PROJECTIVE REPRESENTATIONS OF GROUPS

EDUARDO MONTEIRO MENDONCA

ABSTRACT. We present an introduction to the basic concepts of projective representations
of groups and representation groups, and discuss their relations with group cohomology. We
conclude the text by discussing the projective representation theory of symmetric groups
and its relation to Sergeev and Hecke-Clifford Superalgebras.
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INTRODUCTION

The theory of group representations emerged as a tool for investigating the structure of
a finite group and became one of the central areas of algebra, with important connections
to several areas of study such as topology, Lie theory, and mathematical physics. Schur was
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the first to realize that, for many of these applications, a new kind of representation had to
be introduced, namely, projective representations. The theory of projective representations
involves homomorphisms into projective linear groups. Not only do such representations
appear naturally in the study of representations of groups, their study showed to be of great
importance in the study of quantum mechanics.

Schur [Sch04] laid the foundations for the general theory of projective representations,
showing the existence of a certain finite central extension G of a group G, which is called
a representation group of G. Such a central extension reduces the problem of determining
all projective representations of G to the determination of all linear representations of G.
In [Sch07, Sch11], Schur gave an estimation for the number of non-isomorphic representa-
tion groups and determined all irreducible projective representations of the symmetric and
alternating groups.

The representation theory of symmetric group is a special case of the representation theory
of finite groups that provides a vast range of applications, ranging from theoretical physics,
through geometry and combinatorics. Recently, new approaches to the study of projective
representations of the symmetric group have been born, including the study of Sergeev and
Hecke-Clifford superalgebras.

The goal of this paper is to give an introduction to the theory of projective representations
of groups accessible to undergraduates. We assume only basic knowledge of group theory
and linear algebra.

In the first section, we introduce the basic concepts of group cohomology, and we give
some important properties of the 2"4-cohomology group.

In the second section, we define projective representations and the concept of equivalence.
Then we define Schur multipliers and show their relation with 2°4-cohomology groups. We
finish the section by showing that the cohomology class associated with a projective repre-
sentation depends only on the equivalence class of the projective representation.

We define central extensions of a group in Section 3, and and show the bijection between
the set of equivalence classes of central extensions and the 2"4-cohomology group.

In Section 4, we show the existence of representation groups and the equivalence of two
possible definitions. At the end of the section, we discuss the uniqueness of representation
groups in the specific case of perfect groups.

We finish the text by discussing projective representations of symmetric groups in the last
section. We discuss two representation groups for S, (for n > 4), that are isomorphic only
for n = 6, developing the discussion to show how the study of Sergeev and Hecke-Clifford
superalgebras is equivalent to the study of spin representations of symmetric groups.

Acknowledgements. I would like to thank Professor Alistair Savage at the University of
Ottawa for his guidance and support. I would also like to thank Mitacs Globalink Program
and the University of Ottawa for providing me such an amazing opportunity to conduct an
undergraduate research internship.

1. GROUP COHOMOLOGY

When we study projective representations, the cohomology of groups naturally appears.
So we will introduce in the first subsection the basic concepts of group cohomology, following
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the approach of MacLane and Eilenberg in [EM47], and in the second subsection some
important properties of the 2"-cohomology group.

1.1. Cohomology groups. Throughout this subsection, let G be an arbitrary group and
M an abelian group. In groups cohomology studies, there exists a more general approach
where GG acts on M. But as it is not necessary for our study, we will not consider such action
in the following definitions. Since in the next sections M will be a multiplicative abelian
group, we will use the multiplicative notation in this document.

Definition 1.1.1 (n-cochain). Let n be a positive integer. A n-cochain of G'in M is a set
map f: G" — M. We define C"(G, M) to be the abelian group of all n-cochains of G in M,
where the multiplication, identity and inverse, are given, respectively, by:

() F9: (1. o20) o F(rre g 0), for all f.g € CH(C, M):
(b) 1: (x1,...,2,) = Ly
(c) f7r: (w1, ... 2n) = fxy, ... 2,7 for all feC™(G, M);

A 0-cochain is defined to be an element of M.

