on M . But as it is not necessary for our study, we will not consider such action
in the following definitions. Since in the next sections M will be a multiplicative abelian
group, we will use the multiplicative notation in this document.

Definition 1.1.1 (n-cochain). Let n be a positive integer. A n-cochain of G in M is a set
map f : Gn ÑM . We define CnpG,Mq to be the abelian group of all n-cochains of G in M ,
where the multiplication, identity and inverse, are given, respectively, by:

(a) fg : px1, . . . , xnq ÞÑ fpx1, . . . , xnqgpx1, . . . , xnq, for all f, g P CnpG,Mq;
(b) 1 : px1, . . . , xnq ÞÑ 1M ;
(c) f�1 : px1, . . . , xnq ÞÑ fpx1, . . . , xnq�1, for all f P CnpG,Mq;

A 0-cochain is defined to be an element of M .

Remark 1.1.2. The commutativity of CnpG,Mq follows from the fact that its elements take
values in M , which is an abelian group.

Definition 1.1.3 (Coboundary). The coboundary of an n-cochain f is the pn � 1q-cochain
δnf , defined by:

pδnfqpx1, . . . , xn�1q � fpx2, . . . , xn�1q
�

n¹
i�1

fpx1, . . . , xixi�1, . . . , xn�1qp�1qi

�
fpx1, . . . , xnqp�1qn�1

,

for all px1, . . . , xn�1q P Gn�1.

The coboundary has two properties that can be verified directly:

Lemma 1.1.4. For all n-cochains f and g, we have:

(a) δnpfgq � pδnfqpδngq;
(b) δn�1pδnfq � 1.

Proof. Part (a) follows by the definition of δ and the commutativity of CnpG,Mq.
For any f P CnpG,Mq define the set map f̂ : Gn�1 ÑM by setting

f̂px1, . . . , xn�1q � fpx�1
1 x2, x

�1
2 x3, . . . , x

�1
n xn�1q,

for all px1, . . . , xn�1q P Gn�1. Notice that f̂ satisfies

f̂pyx1, . . . , yxn�1q � f̂px1, . . . , xn�1q,
for all px1, . . . , xn�1q P Gn�1 and y P G. For any g P Cn�1pG,Mq define the pn� 2q-cochain
Bng : Gn�2 ÑM by setting

Bngpx1, . . . , xn�2q �
n�2¹
i�1

gpx1, . . . , x̂i, . . . , xn�2qp�1qi�1

,

for all px1, . . . , xn�2q P Gn�2, where x̂i indicates that the variable xi has been omitted. It can

be verified, after some combinatorial calculations, that Bn�1Bnf̂ � 1, for all f P CnpG,Mq.
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By [EM47, Section 2], for all px1, . . . , xn�1q P Gn�1, we have that

(1.1) δnfpx1, . . . , xn�1q � Bnf̂p1, x1, x1x2, . . . , x1 � � � xn�1q.
Therefore, by (1.1) and the fact that Bn�1Bnf̂ � 1, for all f P CnpG,Mq, part (b) holds.

�

It follows from Lemma 1.1.4(a) that the coboundary map δn : CnpG,Mq Ñ Cn�1pG,Mq
is a group homomorphism, for all non-negative integers n.

Definition 1.1.5 (The n-cocycles and n-coboundaries sets). Let n be a positive integer.
Then we define ZnpG,Mq � Ker δn and BnpG,Mq � Im δn�1. We call the elements of
ZnpG,Mq n-cocycle. The elements of BnpG,Mq are called n-coboundaries ;

It follows from Lemma 1.1.4(b) that Im δn�1 � Ker δn and therefore BnpG,Mq is a sub-
group of ZnpG,Mq. Thus, we can define:

Definition 1.1.6 (nth-Cohomology group). Let n be a non-negative integer. Then the
nth-cohomology group is defined to be the quotient group:

HnpG,Mq � ZnpG,Mq
BnpG,Mq ,

and its elements are called cohomology classes.
Two cocycles contained in the same cohomology class are called to be cohomologous.
We denote by � : ZnpG,Mq Ñ HnpG,Mq the canonical projection that takes any n-cocycle

ρ to its cohomology class ρ.

Example 1.1.7 (2nd-Cohomology group). Let us describe the 2-cocycles and 2-coboundaries
more explicitly.

We have that ρ P Z2pG,Mq, if and only if δρ � 1. Therefore a set map ρ : G � G Ñ K�

is a 2-cocycle if and only if:

(1.2) ρph, kqρpgh, kq�1ρpg, hkqρpg, hq�1 � 1, for all g, h, k P G.
Now let ρ P B2pG,Mq. Then there exist a 1-cochain f : GÑM such that:

ρpg, hq � fphqfpghq�1fpgq, for all g, h P G.
Then two 2-cocycles ρ and ρ1 are cohomologous if, and only if, there is a 1-cochain f : GÑ

M such that:

(1.3) ρ1pg, hq � fpgqfpghq�1fphqρpg, hq, for all g, h P G.
1.2. 2nd-Cohomology group. From now, let K be a field and K� be its multiplicative
group.

Lemma 1.2.1. Any 2-cocycle ρ P Z2pG,Mq satisfies, for all g, h P G:

(1.4) ρpg, 1q � ρp1, 1q � ρp1, hq
and

(1.5) ρpg, g�1q � ρpg�1, gq.
In particular, for all α P H2pG,Mq, there is a 2-cocycle ω representative of α such that
ωp1, 1q � 1 and satisfy (1.4) and (1.5).



PROJECTIVE REPRESENTATIONS OF GROUPS 5

Proof. Let ρ be a 2-cocycle. We have that ρ satisfies (1.2) for all g, h, k P G. Replacing g by
1 and k by h�1g in (1.2), we have ρph, h�1gqρph, h�1gq�1ρp1, gqρp1, hq�1 � 1, for all g, h P G.
Thus,

(1.6) ρp1, hq � ρp1, gq, for all g, h P G.
Now, replacing k by 1 and g by gh�1 in (1.2), we have ρph, 1qρpg, 1q�1ρpgh�1, hqρpgh�1, hq�1 �
1, for all g, h P G. Thus,

(1.7) ρpg, 1q � ρph, 1q, for all g, h P G.
Therefore, by (1.6) and (1.7), we have:

ρpg, 1q � ρp1, 1q � ρp1, hq,
for all g, h P G. Therefore ρ satisfies (1.4).

Replacing k by g and h by g�1 in (1.2), we have, for all g P G:

ρpg�1, gqρp1, gq�1ρpg, 1qρpg, g�1q�1 � 1.

Therefore, by (1.4):
ρpg, g�1q � ρpg�1, gq,

for all g P G. Hence ρ satisfies (1.5).
Now, let α P H2pG,Mq and ρ be any 2-cocyle representative of α. Define ω : G2 Ñ M

by setting ωpg, hq � aρpg, hq, for all g, h P G, where a � ρp1, 1q�1 P M . Then, considering
f : GÑM as the constant map a�1, we have:

ωpg, hqωpgh, kq�1ωpg, hkqωpg, hq�1 � aρpg, hqa�1ρpgh, kq�1aρpg, hkqa�1ρpg, hq�1 � 1,

ρpg, hqωpg, hq�1 � a�1 � fpgqfpghq�1fphq,
for all g, h P G. Therefore ω is a 2-cocycle cohomologous to ρ such that ωp1, 1q � 1. �

Theorem 1.2.2 ([CR06, Theorem 53.3]). Let K be an algebraically closed field of characte-
ristic p P N and H � H2pG,K�q. Then the following statements are true:

(a) The order of every element of H divides the order of G.
(b) Every element α in H can be represented by a 2-cocycle ρ such that ρp1, 1q � 1 and

ρpg, hq is an e-th root of 1 P K, for all g, h P G, where e is the order of α.
(c) H has finite order not divisible by p.

Proof. Let ρ be a 2-cocycle and let n be the order of G. By Lemma 1.2.1, we can assume
ρp1, 1q � 1.

Define the set map f : G Ñ K� by setting fpgq � ±hPG ρpg, hq, for all g P G. Then, we
have:

fpgqfphq
fpghq �

±
rPG ρpg, rq

±
sPG ρph, sq±

tPG ρpgh, tq
�
¹
rPG

�
ρpg, hrqρph, rq

ρpgh, rq



� ρpg, hqn
¹
rPG

�
ρpg, hrqρph, rq
ρpgh, rqρpg, hq




� ρpg, hqn, (by (1.2)),(1.8)
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for all g, h P G. Therefore, since � is a group homomorphism, it follows from (1.8) that
ρn � 1 P H, and that proves (a). Furthermore, since ρp1, 1q � 1, notice that we have
fp1q � 1.

Now, let e be the order of ρ, and if p ¡ 0, write e � paq, where a, q P N and p � q.
Then, since ρe � ρe � 1 P H, there is a set map f 1 : G Ñ K� such that ρpg, hqe �
f 1pgqf 1pghq�1f 1phq, for all g, h P G.

Since K is algebraically closed, there exist a set map f2 : G Ñ K� such that f2p1q � 1
and f2pgqpa � f 1pgq, for all g P G, satisfying:

ρpg, hqq � f2pgqf2pghq�1f2phq,
for all g, h P G. Thus, ρq � 1. Since e � paq is the order of ρ, follows from ρq � 1 that
pa � 1, hence p � e.

Now, for each g P G, take αpgq P K� such that αpgqe � f 1pgq�1, imposing αp1q � 1, since
f 1p1q � 1, and define the map ρ1 : G�GÑ K� by setting

ρ1pg, hq � αpgqαpghq�1αphqρpg, hq,
for all g, h P G. Notice that ρ1p1, 1q � 1. It is easy to see that ρ1 is a 2-cocycle cohomologous
to ρ satisfying:

ρ1pg, hqe � αpgqeαpghq�eαphqeρpg, hqe
� f 1pgq�1f 1pghqf 1phq�1f 1pgqf 1pghq�1f 1phq�1

� 1,

for all g, h P G. Therefore, there is a 2-cocycle ρ1 representative of ρ, such that ρ1p1, 1q � 1
and ρ1pg, hq is a e-th root of 1 P K, for all g, h P G. This proves (b).

Now, since G is finite and for any e|n, the number of e-th roots of 1 are finite, there are
at most a finite number of 2-cocycles ρ whose values ρpg, hq are an e-th root of 1 P K, for
all g, h P G. Therefore, since all cohomology class, whose order is e, can be represented by a
2-cocycle as above, there are at most a finite number of cohomology classes in H of order e.
Since e|n, it follows that there are at most a finite number of cohomology classes in H, i.e, H
is a finite group. Furthermore, because no elements of H are divisible by the characteristic
of K, it follows that p � |H|. And this concludes the proof of (c). �

By Lemma 1.2.1 and Theorem 1.2.2, from now on we will assume that all 2-cocycles ρ
satisfy ρp1, 1q � 1.

To finish the section, we define a group homomorphism that will be useful for our studies.

Definition 1.2.3. Let ρ P Z2pG,Mq be a 2-cocycle. Then we define the group homomor-
phism.

ρ̂ : HompM,Nq Ñ H2pG,Nq
by setting, for all α P HompM,Nq, ρ̂pαq � α � ρ, the cohomology class of α � ρ.

2. Projective Representations

Throughout this section, let V a K-vector space and GLpV q the general linear group of
V . We will identify K� with K� IdV . Thus, the projective general linear group is defined to

be the quotient PGLpV q � GLpV q
K�

and we denote the canonical projection by π : GLpV q Ñ
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PGLpV q. Sometimes, when it is necessary to distinguish the vector space of V , we will
denote this projection by πV .

2.1. Projective representation. We now introduce projective representations. Usually, a
projective representation is defined in terms of general linear group and Schur multiplier,
and after it is shown the equivalent definition in terms of projective general linear group. In
this section we will make the opposite direction: first we define as Yamazaki in [Yam64] and
show the equivalence with the usual definition such as Karpilovsky in [Kar87], and Hoffman
and Humphreys in [HH92].

After that, we define two concepts of equivalence of projective representations allowing
the study of their classifications.