Remark 1.1.2. The commutativity of C™(G, M) follows from the fact that its elements take
values in M, which is an abelian group.

Definition 1.1.3 (Coboundary). The coboundary of an n-cochain f is the (n + 1)-cochain
0" f, defined by:

(0" )1, xnp1) = f(z2, ..., Tn11) (1_[ flxr, .o mmiga, .. 7$n+1)(1)i> flxy,. .. ,xn)(fl)nﬂy
i=1

for all (z1,...,2n11) € G™L
The coboundary has two properties that can be verified directly:

Lemma 1.1.4. For all n-cochains f and g, we have:
(a) 6"(fg) = (6"f)(0"g);
(b) 6" f) = 1.

Proof. Part (a) follows by the definition of ¢ and the commutativity of C"(G, M).
For any f € C"(G, M) define the set map f: G"' — M by setting

~

f(xla s 7$n+1) = f(xfle, Qf;lx‘g, ce 7xr:1xn+1)>

for all (z1,...,2,41) € G""!. Notice that f satisfies

f(yxb B 7yxn+1) = f(xla s 7xn+1)7
for all (z1,...,2,.1) € G"" and y € G. For any g € C""(G, M) define the (n + 2)-cochain
0"g: G2 — M by setting
n+2

5”g($17 . ,$n+2) = n g(xl, R ,fi, c.. 7xn_i_z)(*l)iﬂ
=1

Y

for all (z1,...,Zne2) € G2, where #; indicates that the variable z; has been omitted. It can
be verified, after some combinatorial calculations, that 0"*'o"f = 1, for all f € C"(G, M).
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By [EMA47, Section 2], for all (z1,...,2,.1) € G™™!, we have that

(11) (Snf(l’l, Ce ,.I'nJrl) = 6”f(1, T1,T1T2y..., L1 """ iL‘nJrl).
Therefore, by (1.1) and the fact that ortlonf =1, for all fe C™(G, M), part (b) holds.
[

It follows from Lemma 1.1.4(a) that the coboundary map 6": C"(G, M) — C"*(G, M)
is a group homomorphism, for all non-negative integers n.

Definition 1.1.5 (The n-cocycles and n-coboundaries sets). Let n be a positive integer.
Then we define Z"(G, M) = Kerd" and B"(G, M) = Im§"~'. We call the elements of
Z"™(G, M) n-cocycle. The elements of B"(G, M) are called n-coboundaries;

It follows from Lemma 1.1.4(b) that Im §"~! < Ker " and therefore B"(G, M) is a sub-
group of Z™(G, M). Thus, we can define:

Definition 1.1.6 (n*-Cohomology group). Let n be a non-negative integer. Then the
nt"-cohomology group is defined to be the quotient group:

Z"(G, M)
H"(G, M) = ——"—+
(G, M) B"(G, M)’
and its elements are called cohomology classes.
Two cocycles contained in the same cohomology class are called to be cohomologous.

We denote by =: Z"(G, M) - H"(G, M) the canonical projection that takes any n-cocycle
p to its cohomology class p.

Example 1.1.7 (2"4-Cohomology group). Let us describe the 2-cocycles and 2-coboundaries
more explicitly.

We have that p € Z?(G, M), if and only if p = 1. Therefore a set map p: G x G — K*
is a 2-cocycle if and only if:

(1.2) p(h, k)p(gh, k) 'p(g, hk)p(g,h) ' =1, forall g,h,keG.
Now let p € B*(G, M). Then there exist a 1-cochain f: G — M such that:

plg,h) = f(h)f(gh)™ f(g), forall g,heG.

Then two 2-cocycles p and p’ are cohomologous if, and only if, there is a 1-cochain f: G —
M such that:

(1.3) p'(g,0) = f(9)f(gh) "' f()p(g, ), forall g,heG.

1.2. 2"d-Cohomology group. From now, let K be a field and K* be its multiplicative
group.
Lemma 1.2.1. Any 2-cocycle p € Z*(G, M) satisfies, for all g,h € G:

(1.4) p(g,1) = p(1,1) = p(1,h)
and
(1.5) plg.9") =nlg ' 9).

In particular, for all « € H*(G, M), there is a 2-cocycle w representative of o such that
w(1,1) =1 and satisfy (1.4) and (1.5).
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Proof. Let p be a 2-cocycle. We have that p satisfies (1. 2) for all g, h, k € G. Replacing g by
1 and k by h g in (1.2), we have p(h, h 1g)p(h,h 1g) 1p(1,g)p(1,h)* =1, for all g, h € G.
Thus,

(1.6) p(1,h) =p(1l,g), forall g,heG.

Now, replacing k by 1 and g by gh™!in (1.2), we have p(h, 1)p(g, 1) p(gh™, h)p(gh™, h)~! =
1, for all g,h € G. Thus,

(1.7) p(g,1) = p(h,1), forall g,heG.
Therefore, by (1.6) and (1.7), we have:

p(9.1) = p(1,1) = p(1,h),
for all g, h € G. Therefore p satisfies (1.4).
Replacing k by g and h by g~! in (1.2), we have, for all g € G:

P9~ 9)p(1,9) " plg, Dplg, g7 ") = 1.
Therefore, by (1.4):

-1

p(g.97") =plg . 9),

for all g € G. Hence p satisfies (1.5).

Now, let a € H*(G, M) and p be any 2-cocyle representative of a. Define w: G* — M
by setting w(g, h) = ap(g, h), for all g,h € G, where a = p(1,1)"! € M. Then, considering
f: G — M as the constant map a~!, we have:

w(g, hw(gh, k)~'w(g, hk)w(g, h)™" = ap(g, h)a™ p(gh, k)" ap(g, hk)a™ p(g,h) ™" = 1,
p(g: Mw(g, h)™" =a™" = f(g)f(gh)~' f(h),
for all g, h € G. Therefore w is a 2-cocycle cohomologous to p such that w(1,1) = 1. 0J

Theorem 1.2.2 ([CR06, Theorem 53.3]). Let K be an algebraically closed field of characte-
ristic pe N and H = H*(G,K*). Then the following statements are true:

(a) The order of every element of H divides the order of G.

(b) Every element o in H can be represented by a 2-cocycle p such that p(1,1) =1 and
p(g, h) is an e-th root of 1 € K, for all g,h € G, where e is the order of .

(¢) H has finite order not divisible by p.

Proof. Let p be a 2-cocycle and let n be the order of G. By Lemma 1.2.1, we can assume

p(1,1) = 1.
Define the set map f: G — K* by setting f(g) = [ [,cqc p(g,h), for all g € G. Then, we
have:

F@) () Tlhear(g:7) [eqp(h:s)
f(gh) Hter gh t)

()

- ( Yo, r)
= #la.1) 1;[;( (gh,7)p(9, ))
(18) _ (g )", (by (12).
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for all g,h € G. Therefore, since - is a group homomorphism, it follows from (1.8) that
7" =1 € H, and that proves (a). Furthermore, since p(1,1) = 1, notice that we have
f(1) =1.

Now, let e be the order of p, and if p > 0, write e = pq, where a,q € N and p } q.
Then, since p® = p¢ = 1 € H, there is a set map f': G — K* such that p(g,h)¢ =
f'(g)f'(gh)~' f'(h), for all g, h € G.

Since K is algebraically closed, there exist a set map f”: G — K* such that (1) =1
and f"(g)?" = f'(g), for all g € G, satisfying:

plg, )" = f"(9).f"(gh) =" f"(h),
for all g,h € G. Thus, p¢ = 1. Since e = p“q is the order of p, follows from p? = 1 that
p® =1, hence p / e.
Now, for each g € G, take a(g) € K* such that a(g)¢ = f'(g)~!, imposing a(1) = 1, since
f(1) =1, and define the map p': G x G — K* by setting

P9, h) = a(g)algh) " a(h)p(g, h),
for all g, h € G. Notice that p'(1,1) = 1. It is easy to see that p’ is a 2-cocycle cohomologous
to p satisfying:

p'(g,h)° = a(g)®algh) “a(h)p(g, h)°

= (@) f (gh) f'(R) " (9) f ' (gh) = ()
— 17

for all g, h € G. Therefore, there is a 2-cocycle p’ representative of p, such that p'(1,1) = 1
and p'(g,h) is a e-th root of 1 € K, for all g, h € G. This proves (b).