Definition 2.1.1 (Projective representation). A projective representation of a group G on
a vector space V is a group homomorphism

P : GÑ PGLpV q.
Proposition 2.1.2. Let P be a projective representation of G on V . Then, there are set
maps P 1 : GÑ GLpV q and ρ : G�GÑ K� such that

(2.1) P 1pgqP 1phq � ρpg, hqP 1pghq, for all g, h P G.
Conversely, if there are set maps P 1 and ρ satisfying (2.1), then there exists a unique

homomorphism P : GÑ PGLpV q such that P pgq � πP 1pgq, for all g P G.

Proof. Let X be a set of coset representatives of GLpV q in PGLpV q, and define P 1 : G Ñ
GLpV q by setting for each g P G, P 1pgq as the unique element of X such that πP 1pgq � P pgq.

Now, let g, h P G. Then we have P 1pghqK� � P 1pgqP 1phqK�, which implies that there
exists a unique ρpg, hq P K� such that ρpg, hqP 1pghq � P 1pgqP 1phq.

Conversely, if we have set maps P 1 and ρ satisfying (2.1), define P : G Ñ PGLpV q as
P � πP 1. Then, for all g, h P G,

P pghq � πpP 1pghqq � πpρpg, hq�1P 1pgqP 1phqq
� πpP 1pgqP 1phqq � πpP 1pgqqπpP 1phqq � P pgqP phq.

Therefore P is an group homomorphism, i.e., a projective representation of G on V . �

Remark 2.1.3. In the proof of Proposition 2.1.2, define Y � tρp1, 1qx | x P Xu and let Q1

be the section of P corresponding to Y , and define ρ1pg, hq � ρpg, hq{ρp1, 1q, for all g, h P G.
Thus we obtain Q1 and ρ1 satisfying (2.1) and ρ1p1, 1q � 1. Therefore, we lose no generality
in assuming that ρp1, 1q � 1, which we will do from now on.

Proposition 2.1.2 gives a new way to see a projective representation which is equivalent.
So, if we have two set maps P : GÑ GLpV q and ρ : G�GÑ K� satisfying equation (2.1),
we will call P a projective representation or a ρ-representation.

Given the set X of representatives of GLpV q in PGLpV q and P 1 as in Proposition 2.1.2,
the choice of ρ is unique, by construction. But there may be more than one definition for
P 1, depending on the choice of the set X. We call the set map P 1 a section of P , and ρ is
called a Schur multiplier for the section P 1. By Remark 2.1.3, we will assume that a Schur
multiplier ρ satisfies ρp1, 1q � 1.
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Let now φ : V1 Ñ V2 be an isomorphism between two vector spaces. We have that conju-
gation by φ induces an group isomorphism from GLpV1q to GLpV2q. Since this isomorphism
preserves the scalar matrices, it induce an isomorphism from PGLpV1q to PGLpV2q.

Now we can define the notion of equivalence of projective representaitons.

Definition 2.1.4 (Projective equivalence). Let P1 : G Ñ PGLpV1q and P2 : G Ñ PGLpV2q
be two projective representations of a group G on K-vector spaces V1 and V2 respectively.
We say that P1 and P2 are projectively equivalent if exists isomorphism φ : V1 Ñ V2 such
that:

φ � P1pgq � φ�1 � P2pgq,
for all g in G.

The next lemma show how projective equivalence and sections of projective representati-
ons are related.

Lemma 2.1.5. Let P1 : GÑ PGLpV1q and P2 : GÑ PGLpV2q be two projective representa-
tions. Let P 1

1 : GÑ GLpV1q and P 1
2 : GÑ GLpV1q be two sections for P1 and P2, respectively.

Then the following statements are equivalent:

(a) P1 and P2 are equivalent projective representations
(b) There is a set map c : GÑ K� and a linear isomorphism φ : V1 Ñ V2 such that

(2.2) φP 1
1pgq � cpgqP 1

2pgqφ, for all g P G.
Proof. Let P1 and P2 be equivalent projective representations. Then there exists an isomor-
phism φ : V1 Ñ V2 satisfying φ � P1pgq � φ�1 � P2pgq, for all g P G. Then, since conjugation
by φ commutes with canonical projections, we have πV2pφP 1

1pgqφ�1q � πV2pP 1
2pgqq, for all

g P G. Therefore, for all g P G, there exists cpgq P K� such that:

φP 1
1pgqφ�1 � cpgqP 1

2pgq.
Then, there is a set map c : GÑ K� satisfying (2.2).

Conversely, let P 1
1 and P 1

2 satisfy (2.2) for some set map c : GÑ K� and an isomorphism
φ : V1 Ñ V2. Then, for all g P G we have:

φP1pgqφ�1 � πV2pφP 1
1pgqφ�1q � πV2pcpgqP 1

2pgqq � P2pgq.
Therefore, P1 and P2 are equivalent projective representations. �

Lemma 2.1.5 gives a new way to view equivalency of projective representations. So, if
we have P 1

1 and P 1
2 two sections for two projective representations P1 : G Ñ PGLpV1q and

P2 : G Ñ PGLpV2q, respectively, that satisfy the equation (2.2), we will call P 1
1 and P 1

2

equivalent projective representations.
In particular, two linear representations T : G Ñ GLpV q and U : G Ñ GLpW q satisfying

(2.2) will be also called projecitively equivalent.

Definition 2.1.6 (Linear equivalence of ρ-representations). Let ρ be a 2-cocycle. Two ρ-
representations P1 : G Ñ GLpV q and P2 : G Ñ GLpW q are linearly equivalent if there is an
isomorphism φ : V Ñ W satisfying:

φP1pgqφ�1 � P2pgq,
for all g P G.



PROJECTIVE REPRESENTATIONS OF GROUPS 9

2.2. Schur multiplier and cohomology class. In this subsection we will discuss a little
more about the Schur multiplier and show how group cohomology appears naturally.

Let P : G Ñ GLpV q be a projective reresentations with Schur multiplier ρ. From the
associativity of G, we have:

ρpg, hqρpgh, kqP pghkq � ρpg, hqP pghqP pkq
� P pgqP phqP pkq
� ρph, kqP pgqP phkq
� ρpg, hkqρph, kqP pghkq,

for all g, h, k P G. Thus, for all g, h, k P G, we have ρpg, hkqρph, kq � ρpgh, kqρpg, hq, or
equivalently:

ρph, kqρpgh, kq�1ρpg, hkqρpg, hq�1 � 1.

Therefore, from the equation (1.2), we can conclude that a Schur multiplier ρ is a 2-cocycle
in Z2pG,K�q.

Now, let Q and Q1 be two sections for a projective representation P : GÑ PGLpV q, and
ρ, ρ1 be their respective Schur multipliers. Then, for all g P G, Q and Q1 satisfy πpQpgqq �
πpQ1pgqq. Therefore, for each g P G there is fpgq P K� such that Q1pgq � fpgqQpgq. But for
all g, h P G, we have:

ρ1pg, hqfpghqQpghq � ρ1pg, hqQ1pghq
� Q1pgqQ1phq
� fpgqfphqQpgqQphq
� fpgqfphqρpg, hqQpghq,

Thus, for all g, h P G, f , ρ and ρ1 satisfy

ρ1pg, hq � fpgqfpghq�1fphqρpg, hq,
and hence it follows from equation (1.3) that ρ and ρ1 are cohomologous 2-cocycles. There-
fore, the cohomology class ρ of ρ is independent on the choice of the section Q of P .

Definition 2.2.1 (Cohomology class associated). Let P : G Ñ PGLpV q be a projective
representation and ρ a Schur multiplier of a section P 1 : G Ñ GLpV q of P . Then the coho-
mology class ρ of ρ is called the cohomology class associated to the projective representation
P and will be denoted by CP .

Actually, we can prove that there is a section for any Schur multiplier. Precisely:

Proposition 2.2.2. Let P : G Ñ PGLpV q be a projective representation with associated
cohomology class CP P H2pG,K�q and let ρ P Z2pG,K�q be any 2-cocycle representative of
CP . Then there is a section P 1 : GÑ GLpV q for P such that its Schur multiplier is ρ.

Proof. Let P 2 : G Ñ GLpV q be any section for P and ω P Z2pG,K�q its Schur multiplier.
Thus, since the cohomology class associated to P is independent of the section, we have
that ρ and ω are cohomologous. Therefore, there is a set map f : G Ñ K� such that
ρpg, hq � fpgqfphqfpghq�1ωpg, hq, for all g, h P G. Then, for all g, h P G, we have:

P 2pgqP 2phq � ωpg, hqP 2pghq � fpgq�1fphq�1fpghqρpg, hqP 2pghq.
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Thus, define the set map P 1 : G Ñ GLpV q by setting P 1pgq � fpgqP 2pgq, for all g P G.
Clearly P 1 is a section for P with Schur multiplier ρ. �

Having introduced the concept of the cohomology class associated to a projective repre-
sentation, we can explain how projective representations and twisted group algebras are
related.

Definition 2.2.3 (Twisted group algebra). Consider a 2-cocycle ρ P Z2pG,K�q. We define
the group algebra KρG to be the K-vector space with base tg P Gu and multiplication given
by:

g � h � αpg, hqgh,
for all g, h P G, and extending linearly. We call KρG the twisted group algebra of G by ρ.

See [Kar85, Lemma 3.2.1] for a proof that KρG is well defined. It can be proved that two
2-cocycles ρ, ω are cohomologous if, and only if, their corresponding twisted group algebras
KρG and KωG are isomorphic algebras (see [Kar85, Lemma 3.2.2]).

We also have the following theorem:

Theorem 2.2.4 ([Kar85, Theorem 3.2.5]). Let ρ be a 2-cocycle. Then there is a bijective
correspondence between ρ-representations of G and KρG-modules. This correspondence pre-
serves sums and bijectively maps linearly equivalent (respectively irreducible, completely redu-
cible) representations into isomorphic (respectively irreducible, completely reducible) modules.

Remark 2.2.5 (Existence of projective representations). Let ρ be a 2-cocycle. Taking KρG
to be the regular KρG-module, Theorem 2.2.4 allows us to conclude that there exists a
projective representation of G with associated cohomology class ρ̄. Therefore, since KρG
and KωG are isomorphic for cohomologous 2-cocycle ρ and ω, we can conclude that for any
cohomology class c P H2pG,K�q, there is a projective representation associated to it.

2.3. Equivalent projective representations. Now we can prove that the associated co-
homology class is invariant up to projective equivalence.

Lemma 2.3.1. Let P : G Ñ PGLpV1q and Q : G Ñ PGLpV2q be two equivalent projective
representations. Then their associated cohomology classes are equal.

Proof. Let P 1 : GÑ GLpV1q and Q1 : GÑ GLpV2q be two sections for P and Q, respectively,
with respective Schur multipliers ρ and ω. Then, by Lemma 2.1.5, there is an isomorphism
φ : V1 Ñ V2 and a set map c : GÑ K� such that:

φP 1pgqφ�1 � cpgqQ1pgq,
for all g P G. Then we have:

cpgqcphqQ1pgqQ1phq � pcpgqQ1pgqqpcphqQ1phqq
� pφP 1pgqφ�1qpφP 1phqφ�1q
� φP 1pgqP 1phqφ�1

� φρpg, hqP 1pghqφ�1

� ρpg, hqcpghqQ1pghq
� cpghqωpg, hq�1ρpg, hqQ1pgqQ1phq,
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for all g, h P G. Thus:

ωpg, hq�1ρpg, hq � cpgqcpghq�1cphq,
for all g, h P G, which implies that ρ and ω are cohomologous. Therefore P and Q are
associated to the same cohomology class. �

A question that arises naturally is whether classes of equivalence of projective represen-
tations are uniquely determined by a class of cohomology. For now we can only answer part
of the question:

Proposition 2.3.2 ([Kar87, Lemma 2.3.1(ii)]). Let P : GÑ PGLpV q be a projective repre-
sentation. Then the following statements are equivalent:

(a) The cohomology class associated to P is the trivial class;
(b) There is a linear representation T : G Ñ GLpV q such that P is projective equivalent

to Q � π � T , the projective representation induced by T .