Now, since G is finite and for any e|n, the number of e-th roots of 1 are finite, there are
at most a finite number of 2-cocycles p whose values p(g,h) are an e-th root of 1 € K, for
all g, h € G. Therefore, since all cohomology class, whose order is e, can be represented by a
2-cocycle as above, there are at most a finite number of cohomology classes in H of order e.
Since e|n, it follows that there are at most a finite number of cohomology classes in H, i.e, H
is a finite group. Furthermore, because no elements of H are divisible by the characteristic
of K, it follows that p f |H|. And this concludes the proof of (c). O

By Lemma 1.2.1 and Theorem 1.2.2, from now on we will assume that all 2-cocycles p
satisfy p(1,1) = 1.
To finish the section, we define a group homomorphism that will be useful for our studies.

Definition 1.2.3. Let p € Z?(G, M) be a 2-cocycle. Then we define the group homomor-
phism.

p: Hom(M,N) — H*(G,N)
by setting, for all « € Hom(M, N), p(a)) = @ o p, the cohomology class of a o p.

2. PROJECTIVE REPRESENTATIONS

Throughout this section, let V' a K-vector space and GL(V') the general linear group of

V. We will identify K* with K* Idy,. Thus, the projective general linear group is defined to

GL(V
be the quotient PGL(V') = K—() and we denote the canonical projection by m: GL(V) —

X
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PGL(V). Sometimes, when it is necessary to distinguish the vector space of V| we will
denote this projection by 7y .

2.1. Projective representation. We now introduce projective representations. Usually, a
projective representation is defined in terms of general linear group and Schur multiplier,
and after it is shown the equivalent definition in terms of projective general linear group. In
this section we will make the opposite direction: first we define as Yamazaki in [Yam64] and
show the equivalence with the usual definition such as Karpilovsky in [Kar87], and Hoffman
and Humphreys in [HH92].

After that, we define two concepts of equivalence of projective representations allowing
the study of their classifications.

Definition 2.1.1 (Projective representation). A projective representation of a group G on
a vector space V' is a group homomorphism

P: G — PGL(V).

Proposition 2.1.2. Let P be a projective representation of G on V. Then, there are set
maps P': G — GL(V) and p: G x G — K* such that

(2.1) P'(g)P'(h) = p(g,h)P'(gh), for all g,h e G.

Conversely, if there are set maps P’ and p satisfying (2.1), then there exists a unique
homomorphism P: G — PGL(V) such that P(g) = 7P'(g), for all g € G.

Proof. Let X be a set of coset representatives of GL(V') in PGL(V), and define P': G —
GL(V) by setting for each g € G, P'(g) as the unique element of X such that 7P'(g) = P(g).
Now, let g,h € G. Then we have P'(gh)K* = P'(g)P'(h)K*, which implies that there
exists a unique p(g, h) € K* such that p(g, h)P'(gh) = P'(g)P'(h).
Conversely, if we have set maps P’ and p satisfying (2.1), define P: G — PGL(V) as
P = nP'. Then, for all g,h € G,

P(gh) = m(P'(gh)) = m(p(g, h) "' P'(g) P'(h))
= (P (g)P'(h)) = n(P'(9))m(P'(h)) = P(g)P(h).
Therefore P is an group homomorphism, i.e., a projective representation of G on V. O

Remark 2.1.3. In the proof of Proposition 2.1.2; define Y = {p(1,1)x | z € X} and let @’
be the section of P corresponding to Y, and define p'(g, h) = p(g,h)/p(1,1), for all g,h € G.
Thus we obtain @' and p’ satisfying (2.1) and p/(1,1) = 1. Therefore, we lose no generality
in assuming that p(1,1) = 1, which we will do from now on.

Proposition 2.1.2 gives a new way to see a projective representation which is equivalent.
So, if we have two set maps P: G — GL(V) and p: G x G — K* satisfying equation (2.1),
we will call P a projective representation or a p-representation.