Proof. Supose that P is associated to the trivial cohomology class. Let P 1 : GÑ GLpV q be
a section for P and ρ : G � G Ñ K� be its Schur multiplier. Then the cohomology class ρ
given by the 2-cocycle ρ is trivial, by hypothesis. Therefore, there is a set map f : GÑ K�

such that:

ρpg, hq�1 � fpgqfpghq�1fphq,
for all g, h P G. Then, for all g, h P G, we have:

P 1pgqP 1phq � ρpg, hqP 1pghq
� fpgq�1fpghqfphq�1P 1pghq
ô

pfpgqP 1pgqqpfphqP 1phqq � fpghqP 1pghq
Thus, defining the set map Q : G Ñ GLpV q by setting Qpgq � fpgqP 1pgq, for all g P G, we
have, from the equation above:

Qpghq � QpgqQphq,
for all g, h P G. Therefore Q is a group homomorphism, and hence, a linear representation
of G. But, since Qpgq � fpgqP 1pgq, for all g P G, we have that Q is projective equivalent to
P 1 (with isomorphism given by the identity map of V ).

Conversely, let T : G Ñ GLpV q be a group homomorphism such that P is equivalent to
Q � π � T . Then, by Lemma 2.3.1, P and Q are associated to the same cohomology class.
But, since T is a section for Q with Schur multiplier equal to the constant map 1, we have
that the cohomology class associated to Q is trivial. Therefore P is associated to the trivial
cohomology class. �

3. Central Extensions

In this section, we will define what is a central extension of a group and study its relation
with cohomology groups.
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3.1. Central extension of a group.

Definition 3.1.1. An exact sequence of groups is a sequence of group homomorphisms

1 ÝÑ G0
f1ÝÑ G1

f2ÝÑ � � � fnÝÑ Gn ÝÑ 1,

such that Impfi�1q � Kerpfiq for i � 1, . . . , n.
When the n above is equal to 2, we call the sequence a short exact sequence.

Definition 3.1.2. An extension of a group Q by the group N is a short exact sequence

1 ÝÑ N
fÝÑ G

gÝÑ Q ÝÑ 1.

When G is a finite group, then we call the sequence a finite extension of the group Q.
When Impfq is in the center of G, ZpGq, that is, for each n in N , fpnq commutes with all

elements of G, then we call the sequence above a central extension of the group Q.

Remark 3.1.3. Let 1 ÝÑ N
iÝÑ G

pÝÑ Q ÝÑ 1 be an extension. Because i is an injective
group homomorphism, we can assume N is a subgroup of G such that it is the kernel of
p. Therefore the main information about an extension are just the group G and the group
homomorphism p. That way, we denote this extension by pG, pq. When the homomorphisms
are not so important to the context that we are discussing, we will also call G an extension
of Q by N .

Example 3.1.4. Let V be a K-vector space. The exact sequence below is an example of a
central extension:

1 ÝÑ K� δÝÑ GLpV q πÝÑ PGLpV q ÝÑ 1,

where @k P K�, δpkq is the dilation δpkq : v ÞÑ kv and π is the canonical projection.

Remark 3.1.5. Let 1 ÝÑ N
fÝÑ G

gÝÑ Q ÝÑ 1 be a central extension of the group
Q by the group N . Since Impfq � ZpGq, we have that Impfq is an abelian group. Since
f : N Ñ Impfq is an isomorphism, we have that N must be an abelian group.

Definition 3.1.6 (Morphism of exact sequences). A morphism of exact sequences is a com-
mutative diagram of group homomorphisms:

1 // N

α
��

f // G

β
��

g // Q

γ
��

// 1

1 // Ñ
f̃ // G̃

g̃ // Q̃ // 1,

where each line is an exact sequence of groups. Such morphism is denoted by pα, β, γq.
Definition 3.1.7 (Equivalent extensions). Let 1 ÝÑ N

i1ÝÑ G1
p1ÝÑ Q ÝÑ 1 and 1 ÝÑ

N
i2ÝÑ G2

p2ÝÑ Q ÝÑ 1 be two extensions of the group Q by the group N . We say that
pG1, p1q and pG2, p2q are equivalent if there is a morphism pIdN , β, IdQq of exact sequences:

1 // N
i1 // G

β
��

p1 // Q // 1

1 // N
i2 // G̃2

p2 // Q̃ // 1.
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Remark 3.1.8. Notice, by the Five Lemma ([Mac67, Lemma 3.3]), the homomorphism β
of the definition above is a group isomorphism.

Remark 3.1.9. Its easy to see that the notion of equivalence of extensions is a reflective,
symmetric and, by the commutativity of the diagram, transitive relation. Therefore equiva-
lence of extensions is an equivalence relation.

3.2. Central extensions and 2nd-cohomology group. Now let us start to study the
relations between a central extension of a group Q by an abelian group N , and H2pQ,Nq.
We will show the known fact that, up to equivalence of extensions, central extensions and
2nd-cohomology groups are essentially the same thing. We can find such results in [Kar85,
Chapter 2; Section 1].

Proposition 3.2.1. Let 1 ÝÑ N
iÝÑ G

pÝÑ Q ÝÑ 1 be a central extension of the group Q
by the group N . Then the following statements are true:

(a) For each section f : Q Ñ G of p (i.e, a map such that p � f � IdQ) such that
fp1q � 1, it is true that fpqqfpq1qfpqq1q�1 P N , for all q, q1 P Q. Therefore, the set
map ρf : Q � Q Ñ N is well defined by setting ρf pq, q1q � i�1pfpqqfpq1qfpqq1q�1q,
where i�1 : Impiq Ñ N is the inverse of the group isomorphism i, and ρf is a 2-
cocycle;

(b) Let f, f 1 : Q Ñ G be two sections of p, satisfying fp1q � 1 � f 1p1q, and let ρf , ρf 1
their respective induced 2-cocycles. Then ρf and ρf 1 are cohomologous.

Proof. Let ϕ :
G

Kerppq Ñ Q be the group isomorphism induced by p (i.e. the function defined

by setting ϕpgKerppqq � ppgq, for all g P G) and let f : Q Ñ G be a section of p. Then we
have ϕpfpqqKerppqq � ppfpqqq � q, for all q P Q. Since the extension is an exact sequence,
we have Impiq � Kerppq, and therefore we have:

ϕpfpqq Impiqq � q,

for all q P Q.
Now let q, q1 P Q. Then we have:

ϕpfpqq1q Impiqq � qq1 � ϕppfpqq Impiqqpfpq1q Impiqqq � ϕpfpqqfpq1q Impiqq.

Therefore, since ϕ is a bijection, fpqq1q Impiq � fpqqfpq1q Impiq. Thus, for all q, q1 P Q, there
exist n P N such that fpqqfpq1qfpqq1q�1 � ipnq and since i is an injection, it follows that ρf
is well defined.
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Now, since i is a homomorphism, Impiq � ZpGq and N is abelian, we have:

ipρf pr, sqρf pqr, sq�1ρf pq, rsqρf pq, rq�1q �
� ipρf pqr, sq�1ρf pq, rq�1ρf pq, rsqρf pr, sqq
� ipρf pqr, sqq�1ipρf pq, rqq�1ipρf pq, rsqqipρf pr, sqq
� ipρf pqr, sqq�1fpqrqfprq�1fpqq�1fpqqfprsqfpqrsq�1ipρf pr, sqq
� fpqrsqfpsq�1fpqrq�1fpqrqfprq�1fprsqfpqrsq�1ipρf pr, sqq
� fpqrsqfpsq�1fprq�1fprsqfpqrsq�1ipρf pr, sqq
� fpqrsqfpsq�1fprq�1ipρf pr, sqqfprsqfpqrsq�1

� fpqrsqfpsq�1fprq�1fprqfpsqfprsq�1fprsqfpqrsq�1

� 1G P G,
for all q, r, s P Q. Thus, since N is abelian (by Remark 3.1.5) and i is an injection, we have,
for all q, r, s P Q:

ρf pr, sqρf pqr, sq�1ρf pq, rsqρf pq, rq�1 � 1N .

And it is easy to see that ρf p1, 1q � 1. Therefore, ρf is a 2-cocycle of Q on N . This
proves (a).

Let f, f 1 : Q Ñ G be two sections of p such that fp1q � 1 � f 1p1q, and let ρf , ρf 1
their respective induced 2-cocycles. Then, for all q P Q, we have ϕpfpqq Impiqq � q �
ϕpf 1pqq Impiqq and thus, since ϕ is a group isomorphism, fpqq Impiq � f 1pqq Impiq, for all

q P Q. Therefore fpqqf 1pqq�1 P Impiq, for all q P Q. Thus, define the set map f̃ : Q Ñ N

by setting f̃pqq � i�1pfpqqf 1pqq�1q, for all q P Q. Then, since i is a homomorphism, Impiq �
ZpGq and N is abelian, we have:

ipρf pr, sqρf 1pr, sq�1q � ipρf pr, sqqipρf 1pr, sqq�1

� fprqfpsqfprsq�1f 1prsqf 1psq�1f 1prq�1

� fprqfpsqipf̃prsqq�1f 1psq�1f 1prq�1

� fprqipf̃psqqf 1prq�1ipf̃prsq�1q
� fprqf 1prq�1ipf̃psqqipf̃prsq�1q
� ipf̃prqqipf̃psqf̃prsq�1q
� ipf̃prqf̃psqf̃prsq�1q,

for all r, s P Q. Then, since i is injective, we have ρf pr, sqρf 1pr, sq�1 � f̃prqf̃psqf̃prsq�1, for
all r, s P Q. Therefore ρf and ρf 1 are cohomologous. This concludes the proof. �

Proposition 3.2.1 shows us that for each central extension pG, pq of Q by N we have an
associated cohomology class that is idependent of the choice of a section for p. In this way,
we have the next definition:

Definition 3.2.2 (Cohomology class of central extension). Let pG, pq be a central extension
of Q by the normal group N and cpG,pq be the cohomology class of the 2-cocycle ρf : Q�QÑ
N induced by any section f : Q Ñ G of p. Then we call cpG,pq P H2pQ,Nq the cohomology
class of the central extension pG, pq.
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Proposition 3.2.3. Let 1 ÝÑ N
i1ÝÑ G1

p1ÝÑ Q ÝÑ 1 and 1 ÝÑ N
i2ÝÑ G2

p2ÝÑ Q ÝÑ 1 be
equivalent central extensions of the group Q by the abelian group N . Then their cohomology
classes cpG1,p1q, cpG2,p2q P H2pQ,Nq are equal.

Proof. Since pG1, p1q and pG2, p2q are equivalent, there is a group isomorphism φ : G1 Ñ G2

such that i2 � φ � i1 and p1 � p2 � φ.
Let f1 : QÑ G1 be a section of p1, such that f1p1q � 1, and define the set map f2 : QÑ G2

by f2 � φ � f1. Then we have:

p2 � f2 � p2 � φ � f1 � p1 � f1 � IdQ .

Since φ is a group homomorphism, we also have f2p1q � 1. Therefore f2 is a section of p2.
Thus, let ρf1 and ρf2 be the 2-cocycles associated to f1 and f2 as in Proposition 3.2.1(a).
Then, since φ, i1 and i2 are group homomorphisms and φ � i1 � i2, we have:

ρf2pg, hq � i�1
2 pf2pgqf2f2pghq�1q

� i�1
2 pφpf1pgqf1phqf1pghq�1qq

� i�1
2 φi1pρf1pg, hqq

� i�1
2 i2pρf1pg, hqq � ρf1pg, hq,

for all r, s P Q. Hence ρf1 � ρf2 and cpG1,p1q � cpG2,p2q. �

By Proposition 3.2.3, the associated cohomology class is invariant up to equivalence of
central extensions.

Proposition 3.2.4. Let c P H2pQ,Nq and ρ be a 2-cocycle representative of c. Define the set
Gρ � Q �N and the multiplication pr, nqps,mq � prs, ρpr, sqnmq, for all pr, nq, ps,mq P Gρ.
Then the following statements are true:

(a) Provided with the multiplication defined above, Gρ is a group with identity element
p1, 1q and inverse given by pg, nq�1 � pg�1, ρpg, g�1q�1n�1q, for all g, n P Gρ.

(b) The set maps µ : N Ñ Gρ and τ : Gρ Ñ Q, respectively defined by setting µpnq �
p1, nq and τpq,mq � q, for all q P Q and n,m P N , are group homomorphisms such
that the sequence:

1 ÝÑ N
µÝÑ Gρ

τÝÑ Q ÝÑ 1,

is a central extension of Q by N with associated cohomology class cpGρ,τq P H2pQ,Nq
equal to c.

Proof. Since ρ is a 2-cocycle, we have:

ppq, aqpr, bqqps, cq � pqr, ρpq, rqabqps, cq
� pqrs, ρpqr, sqρpq, rqabcq
� pqrs, ρpq, rsqρpr, sqabcq
� pq, aqprs, ρpr, sqbcq
� pq, aqppr, bqps, cqq,
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for all pq, aq, pr, bq, ps, cq P Gρ. Therefore the multiplication is associative. By Lemma 1.2.1,
we have ρpr, 1q � ρp1, 1q � ρp1, sq � 1, for all r, s P Q. Then we have:

pq, nqp1, 1q � pq, ρpq, 1qnq
� pq, nq
� pq, ρp1, qqnq
� p1, 1qpq, nq,

for all pq, nq P Gρ. Therefore p1, 1q is an identity element of Gρ. Also by Lemma 1.2.1, we
have ρpq, q�1q � ρpq�1, qq, for all q P Q. Then we have:

pq, nqpq�1, ρpq, q�1q�1n�1q � pqq�1, ρpq, q�1qρpq, q�1q�1nn�1q
� p1, 1q
� pq�1q, ρpq�1, qqρpq, q�1q�1n�1nq
� pq�1, ρpq, q�1q�1n�1qpq, nq,

for all pq, nq P Gρ. Therefore pg, nq�1 � pg�1, ρpg, g�1q�1n�1q, for all g, n P Gρ. Therefore Gρ

is a group, proving (a).
Clearly τ is surjective. Now, for all pr, nq, ps,mq P Gρ we have

τppr, nqps,mqq � τprs, ρpr, sqnmq � rs � τpr, nqτps,mq,
therefore τ is a surjective group homomorphism. It’s easy to see that kerpτq � tp1, nq P Gρ :
n P Nu � Impµq. Futhermore we have:

µpnmq � p1, nmq
� p1, ρp1, 1qnmq
� p1, nqp1,mq
� µpnqµpmq,

for all n,m P N . And µpnq � p1, 1q if, and only if, n � 1N . Then µ is an injective group
homomorphism. Also, since ρpq, 1q � ρp1, qq, for all q P Q, and N is abelian, we have

p1, nqpq,mq � pq, ρp1, qqnmq
� pq, ρpq, 1qnmq
� pq,mqp1, nq,

for all q P Q and n,m P N . Then Impµq � ZpGρq. Therefore 1 ÝÑ N
µÝÑ Gρ

τÝÑ Q ÝÑ 1
is a central extension of Q by N .

To complete the proposition, let the set map f : Q Ñ Gρ be defined by setting fpqq �
pq, 1q, for all q P Q. Clearly f is a section for τ , and we have:

fprqfpsqfprsq�1 � pr, 1qps, 1qps�1r�1, ρprs, s�1r�1q�1q
� prs, ρpr, sq1qps�1r�1, ρprs, s�1r�1q�1q
� p1, ρpr, sqρprs, s�1r�1qρprs, s�1r�1q�1q
� p1, ρpr, sqq,
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for all r, s P Q. Thus µ�1pfprqfpsqfprsq�1q � µ�1p1, ρpr, sqq � ρpr, sq. Therefore cpGρ,τq � c.
This concludes the proof. �

Definition 3.2.5 (Induced central extension). Let ρ P Z2pQ,Nq. Then the central extension
pGρ, τq constructed as in Proposition 3.2.4 is called central extension induced by ρ.

Proposition 3.2.4 show us that for any cohomology class there is a central extension
associated with it. Now, let us see if that relation is one-to-one.

Lemma 3.2.6. Let 1 ÝÑ N
iÝÑ G

pÝÑ Q ÝÑ 1 be a central extension of the group Q by
the group N , f : Q Ñ G be a section for p, such that fp1q � 1, and let ρf be its associated
2-cocycle as in Proposition 3.2.1(a). Let pGρf , τq be the central extension induced by ρf .
Then pG, pq and pGρf , τq are equivalent extensions.

Proof. Let ϕ :
G

Impiq Ñ Q be the group isomorphism induced by p. Notice that, for all

g P G, we have ϕpfpppgqq Impiqq � ppgq � ϕpg Impiqq. Therefore, since ϕ is an isomorphism,
gfpppgqq�1 P Impiq for all g P G. Thus define the set map φ : G Ñ Gρ by setting φpgq �
pppgq, i�1pgfpppgqq�1qq, for all g P G. Then φ is a group homomorphism. In fact, since i and
p are group homomorphisms, Impiq � ZpGq and by the definition of ρf , we have:

φpghq � pppghq, i�1pghfpppghqq�1qq
� pppgqpphq, i�1pghfpppgqpphqq�1qq
� pppgqpphq, i�1phfppphqq�1gfpppgqq�1ipρf pppgq, pphqqqqq
� pppgqpphq, ρf pppgq, pphqqqi�1phfppphqq�1qi�1pgfpppgqq�1qq
� pppgq, i�1phfppphqq�1qqppphq, i�1pgfpppgqq�1qq
� φpgqφphq,

for all g, h P G. We also have τpφpgqq � ppgq, for all g P G and, since Impiq � Kerppq and
fp1q � 1, we have

φpipnqq � pppipnqq, i�1pipnqfpppipnqqq�1qq
� p1, i�1pipnqfp1q�1qq
� p1, i�1pipnqqq
� p1, nq � µpnq,

for all n P N . Therefore φ is a group homomorphism between G and Gρf such that µ � φ � i
and p � τ � φ. We conclude that pG, pq and pGρf , τq are equivalent extensions. �

Lemma 3.2.7. Let ρ, ω : Q�QÑ N be cohomologous 2-cocycles. Then their induced central
extensions 1 ÝÑ N

µ1ÝÑ Gρ
τ1ÝÑ Q ÝÑ 1 and 1 ÝÑ N

µ2ÝÑ Gω
τ2ÝÑ Q ÝÑ 1 of the group Q

by the abelian group N are equivalent.

Proof. By Lemma 3.2.6, it is sufficient to find a section f : QÑ Gω for τ2, such that fp1q �
p1, 1q and ρf pr, sq � µ�1

2 pfprqfpsqfprsq�1q � ρpr, sq, for all r, s P Q.
Since ρ and ω are cohomologous, there is a set mep ψ : Q Ñ N such that ρpr, sq �

ψprqψpsqψprsq�1ωpr, sq, for all r, s P Q. Thus define f : QÑ Gω by setting fpqq � pq, ψpqqq.
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It is clear that f is a section for τ2. Since ρp1, 1q � 1 � ωp1, 1q, we have ψp1q � 1, thus
fp1q � p1, 1q. Since N is an abelian group, we have:

fprqfpsqfprsq�1 � pr, ψprqqps, ψpsqqps�1r�1, ωprs, s�1r�1q�1ψprsq�1q
� prs, ωpr, sqψprqψpsqqps�1r�1, ωprs, s�1r�1q�1ψprsq�1q
� prss�1r�1, ωprs, s�1r�1qωpr, sqψprqψpsqωprs, s�1r�1q�1ψprsq�1q
� p1, ωpr, sqψprqψpsqψprsq�1q
� p1, ρpr, sqq
� µ2pρpr, sqq,

for all r, s P Q. Therefore, since µ2 is injective, we have ρf pr, sq � µ�1
2 pfprqfpsqfprsq�1q �

ρpr, sq, for all r, s P Q. �

Theorem 3.2.8. Two central extensions, pG1, p1q and pG2, p2q, of the group Q by the abelian
group N are equivalent if, and only if, their associated cohomology classes cpG1,p1q, cpG2,p2q P
H2pQ,Nq are equal.

Proof. The implication follows by Proposition 3.2.3. Conversely, let ρ, ω : Q � Q Ñ N be
two 2-cocycles induced by some sections of p1 and p2, respectively. Then, since they are
representatives of the cohomology classes cpG1,p1q, cpG2,p2q, respectively, and since cpG1,p1q �
cpG2,p2q, we have that ρ and ω are cohomologous.

Now, let pGρ, τ1q and pGω, τ2q be the two central extensions induced by ρ and ω, respecti-
vely. By Lemma 3.2.6, we have pG1, p1q and pG2, p2q are equivalent to pGρ, τ1q and pGω, τ2q,
respectively. But, since ρ and ω are cohomologous, by Lemma 3.2.7 we have that pGρ, τ1q is
equivalent to pGω, τ2q.

Therefore, since equivalence of extensions is an equivalence relation, we conclude that
pG1, p1q and pG2, p2q are equivalent extensions. �

Let CExtpQ,Nq{� be the set of all equivalence classes of central extensions of the group
Q by the abelian group N . Essentially, Proposition 3.2.1 and Theorem 3.2.8 say that there
is a bijection

Φ: CExtpQ,Nq{� Ñ H2pQ,Nq
Such conclusion can be founded in [Kar85, Theorem 2.1.2].

4. Representation groups

Throughout this section let K be an algebraically closed field of characteristic zero and G
a finite group. For any group Q, from now on we will fix the notation Q1 � rQ,Qs for the
commutator subgroup of Q.

In this section, we will study the relation between central extensions and projective re-
presentations.

4.1. Representation group.

Definition 4.1.1 (Representation group). A representation group of G is a finite central
extension pG�, τq of G such that Kerpτq � pG�q1 and Kerpτq � H2pG,K�q.
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Our next result will be the proof that for any group G there exists a representation group.
But first we need to prove some lemmas that will be helpful for us.

Lemma 4.1.2. Let H be the group H2pG,K�q. Then there exists Γ P Z2pG,Hq such that:

Γ̂ : HompH,K�q Ñ H2pG,Hq
is an isomorphism, where Γ̂ is the function given in Definition 1.2.3.

Proof. By Theorem 1.2.2(c), we have that H is a finite abelian grup. Thus H is a direct
product of cyclic groups. Let α1, . . . , αd be generators of these groups, represented by the
2-cocycles α1, . . . , αn, respectively, and e1, . . . , ed P N their orders.

By Theorem 1.2.2(b), we can assume that for each i P t1, . . . , du, αipg, hq is an ei-th root
of 1 P K, for all g, h P G, and αip1, 1q � 1. There exists for each i a primitive ei-th root of 1,
that we will call ωi. Then, for all i P t1, . . . , du and g, h P G, there is aipg, hq P t0, . . . , ei�1u
such that αipg, hq � ω

aipg,hq
i . Since αi is a 2-cocycle, we have:

1 � αiph, kqαipgh, kq�1αipg, hkqαipg, hq�1

� ω
aiph,kq
i ω

�aipgh,kq
i ω

aipg,hkq
i ω

�aipg,hq
i

ô
(4.1) aiph, kq � aipgh, kq � aipg, hkq � aipg, hq � 0 mod ei,

for all g, h, k P G. And since αip1, 1q � 1, it follows that aip1, 1q � 0, for all i.
Now, define the set map Γ: G�GÑ H by setting

Γpg, hq � α1
a1pg,hq � � �αdadpg,hq,

for all g, h P G. Clearly, Γ is well defined. By (4.1), and the fact that αi has order ei for all
i, we have:

(4.2) Γpg, hqΓpgh, kq�1Γpg, hkqΓpg, hq�1 � 1,

for all g, h, k P G. And since aip1, 1q � 0, for all i, we have Γp1, 1q � 1. Therefore Γ P
Z2pG,Hq

Let C P H be an arbitrary cohomology class. Since H � xα1y � � � � � xαdy, there is a
2-cocycle ρ representative of C such that:

(4.3) ρpg, hq � pα1pg, hqqx1 � � � pαdpg, hqqxd � pωx11 qa1pg,hq � � � pωxdd qadpg,hq,
for all g, h P G, where xi P t0, . . . , ei � 1u, for each i P t1, . . . , du.

Define a group homomorphism αρ : H Ñ K� by setting αρpαiq � ωxii , for all i P t1, . . . , du.
Then, for all g, h P G, we have:

αρpΓpg, hqq � αρpα1
a1pg,hq � � �αdadpg,hqq

� pωx11 qa1pg,hq � � � pωxdd qadpg,hq
� ρpg, hq.