Given the set X of representatives of GL(V) in PGL(V') and P’ as in Proposition 2.1.2,
the choice of p is unique, by construction. But there may be more than one definition for
P’, depending on the choice of the set X. We call the set map P’ a section of P, and p is
called a Schur multiplier for the section P'. By Remark 2.1.3, we will assume that a Schur
multiplier p satisfies p(1,1) = 1.
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Let now ¢: Vi — V5 be an isomorphism between two vector spaces. We have that conju-
gation by ¢ induces an group isomorphism from GL(V}) to GL(V%). Since this isomorphism
preserves the scalar matrices, it induce an isomorphism from PGL(V}) to PGL(V3).

Now we can define the notion of equivalence of projective representaitons.

Definition 2.1.4 (Projective equivalence). Let P;: G — PGL(V}) and P»: G — PGL(V3)
be two projective representations of a group G on K-vector spaces Vi and V5 respectively.
We say that P, and P, are projectively equivalent if exists isomorphism ¢: Vi — V5 such
that:

poPi(g)od ' = Pag),

for all g in G.

The next lemma show how projective equivalence and sections of projective representati-
ons are related.

Lemma 2.1.5. Let P,: G — PGL(V}) and P»: G — PGL(V4) be two projective representa-
tions. Let P{: G — GL(V}) and Py: G — GL(V}) be two sections for Py and Py, respectively.
Then the following statements are equivalent:

(a) Py and P, are equivalent projective representations

(b) There is a set map ¢: G — K* and a linear isomorphism ¢: Vi — V4, such that

(2.2) oP(g) = c(9)P5(9)¢, forallge G.

Proof. Let P and P, be equivalent projective representations. Then there exists an isomor-
phism ¢: V; — V; satisfying ¢ o Pi(g) 0 ¢~ = Py(g), for all g € G. Then, since conjugation
by ¢ commutes with canonical projections, we have my,(¢P(g)¢™!) = my,(Py(g)), for all
g € G. Therefore, for all g € G, there exists ¢(g) € K* such that:

oPi(g)0™" = c(g)P3(g).
Then, there is a set map c¢: G — K* satisfying (2.2).
Conversely, let P and P} satisfy (2.2) for some set map c¢: G — K* and an isomorphism
¢: Vi — Vs, Then, for all g € G we have:

P(g)p~" = my(¢P{(9)0™") = min(c(9) Pa(g)) = Pa(g)-

Therefore, P, and P, are equivalent projective representations. 0

Lemma 2.1.5 gives a new way to view equivalency of projective representations. So, if
we have P| and Pj two sections for two projective representations P: G — PGL(V}) and
Py: G — PGL(1%), respectively, that satisfy the equation (2.2), we will call P| and P
equivalent projective representations.

In particular, two linear representations 7: G — GL(V') and U: G — GL(WW) satisfying
(2.2) will be also called projecitively equivalent.

Definition 2.1.6 (Linear equivalence of p-representations). Let p be a 2-cocycle. Two p-
representations Py : G — GL(V) and P: G — GL(W) are linearly equivalent if there is an
isomorphism ¢: V' — W satisfying:

¢Pi(9)¢" " = Pa(g),

for all g € G.
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2.2. Schur multiplier and cohomology class. In this subsection we will discuss a little
more about the Schur multiplier and show how group cohomology appears naturally.

Let P: G — GL(V) be a projective reresentations with Schur multiplier p. From the
associativity of G, we have:

p(g, 1) p(gh, k) P(ghk) =p(g, h)P(gh)P (k)
P(g)P(h)P(k)
= p(h k)P (g)P(hk)
for all g, h,k € GG. Thus, for all g, h,k € G, we have p(g, k)p( ) = p(gh,k)p(g,h), or
equivalently:
p(h,k)p(gh, k)~ p(g, hk)p(g, h) ™" = 1.
Therefore, from the equation (1.2), we can conclude that a Schur multiplier p is a 2-cocycle
in Z2(G,K*).
Now, let @ and @' be two sections for a projective representation P: G — PGL(V'), and
p, p be their respective Schur multipliers. Then, for all g € G, @ and @’ satisfy 7(Q(g)) =

7(Q'(g)). Therefore, for each g € G there is f(g) € K* such that Q'(g) = f(9)Q(g). But for
all g, h € G, we have:

0'(g,h) f(gh)Q(gh) = p'(g, h)Q'(gh)

Thus, for all g,h € G, f, p and p’ satisfy
p'(g,0) = f(9)f(gh)~" f(h)p(g, D),

and hence it follows from equation (1.3) that p and p’ are cohomologous 2-cocycles. There-
fore, the cohomology class p of p is independent on the choice of the section () of P.