Therefore αρ � Γ � ρ. This proves that Γ̂ is surjective. But, by [Kar85, Corollary 2.3.9],
HompH,K�q and H are isomorphic, and hence they have the same number of elements.

Therefore Γ̂ is an isomorphism. �
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Lemma 4.1.3. Let G be a finite group and A,B � G be two abelian subgroups such that B
is a proper subgroup of A. Then the following statements are true:

(a) Let f0 : B Ñ K� be a group homomorphism. Then there exists a non-trivial group
homormophism f1 : AÑ K� such that f1|B � f0.

(b) Let f0 : AG1 Ñ K� be a group homomorphism such that G1 � Kerpf0q. Then there
exists a group homomorphism f1 : GÑ K� such that f1|AG1 � f0.

Proof. Since K is an algebraically closed field, then K� is a divisible group. Then, (a) follows
from [Kar87, Lemma 2.1.6].

For (b), let f0 : AG1 Ñ K� be a group homomorphism such that G1 � Kerpf0q. Define the

set map ϕ0 :
AG1

G1
Ñ K� by setting ϕ0pxG1q � f0pxq, for all x P AG1. Since G1 � Kerpf0q,

this function is well defined. Furthermore, since f0 is a group homomorphism, so is ϕ0.

Now, since
AG1

G1
is a subgroup of

G

G1
and both are abelian groups, we can apply the first

statement. Then there is a group homomorphism ϕ1 :
G

G1
Ñ K� that is an extension of ϕ0.

Therefore, define the set map f1 : GÑ K� by setting f1pgq � ϕ1pgG1q. It’s easy to see that
f1 is a group homomorphism extending f0. �

Now, we can prove the main result of this subsection:

Theorem 4.1.4 ([HH92, Theorem 1.2]). Let G be a group. Then there is a representation
group G� of G.

Proof. Let H � H2pG,K�q. Let Γ P Z2pG,Hq be as in Lemma 4.1.2 and consider the central
extension of G by H

1 ÝÑ H
iÝÑ GΓ

pÝÑ G ÝÑ 1,

given in Proposition 3.2.4, i.e., the central extension of G by H induced by the 2-cocycle Γ.
Define G� � GΓ and let’s prove that G� is a representation group of G.

It is sufficient to prove that ipHq P pG�q1. Let’s identify H with ipHq. Then, defining
Y � H X pG�q1, it is sufficient to prove that Y � H.

Suppose that Y is a proper subgroup of H. By Lemma 4.1.3(a), there exists a non-

trivial group homomorphism f : H Ñ K� such that Y � Kerpfq. Since
H

Y
� H

H X pG�q1 �
HpG�q1
pG�q1 and f is a group homomorphism, the set map f0 : HpG�q1 Ñ K� defined by setting

f0pxg1q � fpxq, for all x P H, g1 P pG�q1, is a well defined group homomorphism satisfying
pG�q1 � Kerpf0q. Then, by Lemma 4.1.3(b), there is a group homomorphism f1 : G� Ñ K�

such that f1|HpG�q1 � f0.
Now, for all g, h P G we have:

f1pg, 1qf1ph, 1q � f1pgh,Γpg, hqq � f1pp1,Γp1, ghq�1Γpg, hqqpgh, 1qq.
Since, for all g, h P G, we have p1,Γp1, ghq�1Γpg, hqq � ipΓpg, hqq and f1|HpG�q1 � f0, identi-

fying H with ipHq, we have:

f1pg, 1qf1ph, 1q � fpΓpg, hqqf1pgh, 1q,
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for all g, h P G. Then, define the set map φ : GÑ G� by setting φpgq � pg, 1q, for all g P G.
Let ϕ � f � φ : GÑ K�, then, for all g, h P G we have:

f � Γpg, hq � ϕpgqϕphqϕpghq�1.

Therefore f � Γ is in the trivial cohomology class, i.e, Γ̂pfq � 1. Since Γ̂ is a group isomor-
phism, we have that f is equal to the trivial group homomorphism which is a contradiction.

Therefore Y � H, and the central extension is a representation group. �

You can notice that Lemma 4.1.2 is essential to prove the existence of a representation
group. But actually we can prove that for any representation group we have an associated
2-cocycle such as in Lemma 4.1.2. Precisely:

Proposition 4.1.5. Let pG�, τq be a representation group of G, H � Kerpτq and let Γ: G�
GÑ H be a 2-cocycle representative of the cohomology class associated to the central exten-
sion pG�, τq. Then the group homomorphism

ρ̂ : HompH,K�q Ñ H2pG,K�q
given in Definition 1.2.3, is a bijection.

Proof. At first, without loss of generality consider G� to be the central extension of G by
H � H2pG,K�q induced by the 2-cocycle Γ:

1 ÝÑ H
µÝÑ GΓ

τÝÑ G ÝÑ 1.

Let α P KerpΓ̂q. Then, there is a set map ϕ : GÑ K� such that, for all g, h P G we have
α � Γpg, hq � ϕpgqϕphqϕpg, hq�1.

Define the function β : G� Ñ K� by setting βpg, ρq � ϕpgqαpρq, for all pg, ρq P G� � GΓ.
Then β is a group homomorphism. In fact, for all pg, ρq, pg1, ρ1q P G� we have:

βppg, ρqpg1, ρ1qq � βpgg1,Γpg, g1qρρ1q
� ϕpgg1qαpΓpg, g1qρρ1q
� ϕpgg1qαpΓpg, g1qqαpρqαpρ1q
� ϕpgqϕpg1qαpρqαpρ1q
� βpg, ρqβpg1, ρ1q.

Furthermore, for all ρ P H, we have βpµpρqq � αpρq. Since µpHq � pG�q1 and K� is an
abelian group, we can conclude β �µ is the trivial homomorphism. Therefore α is the trivial
homomorphism and Γ̂ is injective.

Since HompH,K�q and H have the same quantity of elements, we can conclude that Γ̂ is
a bijection. �

4.2. Representation groups and projective representations. Now, we will study the
relation between projective representations, linear representations and central extensions.
Precisely, we will study conditions on a central extension of a group G that ensure that
every projective representation of G corresponds to a linear representation of this central
extension.
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Lemma 4.2.1. Consider a commutative diagram of group homomorphisms

1 // N

α
��

f // G

β
��

g // Q // 1

1 // Ñ
f̃ // G̃

g̃ // Q̃ // 1,

such that each line is a short exact sequence. Then there is an unique group homomorphism
γ : QÑ Q̃ such that γ � g � g̃ � β.

Proof. Let g1 : Q Ñ G be a section for g. Define the set map γ : Q Ñ Q̃ by setting γ �
g̃ � β � g1. Then, since it is an exact sequence, it follows that γ is a group homomorphism.
The uniqueness follows from commutativity of the diagram. We leave the details for the
reader.

�

Corollary 4.2.2. Let 1 ÝÑ N
iÝÑ G

pÝÑ Q ÝÑ 1 be a central extension of groups and

let 1 ÝÑ K� δÝÑ GLpV q πÝÑ PGLpV q ÝÑ 1 be the central extension of Example 3.1.4.
Then, for all pairs of group homomorphisms T : G Ñ GLpV q and α : N Ñ K� such that
δ � α � T � i, there is a projective representation P : QÑ PGLpV q such that π � T � P � p,
i.e, the following diagram commutes:

1 // N

α
��

i // G

T
��

p // Q

P
��

// 1

1 // K� δ // GLpV q π // PGLpV q // 1.

Proof. The proof follows directly from Lemma 4.2.1. �

The next step is to study the opposite direction, i.e., study when it is possible to find a
central extension pG, pq of Q by an abelian group N , such that, given a projective represen-
tation of Q there is a corresponding linear representation of the group G.

Lemma 4.2.3. Let 1 ÝÑ Ñ
iÝÑ G̃

pÝÑ Q̃ ÝÑ 1 be a central extension and P : Q Ñ Q̃ be
a group homomorphism. Suppose that there is a section P 1 : Q Ñ G̃ for P and a 2-cocycle
ρ̃ P Z2pQ, Ñq satisfying

ipρ̃pr, sqqP 1prsq � P 1prqP 1psq,
for all r, s P Q. If there is a homomorphism α : N Ñ Ñ of abelian groups and ρ P Z2pQ,Nq
such that α �ρ � ρ̃, then there is a group homomorphism T : Gρ Ñ G̃ such that the following
diagram commutes:

1 // N

α
��

µ // Gρ

T
��

τ // Q

P 1��
P
��

// 1

1 // Ñ
i // G̃

p // Q̃ // 1,

where pGρ, τq is the central extension of Q by N induced by ρ.
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Proof. Define T : Gρ Ñ G̃ by setting T pq, nq � P 1pqqipαpnqq, for all pq, nq P Gρ. Then, since

i and α are group homomorphisms, α � ρ � ρ̃ and Impiq P ZpG̃q, we have:

T ppr, nqps,mqq � T prs, ρpr, sqnmq
� P 1prsqipαpρpr, sqnmqq
� ipρ̃pr, sqq�1ipαpρpr, sqqipαpnqqipαpmqqP 1prqP 1psq
� ipρ̃pr, sqq�1ipρ̃pr, sqqP 1prqipαpnqqP 1psqipαpmqq
� P 1prqipαpnqqP 1psqipαpmqq
� T pr, nqT ps,mq,

for all pr, nq, ps,mq P Gρ. Therefore T is a group homomorphism. And, since p �P 1 � P and
p � i is the trivial map, we have:

ppT pq, nqq � ppP 1pqqqppipαpnqqq � P pqq � P pτpq, nqq,
for all pq, nq P Gρ�1 . Therefore p � T � P � τ . �

Remark 4.2.4. Notice that Lemma 4.2.3 gives us a relation between projective representa-
tions of G and central extensions of G by K�. In particular, the fact that all homomorphism
of central extensions of G by K� are isomorphisms (by Remark 3.1.8) corresponds to the fact
that we consider only isomorphisms of projective representations, as opposed to arbitrary
homomorphisms.

Definition 4.2.5 (Lifting). Let 1 ÝÑ N
µÝÑ G

τÝÑ Q ÝÑ 1 and 1 ÝÑ Ñ
µ̃ÝÑ G̃

τ̃ÝÑ Q̃ ÝÑ
1 be two central extensions. Let f : Q Ñ Q̃ be a group homomorphism. A lifting of f is a
morphism of exact sequence pα, f̃ , fq:

1 // N

α
��

µ // G

f̃
��

τ // Q

f
��

// 1

1 // Ñ
µ̃ // G̃

τ̃ // Q̃ // 1.

Theorem 4.2.6 ([HH92, Theorem 1.3, Theorem 1.4]). Let 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1 be

a representation group. Then, for any projective representation P : GÑ PGLpV q there is a
lifting for P :

1 // H

α
��

µ // G�

T
��

τ // G

P
��

// 1

1 // K� δ // GLpV q π // PGLpV q // 1.

Proof. Let Γ be any 2-cocycle representative of the cohomology class associate to the repre-
sentation group. Then, by Proposition 4.1.5, we have that Γ̂ is an isomorphism.

Let 1 ÝÑ H
µ1ÝÑ GΓ

τ 1ÝÑ G ÝÑ 1 be the central extension induced by Γ. Since Γ̂
is an isomorphism, there exists a group homomorphism α P HompH,K�q such that the
cohomology class of α�Γ is the cohomology class associated to P . Then, by Proposition 2.2.2,
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there exists a section P 1 : G Ñ GLpV q for P with Schur multiplier α � Γ. By Lemma 4.2.3,
there exists a lifting pα, T 1, P q:

1 // H

α
��

µ1 // GΓ

T 1

��

τ 1 // G

P
��

// 1

1 // K� δ // GLpV q π // PGLpV q // 1.

Since two central extensions with the same associated cohomology class are equivalent, there
is a group isomorphism φ : G� Ñ GΓ such that the following diagram commutes:

1 // H
µ // G�

β
��

τ // G // 1

1 // H
µ1 // GΓ

τ 1 // G // 1.

Define the group homomorphism T : G� Ñ GLpV q by T � T 1 � φ. Then it’s clear that
pα, T, P q is a lifting for P . �

Theorem 4.2.7. Let 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1 be a representation group of G,

α P HompH,K�q and Γ a 2-cocycle representative of the cohomology class associated to
the representation group. Then:

(a) There is a bijection between projective equivalence classes of linear representations of
G� that acts on H by α and projective equivalence classes of projective representations
of G with associated cohomology class Γ̂pαq.

(b) There is a bijection between linear equivalence classes of linear representations of G�

that acts on H by α and linear equivalence classes of α � Γ-representations of G.

Proof. Without loss of generality, consider pGΓ, τq to be the central extension induced by Γ
in the place of pG�, τq.

Let P : G Ñ PGLpV q and Q : G Ñ PGLpW q be two projective representations and
pα, T, P q and pα, U,Qq their liftings, respectively. Define P 1 : G Ñ GLpV q and Q1 : G Ñ
GLpW q by setting P 1pgq � T pg, 1q and Q1pgq � Upg, 1q, for all g P G. By Lemma 4.2.1, it Is
easy to see that P 1 and Q1 are sections for P and Q, respectively. Furthermore

T pg, ρq � T ppg, 1qp1,Γpg, 1q�1ρqq
� T pg, 1qT pµpρqq
� αpρqP 1pgq,

for all pg, ρq P GΓ. The same calculations gives Upg, ρq � αpρqQ1pgq, for all pg, ρq P GΓ.
If P and Q are projectively equivalent, there exists an isomorphism φ : V Ñ W and a set

map c : GÑ K� satisfying:

φ � P 1pgq � φ�1 � cpgqQ1pgq,
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for all g P G. Then, for all pg, ρq P GΓ, we have:

φ � T pg, ρq � φ�1 � φ � αpρqP 1pgq � φ�1

� αpρqφ � P 1pgq � φ�1

� αpρqcpgqQ1pgq
� cpgqUpg, ρq.

Therefore T and U are projectively equivalent.
Conversely, suppose T and U are projectively equivalent. Then there exists an isomor-

phism φ : V Ñ W and a set map c : GΓ Ñ K� satisfying:

φ � T pg, ρq � φ�1 � cpg, ρqUpg, ρq,
for all pg, ρq P GΓ. Define the set map d : G Ñ K� by setting dpgq � cpg, 1q, for all g P G.
Then, for all g P G, we have:

φP 1pgqφ�1 � φαp1qP 1pgqφ�1

� φT pg, 1qφ�1

� cpg, 1qUpg, 1q
� dpgqQ1pg, 1q.

Therefore P and Q are projectively equivalent. This completes the proof of (a).
Now, suppose T and U linearly equivalent. Notice that P 1 andQ1 are pα�Γq-representations.

In fact:

P 1pghq � T pgh, 1q
� T pg, 1qT ph, 1qT p1,Γpg, hq�1Γpgh, 1q�1q
� P 1pgqP 1phqTµpΓpg, hqq�1

� P 1pgqP 1phqαpΓpg, hqq�1,

for all g, h P G. The same calculation give us Q1pghq � Q1pgqQ1phqαpΓpg, hqq�1, for all
g, h P G. Then the proof of (a), with c equal the constant map to 1, shows that P 1 and Q1

are linearly equivalent.
The argument above may be reversed finishing the proof of (b). �

Let 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1 be a finite central extension. Then we will say that

such an extension satisfies the property of lifting of projective representations if it satisfies
the statement: for any projective representation P : GÑ PGLpV q, there is a lifting for P

1 // H

α
��

µ // G�

T
��

τ // G

P
��

// 1

1 // K� δ // GLpV q π // PGLpV q // 1.

Lemma 4.2.8. Let 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1 be a finite central extension that satisfies

the property of lifting of projective representations. Then |G�| ¥ |G||H2pG,K�q|.
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Proof. To simplify notation, we will identify H with its image µpHq and view µ as the
inclusion map.

Let f : G Ñ G� be a section for τ , such that fp1q � 1, and define Γ: G � G Ñ H by
setting Γpg, hq � fpgqfphqfpghq�1, for all g, h P G. By Proposition 3.2.1, Γ is a 2-cocycle

representative of the cohomology class associated to 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1. Let Γ̂

be the function given in Definition 1.2.3. Since, by [Kar85, Corollary 2.3.9], HompH,K�q
and H are isomorphic, and hence |HompH,K�q| � |H|, to prove the theorem, it is sufficient

prove that Γ̂ : HompH,K�q Ñ H2pG,K�q is a surjective homomorphism.
Let c P H2pG,K�q and P : G Ñ V be a projective representation with associated coho-

mology class CP � c. There exists such a representation by Remark 2.2.5. Consider a lifting
of P :

1 // H

α
��

µ // G�

T
��

τ // G

P
��

// 1

1 // K� δ // GLpV q π // PGLpV q // 1.

Define P 1 � T � f . Then P 1 is a section for P such that, for all g, h P G:

P 1pgqP 1phq � T pfpgqqT pfphqq � T pfpgqfphqq
� T pΓpg, hqfpghqq � αpΓpg, hqqP 1pghq.

Thus α � Γ is the Schur multiplier of P 1. Therefore, there exists α P HompH,K�q such that

Γ̂pαq � c. Hence Γ̂ is surjective. �

Remark 4.2.9. Lemma 4.2.8 says that the smallest central extensions with the property of
lifting of projective representations are the representation groups.

Now we can prove an important characterization of the representation groups.

Theorem 4.2.10 ([Kar85, Theorem 3.3.7]). Let E : 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1 be a

finite central extension such that |G�| � |G||H2pG,K�q|. Then the following statements are
equivalent:

(a) E is a representation group of G.
(b) E has the property of lifting of projective representations.

Proof. The proof that (a) implies (b) follows by Theorem 4.2.6.

Conversely, suppose that 1 ÝÑ H
µÝÑ G� τÝÑ G ÝÑ 1 has the property of lifting of

projective representations. The proof of Lemma 4.2.8 shows that there exists a 2-cocycle Γ
representative of the cohomology class associated to the central extension pG�, τq, such that

the group homomorphism Γ̂ : HompH,K�q Ñ H2pG,K�q is a surjective homomorphism.
Since H and HompH,K�q are isomorphic groups and |H||G| � |G�| � |G||H2pG,K�q|,
we conclude that Γ̂ is a group isomorphism. Thus, the same arguments of the poof of
Theorem 4.1.4 show us that 1 ÝÑ H

µÝÑ G� τÝÑ G ÝÑ 1 is a representation group. �

Concerning the number of non-equivalent representation groups of G, we have the follo-
wing theorem:
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Theorem 4.2.11. Let G be a finite group and suppose we have group isomorphisms:

G

G1
� Ze1 � � � � � Zen H2pG,K�q � Zd1 � � � � � Zdm .

Then the number of non-equivalent representation groups of G is at most¹
0¤i¤n
0¤j¤m

pei, djq,

where pei, djq is the greatest commom divisor of ei and dj.

Proof. See [Kar87, Theorem 2.5.14]. �

4.3. Perfect groups. In this section we will define perfect groups and universal central ex-
tensions, and prove that there exists, up to equivalence, only one universal central extension
for a perfect group, and such an extension is a representation group.

Definition 4.3.1 (Perfect group). A group G is called perfect group if G � G1.

Definition 4.3.2 (Universal central extension). Let E : 1 ÝÑ N ÝÑ G ÝÑ Q ÝÑ 1 and
Ẽ : 1 ÝÑ Ñ ÝÑ G̃ ÝÑ Q ÝÑ 1 be two central extensions of Q. We say that E covers
(respectively, uniquely covers) Ẽ if there exists a morphism (respectively, unique morphism)
of extensions:

1 // N

α
��

f // G

β
��

g // Q // 1

1 // Ñ
f̃ // G̃

g̃ // Q // 1.

If E uniquely covers every central extension of Q, we say that E is a universal central
extension of Q.

Lemma 4.3.3. Let E : pG, τq and Ẽ : pG̃, τ̃q be two central extensions of Q. Then the
following statements are true:

(a) Suppose that E and Ẽ are universal extension. Then there exists a group isomorphism
φ : GÑ G̃ such that φpKerpτqq � Kerpτ̃q.

(b) Suppose G is a perfect group. Then E covers Ẽ if and only E uniquely covers Ẽ.

Proof. Suppose E and Ẽ universal central extensions.Then there exist two unique morphisms:

1 // Ker τ

��

� � // G

φ
��

τ // Q // 1

1 // Ker τ̃ �
� // G̃

τ̃ // Q // 1,

and

1 // Ker τ̃

��

� � // G̃

φ1

��

τ̃ // Q // 1

1 // Ker τ �
� // G

τ // Q // 1.

(Here all left vertical maps are the restriction of the middle vertical homomorphisms)
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By the commutativity of the diagram, we have τ � τ̃ � φ and τ̃ � τ � φ1. Thus we have
τ � φ1 � φ � τ . And we have the following morphism of central extension:

1 // Ker τ

��

� � // G

φ1�φ
��

τ // Q // 1

1 // Ker τ �
� // G

τ // Q // 1.

By uniqueness of the definition of universal central extension, we have φ1 � φ � IdG. A
similar argument shows that φ �φ1 � IdG̃. Therefore φ is a group isomorphism such that, by
commutativity of the diagram, φpKerpτqq � Kerpτ̃q. This proves (a).

Now suppose that G is perfect and E covers Ẽ. Let ϕi : G Ñ G̃, i � 1, 2, be two group
homomorphisms such that τ̃ � ϕ1 � τ � τ̃ � ϕ2. Then, for all g P G, ϕ1pgqϕ2pgq�1 P Ker τ̃ �
ZpGq. Thus we have a group homomorphism φ : GÑ Ker τ̃ defined by φpgq � ϕ1pgqϕ2pgq�1,
for all g P G. Then, since φ is a group homomorphism and Ker τ̃ is an abelian group, we
have φprx, ysq � rφpxq, φpyqs � 1, for all x, y P G, and hence G1 � Kerφ. Since G1 � G, we
conclude that ϕ1 � ϕ2. �

It is well know that any group G can be written as G � F {R, where F is a free group
and R a normal subgroup of F . Identify G with F {R. Notice that R{rF,Rs is a central
subgroup of F {rF,Rs. In fact, for all rrF,Rs P R{rF,Rs and f rF,Rs P F {rF,Rs, we have
that rfr�1f�1 P rF,Rs and thus rf rF,Rs � frrF,Rs. By third Theorem of Homomorphism,

we have
F {rF,Rs
R{rF,Rs � F {R. Therefore there exists a natural central extension of G:

1 ÝÑ R{rF,Rs ÝÑ F {rF,Rs ÝÑ G ÝÑ 1.

This extension has the following important property.

Lemma 4.3.4. Let G � F {R, where F is free. Let pB, τq be a central extension of C, with
A � Ker τ , and γ : G Ñ C be a group homomorphism. Then there exists a morphism of
extensions:

1 // R{rF,Rs

��

// F {rR,F s
β
��

// G

γ

��

// 1

1 // A // B
τ // C // 1.

Here the unmarked vertical map is the restriction homomorphis of β to R{rF,Rs.
Proof. Since F is free and τ is surjective, there exists a homomorphism f : F Ñ B such that
the following diagram commutes:

F

f
��

// G

γ

��
B

τ // C,

where the map F Ñ G is the canonical map given by its presentation.
Thus f maps R into Ker τ � A. We will show that rF,Rs � Ker f . Let x P F, r P R.

Then we have:

fprx, rsq � rfpxq, fprqs.
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Since fprq P A and A is a central subgroup of B, we conclude that fprx, rsq � rfpxq, fprqs �
1. Therefore the generators of rF,Rs are mapped to 1 by f , and hence rF,Rs � Ker f .

Therefore f induces a group homomorphism β : F {rF,Rs Ñ B such that the following
diagram commutes:

1 // R{rF,Rs

��

// F {rF,Rs
β
��

// G

γ

��

// 1

1 // A // B
τ // C // 1.

�

Before prove the main result of the subsection, we enunciate an important result of Schur.