Definition 2.2.1 (Cohomology class associated). Let P: G — PGL(V) be a projective
representation and p a Schur multiplier of a section P': G — GL(V') of P. Then the coho-
mology class p of p is called the cohomology class associated to the projective representation
P and will be denoted by Cp.

Actually, we can prove that there is a section for any Schur multiplier. Precisely:

Proposition 2.2.2. Let P: G — PGL(V) be a projective representation with associated
cohomology class Cp € H*(G,K*) and let p € Z*(G,K*) be any 2-cocycle representative of
Cp. Then there is a section P': G — GL(V') for P such that its Schur multiplier is p.

Proof. Let P": G — GL(V) be any section for P and w € Z*(G,K*) its Schur multiplier.
Thus, since the cohomology class associated to P is independent of the section, we have
that p and w are cohomologous. Therefore, there is a set map f: G — K* such that
p(g,h) = f(g)f(h)f(gh)"*w(g, h), for all g,h € G. Then, for all g,h € G, we have:

P"(g)P"(h) = w(g, h)P"(gh) = f(9)~" f(h)~" f(gh)p(g, h)P"(gh).
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Thus, define the set map P': G — GL(V) by setting P'(g) = f(g9)P"(g), for all g € G.
Clearly P’ is a section for P with Schur multiplier p. O

Having introduced the concept of the cohomology class associated to a projective repre-
sentation, we can explain how projective representations and twisted group algebras are
related.

Definition 2.2.3 (Twisted group algebra). Consider a 2-cocycle p € Z?(G,K*). We define
the group algebra K,G to be the K-vector space with base {g € G} and multiplication given
by:

g- h = Oé(g, h)gh7
for all g, h € G, and extending linearly. We call K,G the twisted group algebra of G by p.

See [Kar85, Lemma 3.2.1] for a proof that K,G is well defined. It can be proved that two
2-cocycles p,w are cohomologous if, and only if, their corresponding twisted group algebras
K,G and K,G are isomorphic algebras (see [Kar85, Lemma 3.2.2]).

We also have the following theorem:

Theorem 2.2.4 ([Kar85, Theorem 3.2.5]). Let p be a 2-cocycle. Then there is a bijective
correspondence between p-representations of G and K,G-modules. This correspondence pre-
serves sums and bijectively maps linearly equivalent (respectively irreducible, completely redu-
cible) representations into isomorphic (respectively irreducible, completely reducible) modules.

Remark 2.2.5 (Existence of projective representations). Let p be a 2-cocycle. Taking K,G
to be the regular K,G-module, Theorem 2.2.4 allows us to conclude that there exists a
projective representation of G with associated cohomology class p. Therefore, since K,G
and K,G are isomorphic for cohomologous 2-cocycle p and w, we can conclude that for any
cohomology class ¢ € H*(G,K*), there is a projective representation associated to it.

2.3. Equivalent projective representations. Now we can prove that the associated co-
homology class is invariant up to projective equivalence.

Lemma 2.3.1. Let P: G — PGL(V}) and Q: G — PGL(V3) be two equivalent projective
representations. Then their associated cohomology classes are equal.