Theorem 4.3.5. Let G � F {R, where F is free. Then H2pG,K�q � pF 1 XRq{rF,Rs.
Proof. See [Kar87, Theorem 2.4.6]. �

Let G be a perfect group and G � F {R, where F is free, and consider the central extension

1 ÝÑ R{rF,Rs ÝÑ F {rF,Rs τÝÑ G ÝÑ 1. Let g P G � G1. Then there are h, h1 P G such
that g � rh, h1s. Let x P τ�1phq and y P τ�1ph1q. Thus τprx, ysq � rτpxq, τpyqs � rh, h1s � g.
Therefore G is the image of F 1{rF,Rs, the commutator subgroup of F {rF,Rs. Therefore,
the restriction of F {rF,Rs Ñ G to F 1{rF,Rs induces a central extension

1 ÝÑ pF 1 XRq{rF,Rs ÝÑ F 1{rF,Rs ÝÑ G ÝÑ 1.

Naturally, 1 ÝÑ R{rF,Rs ÝÑ F {rF,Rs τÝÑ G ÝÑ 1 is covered by 1 ÝÑ pF 1XRq{rF,Rs ÝÑ
F 1{rF,Rs ÝÑ G ÝÑ 1.

Theorem 4.3.6. Let G be a perfect group and let G � F {R, where F is free. Then

(a) 1 ÝÑ pF 1 XRq{rF,Rs ÝÑ F 1{rR,F s ÝÑ G ÝÑ 1 is a representation group of G and
a universal central extension.

(b) Let 1 ÝÑ H ÝÑ G� ÝÑ G ÝÑ 1 be universal central extension. Then it is a
representation group of G.

Proof. Since H2pG,K�q � pF 1 XRq{rF,Rs, to show that

1 ÝÑ pF 1 XRq{rF,Rs ÝÑ F 1{rF,Rs ÝÑ G ÝÑ 1

is a representation group it is sufficient to prove that F 1{rF,Rs is perfect group. The inclusion
F 2{rF,Rs � F 1{rF,Rs is obvious. Now let x, y P F 1. Since G � F {R and G is a perfect
group, there exist f1, f2 P F and r1, r2 P R such that x � f1r1 and y � f2r2. Then, using
the identities,

rab, cs � ra, csrra, cs, bsrb, cs and

ra, bcs � ra, csra, bsrra, bs, cs,
we have that:

rx, ys � rf1, ysrrf1, ys, r1srr1, ys and

rf1, ys � rf1, r2srf1, f2srrf1, f2s, r2s.
Therefore rx, ysrF,Rs P F 2{rF,Rs, and hence F 1{rF,Rs is a perfect group.

We will prove now that 1 ÝÑ pF 1 X Rq{rF,Rs ÝÑ F 1{rR,F s ÝÑ G ÝÑ 1 is an universal
central extension. Let pG�, τq be a central extension of G. By Lemma 4.3.4, using the



30 EDUARDO MONTEIRO MENDONCA

identity map of G instead of γ, we have that 1 ÝÑ R{rF,Rs ÝÑ F {rF,Rs τÝÑ G ÝÑ 1 covers
pG�, τq, and hence pG�, τq is covered by 1 ÝÑ pF 1 X Rq{rF,Rs ÝÑ F 1{rF,Rs ÝÑ G ÝÑ 1.
By Lemma 4.3.3(b), we conclude that 1 ÝÑ pF 1 XRq{rF,Rs ÝÑ F 1{rF,Rs ÝÑ G ÝÑ 1 is a
universal central extension. This completes the proof of part (a).

The proof of (b) is a direct consequence of (a) and Lemma 4.3.3(a). �

Notice now that Theorem 4.2.11 gives us that there exists a unique, up to equivalence,
representation group of a perfect group G, since G{G1 � 1, and, by Theorem (b), this
representation group is equal to the universal central extension of G.

5. Symmetric group

Throughout this section we will work of the field of complex numbers C, instead of an
arbitrary field K, and study the projective representation theory of the symmetric group Sn
and the Sergeev algebra.

5.1. Representation groups of symmetric groups. The purpose of this subsection is to
study the 2nd-cohomology group of the symmetric groups on C making it possible to list all
representation groups of the symmetric groups.

Let Sn be the symmetric group of degree n, and denote the transpositions pi i� 1q by ti,
for all i P t1, . . . , n� 1u. A well known presentation for Sn is:

Sn � xt1, . . . , tn�1 | t2i � 1; titj � tjti; tktk�1tk � tk�1tktk�1;

for all i, j, k P t1, . . . , n� 1u, k ¤ n� 2 and |i� j| ¥ 2y.
Using the commutator of elements and the relation t2i � 1, we can write the second and
the third relation as rti, tjs � 1 and ptktk�1q3 � 1, respectively. Thus, defining F to
be the free group generated by tt1, . . . , tn�1u and R to be the normal closure of the set
tt2i ; rti, tjs; ptktk�1q3 | i, j, k P t1, . . . , n� 1u, k ¤ n� 2, |i� j| ¥ 2u, we have Sn � F {R

Concerning the 2nd-cohomology group of Sn, we have:

Theorem 5.1.1. The 2nd-cohomology group of Sn, H2pSn,Cq, has order at most 2 and is
trivial for n ¤ 3.

Proof. See [HH92, Theorem 2.7]. �

Let n ¥ 3. We will construct two groups of order 2pn!q, which will subsequently be proved
to be representation groups of Sn. With one of these groups we will be able to establish a
lower bound for |H2pSn,Cq|.
Definition 5.1.2. Let n ¥ 3. We define S̃n to be the group with presentation given by:

S̃n � xz, t1, . . . , tn�1 |t2i � ptktk�1q3 � ptitjq2 � z; z2 � rz, tis � 1

for all i, j, k P t1, . . . , n� 1u, k ¤ n� 2 and |i� j| ¥ 2y.
And we define Ŝn to be the group with presentation:

Ŝn � xz, t1, . . . , tn�1 |t2i � ptktk�1q3 � z2 � rz, tis � 1; ptitjq2 � z

for all i, j, k P t1, . . . , n� 1u, k ¤ n� 2 and |i� j| ¥ 2y.
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It is not clear, only by the definition above, that S̃n and Ŝn have order 2pn!q, since the
relations given in the presentation could impose z � 1, defining Sn instead. In order to prove
that |S̃n| � 2pn!q � |Ŝn|, we begin with the following lemma:

Lemma 5.1.3. Let n ¥ 3 be a positive integer and let m be the greatest integer less then
pn � 1q{2. Then there exists n � 1 complex square matrices of order 2m, M1, . . . ,Mn�1,
satisfying:

M2
i � �I p1 ¤ i ¤ n� 1q,(5.1)

pMjMj�1q3 � �I p1 ¤ j ¤ n� 2q,(5.2)

pMkMlq2 � �I p1 ¤ k, l ¤ n� 1; |k � l| ¥ 2q,(5.3)

where I is the identity matrix of order 2m.

Proof. We will show just an outline of the poof, referring the reader to [Kar87, Lemma 2.12.2]
and [HH92, Proposition 6.1] for more details. Define the following 2� 2 matrix:

A �
�

0 1
1 0

�
, B �

�
0 1
�1 0

�
, C �

�
1 0
0 �1

�
and I2 �

�
1 0
0 1

�
.

Consider the tensor product of matrices b. Define X0 � I, X1 � Abm and, for all k P
t1, . . . ,mu:

X2k � Abm�k bB b Ibk�1 and X2k�1 � Abm�k b C b Ibk�1,

where Mbr �M bM b � � � bM , with tensor product applied r times in the right term.
Now, let x0 � 0 and take a family of complex numbers xi and yi, with i P t1, . . . , n� 1u,

satisfying x2
i�1 � y2

i � p�1qi�1 � 2xiyi. Then, define Mi � xi�1Xi�1 � yiXi, for all i P
t1, . . . , n� 1u. Those Mi’s will satisfy (5.1), (5.2) and (5.3). �

Let G be the group generated by M1, . . . ,Mn�1. Defining a group homomorphism ϕ : GÑ
Sn by setting ϕpMiq � ti, for all i P t1, . . . , n � 1u, we will have

G

tI,�Iu � Sn. Therefore

|G| � 2pn!q, since |tI,�Iu| � 2.
Notice that the generators of G satisfy the same relation given in the presentation of S̃n.

Thus G is a homomorphic image of S̃n. Therefore, since |S̃n| ¤ 2pn!q � |G|, we conclude
|S̃n| � 2pn!q.

Now, define Nj � iMj, for all j P t1, . . . , n � 1u. Therefore, by (5.1), (5.2) and (5.3), we
have:

N2
i � I p1 ¤ i ¤ n� 1q,

pNjNj�1q3 � I p1 ¤ j ¤ n� 2q,
pNkNlq2 � �I p1 ¤ k, l ¤ n� 1; |k � l| ¥ 2q.

Defining H to be the group generated by N1, . . . , Nn�1, and repeating the same argument
as above, we conclude that H is isomorphic to Ŝn and |Ŝn| � 2pn!q.

Also, notice that the presentations of S̃n and Ŝn give us that t1, zu is a central subgroup

of S̃n and Ŝn. Therefore, the canonical projections

τ : S̃n Ñ Sn and τ 1 : Ŝn Ñ Sn
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give us two central extensions pS̃n, τq and pŜn, τ 1q.
We are able now to prove the following:

Theorem 5.1.4. Let n ¥ 4. Then H2pSn,Cq � Z2. Furthermore pS̃n, τq and pŜn, τ 1q are
representation groups of Sn, non-isomorphic if, and only if, n � 6.

Proof. Notice that for both, S̃n and Ŝn, we have ptitjq2 � z, for all i, j P t1, . . . , n � 1u and

|i � j| ¥ 2. For Ŝn, since we have t�1
i � ti, for all i P t1, . . . , n � 1u, it is easy to see that

z � rti, tjs, for all i, j P t1, . . . , n�1u and |i�j| ¥ 2. For S̃n, since z2 � 1 and t�1
i � tiz � zti,

for all i P t1, . . . , n� 1u, then we have

z � ptitjq2 � titjtitj � titjtitjzz � titjtiztjz � rti, tjs,
for all i, j P t1, . . . , n � 1u and |i � j| ¥ 2. Hence t1, zu is subgroup of pS̃nq1 and pŜnq1.
Therefore, we just need to prove that H2pSn,Cq � Z2, to prove that pS̃n, τq and pŜn, τ 1q
are representation groups of Sn. Since |H2pSn,Cq| ¤ 2, it is sufficient to find a non-trivial
2-cocycle.

Fix the natural group homomorphim φ : S̃n Ñ Sn defined by setting φpzq � 1 and φptiq �
ti, for all i P t1, . . . , n � 1u. It is clear that φ is surjective with kernel equal to t1, zu. Let
f : Sn Ñ S̃n be a section for φ, such that fp1q � 1. Then, by Proposition 3.2.1, we have
that ρf : Sn � Sn Ñ t1, zu defined by ρf pσ, σ1q � fpσqfpσ1qfpσσ1q�1, for all σ, σ1 P Sn, is a
2-cocycle. Thus, there exists a set map a : Sn � Sn Ñ t0, 1u such that ρf pσ, σ1q � zapσ,σ

1q,
for all σ, σ1 P Sn. Define ρ : Sn � Sn Ñ C by setting ρpσ, σ1q � p�1qapσ,σ1q, for all σ, σ1 P Sn.
Since ρf is a 2-cocycle, so is ρ. We will prove that ρ is a non-trivial one.

First, notice that, since fp1q � 1, we have, for all σ P Sn:

1 � fp1q � fpσσ�1q � zapσ,σ
�1qfpσqfpσ�1q.

Thus we have

(5.4) fpσq�1 � zapσ,σ
�1qfpσ�1q, for all σ P Sn.

Let s1, s3 P Sn be the images of t1, t3 P S̃n under φ. Then, by the presentation of S̃n and
(5.4), we have:

z � rt1, t3s � fps1qfps3qfps1q�1fps3q�1 � zNfprs1, s3sq � zN ,

where N � aps1, s
�1
1 q�aps3, s

�1
3 q�aps1, s3q�aps1s3, s

�1
1 q�aps1s3s

�1
1 , s�1

3 q. Therefore N � 1.
But, by definition of ρ, we have:

(5.5) � 1 � ρps1, s
�1
1 qρps3, s

�1
3 qρps1, s3qρps1s3, s

�1
1 qρps1s3s

�1
1 , s�1

3 q.
Suppose that there exists a set map δ : Sn Ñ C, such that ρ is its coboundary. Then, by
(5.5), we have:

(5.6) � 1 � δps1q2δps3q2δps�1
1 q2δps�1

3 q2.
Since δp1q � 1, it follows from (5.6) that:

�1 � ρps1, s
�1
1 q2ρps3, s

�1
3 q2.

This is a contradiction, since ρ takes values only �1. Therefore H2pSn,Cq � Z2 and pS̃n, τq,
pŜn, τ 1q are representation groups of Sn.
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To conclude the theorem, we have only to prove that pS̃n, τq and pŜn, τ 1q are non-isomorphic
if, and only if, n � 6. Such a proof can be found in [HH92, Theorem 2.12]. �

Remark 5.1.5. Let n ¥ 4. Since S̃n is a representation group for Sn and H2pSn,Cq � Z2, by
Proposition 2.3.2 and Theorem 4.2.7, we conclude that the projective representations of Sn
are naturally partitioned into two sets, those projectively equivalent to linear representations
of Sn and those corresponding to linear representations of S̃n with z acting by � Id. We call
those of the second type spin representations of Sn.

Let n ¥ 3. Since all permutation of Sn are products of transpositions we have that rσ, σ1s
is an even permutation, for all σ, σ1 P Sn. Therefore pSnq1 is a subgroup of An, the alternating
group of degree n. Furthermore, let pa b cq P Sn be a 3-cycle. A simple calculation gives us
that pa b cq � rpa bq, pa cqs. Therefore, since An is generated by the 3-cycles (for n ¥ 3),

we conclude that An is a subgroup of pSnq1. Hence pSnq1 � An and
Sn
pSnq1 � Z2.

Therefore, by Theorem 4.2.11, we have that there exist no more than 2 representation
groups for Sn, when n ¥ 4. By Theorem 5.1.4, we conclude that S̃n and Ŝn are the only
representation groups for Sn, for n ¥ 4 and n � 6.

Let α P Z2pSn,Cq be a non-trivial 2-cocycle and consider its twisted group algebra CαSn,
given in Definition 2.2.3. We will denoted CαSn by Tn. Therefore, by Remark 5.1.5 and
Theorem 2.2.4, we conclude that the study of projective representation of Sn is equivalent
to representation theory of CSn and Tn.

Remark 5.1.6. It is not hard to show that Tn and CS̃n{xz � 1y are isomorphic algebras.
Therefore, by the given presentation of S̃n, Tn can be defined as the algebra generated by
t1, . . . , tn subject to the relations:

t2i � 1, ptjtj�1q3 � 1, rti, tjs � �1,

where 1 ¤ i, j ¤ n, and |i� j| ¥ 2. See [Kle05, Section 13.1] for more details.

5.2. Digression on superalgebras.

Definition 5.2.1 (Vector superspace). A vector superspace over K, is a Z2-graded K-vector
space V � V0̄ ` V1̄. If m � dimV0̄ and n � dimV1̄, then we write sdimV � pm,nq.
The elements of V0̄ are called even and elements of V1̄ are called odd. A vector v is called
homogeneous if is either even or odd and we denote its degree by |v| P Z2.

A subsuperspace of V is a superspace W � V with grading W � pW X V0̄q ` pW X V1̄q.
We say that such a W is homogeneous.

For any super vector space V , we define the parity reversed space ΠV to be the super
vector space with the even and odd subspaces interchanged.

Let V be a superspace. Defining the linear map δV : V Ñ V by setting δV pvq � p�1q|v|v,
for all homogenious v P V , we can notice that a superspace W is a subsuperspace of V if,
and only if, it is a subspace of V stable under δV .



34 EDUARDO MONTEIRO MENDONCA

Let W be another superspace. We can view the direct sum V `W and the tensor product
V bW as superspace in the following way:

pV `W qi � Vi `Wi, pi P Z2q(5.7)

pV bW q0̄ � pV0̄ bW0̄q ` pV1̄ bW1̄q and(5.8)

pV `W q1̄ � pV0̄ bW1̄q ` pV1̄ bW0̄q.(5.9)

We can see HomKpV,W q as a superspace by defining HomKpV,W qi to be the linear maps
f : V Ñ W such that fpVjq � Wi�j, for all i, j P Z2. Elements of HomKpV,W q0̄ and
HomKpV,W q1̄ are called even and odd linear maps, respectively. The parity of a homogeneous
linear map f will be denoted by |f |. The dual superspace HomKpV,Kq is denoted by V � and
called the dual superspace.

Definition 5.2.2 (Superalgebra). A superalgebra A is a vector superspace A � A0̄ ` A1̄

with a bilinear multiplication such that AiAj � Ai�j, for all i, j P Z2.
A superideal of A is a homogeneous ideal I of A. A superalgebra is called simple when

it has no non-trivial superideals.

A superalgebra homomorphism is an even linear map that is also an algebra homomor-
phism in the usual sense.

Let A and B be two superalgebras. We can view the tensor product of superspaces AbB
as a superalgebra, by defining the multiplication:

pab bqpa1 b b1q � p�1q|b||a1|paa1q b pbb1q,
for all homogeneous a, a1 P A and b, b1 P B.

An superalgebra A viewed only as an algebra is denoted by |A|.
Now we are able to show three important examples.

Example 5.2.3 (Superalgebra Mm,n). Let V be a superspace with sdimV � pm,nq. And
define MpV q to be HomKpV, V q. By grading MpV q as the direct sum of even and odd linear
maps, and defining the multiplication to be the composition of maps, we can easily see that
MpV q is a superalgebra with sdimMpV q � pm2 � n2, 2mnq.

Also, let W be another superspace. It can be proved (see [Kle05, Example 12.1.1]) that:

(5.10) MpV q bMpW q �MpV bW q.
Since, up to isomorphism, the algebra MpV q does not depend on the supervector space V ,

but only its superdimention pm,nq P V , we can identify MpV q with the matrix superalgebra
Mm,n. By (5.8), (5.9) and (5.10), we have

(5.11) Mn,m bMk,l �Mmk�nl,ml�nk.

Example 5.2.4 (Superalgebra Qn). Let V be a vector superspace with sdimV � pn, nq and
let J be an involution in HomKpV, V q of degree 1̄. We define the superalgebra QpV, Jq to be:

QpV, Jq � tf P HomKpV, V q | fJ � p�1qf̄Jfu
It is possible to show that the superalgebra QpV, Jq can be identified with the superalgebra
Qn of all matrices of the form �

A B
�B A

�
,
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where A and B are arbitrary n� n matrices.
By the definition of QpV, Jq, (5.10) and (5.11), it is possible to show the following equi-

valences of superalgebras:

MpV q bQpW,Jq � QpV bW, IdV bJq and

Mm,n bQk � Qpm�nqk.

For more details see [Kle05, Exemple 12.1.2].

Example 5.2.5 (Clifford superalgebra Cln). Define the Clifford superalgebra Cln to be the
superalgebra given by odd generators c1, . . . , cn, subject to the relations

c2
i � 1 p1 ¤ i ¤ nq,(5.12)

cicj � �cjci p1 ¤ i � j ¤ nq.(5.13)

Now we can define supermudules.

Definition 5.2.6 (Supermodule). Let A be a superalgebra. A (left) A-supermodule is a
vector superspace wich is a left A-module in the usual sense, such that AiVj � Vi�j, for all
i, j P Z2. Right supermodules are defined similarly.

A subsupermodule of an A-supermodule is a subsuperspace which is A-stable. A non-zero
A-supermodule is irreducible (or simple) if has no non-zero proper A-subsupermodules.

We call an A-supermodule M completely reducible if any subsupermodule of M is a direct
summand of M .

A homomorphism f : V Ñ W of A-supermodules V and W is a linear map such that

fpavq � p�1q|f ||a|afpvq pv P V, homogeneousa P Aq.
Notice that an A-supermoduleM can be considered as a usual |A|-module denoted by |M |.

There exists an isomorphism of vector spaces between HomApV,W q and Hom|A|p|V |, |W |q
(see [Kle05, Lemma 12.1.5]). Let V be an irreducible A-supermodule. It might happen
that |V | is a reducible |A|-module. In this case we say that V is a supermodule of type Q.
Otherwise we say that V is of type M. By [Kle05, Lemma 12.2.1] an A-supermodule V of
type Q is a direct sum of two non-isomorphic irreducible |A|-modules.

The category of finite-dimensional A-supermodules will be denoted by A- smod. We have
the (left) parity change functor

Π: A- smod Ñ A- smod,

where, for an object V , ΠV is view as an A-supermodule under the new action defined by
a � v � p�1q|a|av, for all v P ΠV and homogeneous a P A, where the juxtaposition denote the
original action of A on V .

When studying the representation theory of algebras, we come across two important
results: Schur’s lemma and Wedderburn’s Theorem. There are also analogous versions
of these results in the theory of supermodules, but taking into account the two types of
irreducible supermodules. For more detail statements see [Kle05, Lemma 12.2.2] and [Kle05,
Theorem 12.2.9].

Let A be a superalgebra. The result shown in [Kle05, Corollary 12.2.10] allows us to
construct a complete set of pairwise non-isomorphic irreducible |A|-modules from a com-
plete set of pairwise non-isomorphic irreducible A-supermodules. That way, we do not lose
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information in studying supermodule theory instead module theory, providing we keep track
of types of irreducible supermodules.

5.3. Sergeev and Hecke-Clifford superalgebras. Back to our main discussion of this
section, in this subsection we define two important superalgebras and explain how their
study is equivalent to the study of projective representation of Sn.

As shown in Subsection 5.1, studying Tn-modules is equivalent to studying spin represen-
tations of Sn. Furthermore, we have a superalgebra structure on Tn, defining the Z2-grading:

pTnq0̄ � spantg | g P Anu, pTnq1̄ � spantg | g P SnzAnu,
where An is the alternating group of degree n.

Definition 5.3.1 (Sergeev superalgebra). We define the Sergeev superalgebra Yn to be the
tensor product of superalgebras

Yn � Tn b Cln.

Now, notice that there is a natural action of the group Sn on the generators c1, . . . , cn of
the Clifford superalgebra Cln by defining σ � ci � cσpiq. We can extend this action and define
a new algebra structure on the space KSn b Cln. Precisely:

Definition 5.3.2 (Heck-Clifford algebra). Let c1, . . . , cn be the generators of the Clifford
superalgebra. Identify 1 b ci with ci, for all i P t1, . . . , nu, and σ b 1 with σ, for all σ P Sn.
Then we define the Heck-Clifford superalgebra Hn to be the smash product KSn�Cln, where

σci � cσpiqσ,

for all i P t1, . . . , nu and σ P Sn, and extending linearly.

The algebra Hn is naturally a superalgebra by defining the Z2-grading:

pHnq0̄ � spantσ | σ P Snu, pHnq1̄ � spantci | i � 1, . . . , nu.
It can be proved that Hecke-Clifford and Sergeev superalgebras are isomorphic, by the

isomorphism ϕ : Yn Ñ Hn, defined by:

ϕp1b ciq � ci, p1 ¤ i ¤ nq,
ϕptiq � 1?�2

sipci � ci�1q, p1 ¤ i ¤ n� 1q,

where the si are the usual generators of Sn and the ti the generators of S̃n, given in Re-
mark 5.1.6.

It can be shown that Cln is a simple superalgebra with a unique, up to isomorphism,
supermodule Un of dimension 2n{2 and type M, if n is even, and of dimension 2pn�1q{2 and
type Q, if n is odd (see [Kle05, Exemple 12.1.3]). Then, define the functors:

Fn : Tn- smod Ñ Hn- smod, V ÞÑ V b Un,

Gn : Hn- smod Ñ Tn- smod, V ÞÑ HomClnpUn, V q.
These functors define a Morita super-equivalence between the superalgebras Hn and Tn in
the sense of:

Lemma 5.3.3 ([Kle05, Proposition 13.2.2]).
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(a) If n is even, then Fn and Gn are equivalences of categories with

Fn �Gn � Id, Gn � Fn � Id .

(b) If n is odd then Fn and Gn satisfy:

Fn �Gn � Id`Π, Gn � Fn � Id`Π.

In this way, Hecke-Clifford and Sergeev superalgebras give us two new approaches to
studying spin representations of Sn.
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