Proof. Let P': G — GL(V}) and Q": G — GL(V%) be two sections for P and @), respectively,
with respective Schur multipliers p and w. Then, by Lemma 2.1.5, there is an isomorphism
¢: Vi — V5 and a set map ¢: G — K* such that:

oP'(9)p " = c(g)Q'(9);
for all g € G. Then we have:

c(9)e(M)Q(9)Q'(h) = (c(9)Q'(9))(c(M)Q'(h))
= (0P (9)¢~")(@P'(h)o™")
= ¢P'(9)P'(h)o™"

= ¢p(g, h)P'(gh)¢™
= p(g, h)c(gh)Q'(gh)
= c(gh)w(g, h) 'p(g, h)Q'(9)Q'(h),
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for all g, h € G. Thus:
w(g, h) (g, h) = c(g)c(gh) e(h),

for all g,h € G, which implies that p and w are cohomologous. Therefore P and @) are
associated to the same cohomology class. 0

A question that arises naturally is whether classes of equivalence of projective represen-
tations are uniquely determined by a class of cohomology. For now we can only answer part
of the question:

Proposition 2.3.2 ([Kar87, Lemma 2.3.1(ii)]). Let P: G — PGL(V) be a projective repre-
sentation. Then the following statements are equivalent:

(a) The cohomology class associated to P is the trivial class;
(b) There is a linear representation T: G — GL(V') such that P is projective equivalent
to Q@ = moT, the projective representation induced by T

Proof. Supose that P is associated to the trivial cohomology class. Let P': G — GL(V') be
a section for P and p: G x G — K* be its Schur multiplier. Then the cohomology class p
given by the 2-cocycle p is trivial, by hypothesis. Therefore, there is a set map f: G — K*
such that:

plg.h)~™ = f(g)f(gh) " f(R),
for all g, h € G. Then, for all g, h € G, we have:

P'(g)P'(h) = p(g, h)P'(gh)
= f(g)"" f(gh) f(h)~'P'(gh)

=
(f(9)P"(9)(f(R)F'(h)) = f(gh)P'(gh)
Thus, defining the set map Q: G — GL(V') by setting Q(g) = f(g)P'(g), for all g € G, we

have, from the equation above:

Q(gh) = Q(g)Q(h),

for all g, h € GG. Therefore () is a group homomorphism, and hence, a linear representation
of G. But, since Q(g) = f(g9)P'(g), for all g € G, we have that @ is projective equivalent to
P’ (with isomorphism given by the identity map of V).

Conversely, let T: G — GL(V') be a group homomorphism such that P is equivalent to
Q = moT. Then, by Lemma 2.3.1, P and @) are associated to the same cohomology class.
But, since T is a section for () with Schur multiplier equal to the constant map 1, we have
that the cohomology class associated to @ is trivial. Therefore P is associated to the trivial
cohomology class. 0

3. CENTRAL EXTENSIONS

In this section, we will define what is a central extension of a group and study its relation
with cohomology groups.
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3.1. Central extension of a group.
Definition 3.1.1. An ezact sequence of groups is a sequence of group homomorphisms

1l—GoNa 2 Ing, o,

such that Im(f;—1) € Ker(f;) fori =1,...,n.
When the n above is equal to 2, we call the sequence a short exact sequence.

Definition 3.1.2. An extension of a group Q by the group N is a short exact sequence
1—-NLg %0 —1.

When G is a finite group, then we call the sequence a finite extension of the group Q.
When Im(f) is in the center of G, Z(G), that is, for each n in N, f(n) commutes with all
elements of GG, then we call the sequence above a central extension of the group Q.

Remark 3.1.3. Let 1 — N — G %5 Q — 1 be an extension. Because 7 is an injective
group homomorphism, we can assume N is a subgroup of G such that it is the kernel of
p. Therefore the main information about an extension are just the group G and the group
homomorphism p. That way, we denote this extension by (G, p). When the homomorphisms
are not so important to the context that we are discussing, we will also call G' an extension

of Q by N.

Example 3.1.4. Let V be a K-vector space. The exact sequence below is an example of a
central extension:

1 — K* -5 GL(V) -5 PGL(V) — 1,
where Yk € K*, §(k) is the dilation 6(k): v — kv and 7 is the canonical projection.

Remark 3.1.5. Let 1 — N L5 ¢ % Q — 1 be a central extension of the group
@ by the group N. Since Im(f) € Z(G), we have that Im(f) is an abelian group. Since
f: N — Im(f) is an isomorphism, we have that N must be an abelian group.

Definition 3.1.6 (Morphism of exact sequences). A morphism of exact sequences is a com-
mutative diagram of group homomorphisms:

! g

1 N-l-g-2-q 1
N
1 N1 10 1,

where each line is an exact sequence of groups. Such morphism is denoted by («, 3,7).

Definition 3.1.7 (Equivalent extensions). Let 1 — N LEG S Q—1andl —

N 2 Gy 25 Q — 1 be two extensions of the group @ by the group N. We say that
(G1,p1) and (Ga, ps) are equivalent if there is a morphism (Idy, 8, 1dg) of exact sequences:

i1

1 N G220 1

»

B8
1 N —2- G,

P2 Q 1
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Remark 3.1.8. Notice, by the Five Lemma ([Mac67, Lemma 3.3]), the homomorphism 3
of the definition above is a group isomorphism.

Remark 3.1.9. Its easy to see that the notion of equivalence of extensions is a reflective,
symmetric and, by the commutativity of the diagram, transitive relation. Therefore equiva-
lence of extensions is an equivalence relation.

3.2. Central extensions and 2"9-cohomology group. Now let us start to study the
relations between a central extension of a group @ by an abelian group N, and H*(Q, N).
We will show the known fact that, up to equivalence of extensions, central extensions and
28d_cohomology groups are essentially the same thing. We can find such results in [Kar85,
Chapter 2; Section 1].

Proposition 3.2.1. Let1 — N o QQ — 1 be a central extension of the group Q)
by the group N. Then the following statements are true:

(a) For each section f: Q — G of p (i.e, a map such that p o f = Idg) such that
f(1) =1, it is true that f(q)f(¢)f(qqd')~" € N, for all q,q' € Q. Therefore, the set
map pr: Q x Q — N is well defined by setting ps(q,q') = i (f(Q)f(d)f(qd)™),
where i~ Tm(i) — N is the inverse of the group isomorphism i, and p; is a 2-
cocycle;

(b) Let f, f': Q — G be two sections of p, satisfying f(1) = 1 = f'(1), and let pys, py
their respective induced 2-cocycles. Then py and py are cohomologous.

Proof. Let ¢: Ker() @ be the group isomorphism induced by p (i.e. the function defined

by setting ¢(g Ker( )) = p(g), for all g € G) and let f: Q — G be a section of p. Then we
have ¢(f(q) Ker(p )) = p(f(q)) = ¢, for all ¢ € Q). Since the extension is an exact sequence,
we have Im(i) = Ker(p), and therefore we have:

o(f(q) Im(i)) = q,

for all ¢ € Q.
Now let ¢,¢' € Q. Then we have:

¢(f(qq) Im(i)) = q¢' = »((f(q) Im(2))(f(¢') Im(2))) = »(f(q)f(¢") Im(i)).

Therefore, since ¢ is a bijection, f(qq’) Im( ) = f(q)f(¢") Im(i). Thus, for all ¢, ¢ € @, there
exist n € N such that f(q)f(¢')f(qq") " =i(n) and since ¢ is an injection, it follows that pf
is well defined.
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Now, since 7 is a homomorphism, Im(i) € Z(G) and N is abelian, we have:
ilps(rs)pslar )" pr(ars)os(a,r) ) =
= i(py(qr, S)_lpf(q, )" ps(a,rs)py(r, 5)
= i(ps(qr, s)) " "ilps(a,m) " ilps(g,5))ilps (1, 5))
(Pf(qTaS ) f(r) T (@7 (@) f(rs) flars) T i(ps (r, 5))
1ffJ?") Flar) f(r)=" f(rs) flars) ™ ilps(r, s))
)" f(rs) fars) Vi(ps(r, 5))
r) lilps(r,9)f(rs)f(ars)
) () () f(s) f(rs) " f(rs)

S

flgrs)™

for all ¢,r, s € . Thus, since N is abelian (by Remark 3.1.5) and i is an injection, we have,
for all ¢, 7, s € Q:

pf(T, 8)pf(qT7 S)_lpf(q’ Ts)pf(qv T)_l = ln.
And it is easy to see that pp(1,1) = 1. Therefore, ps is a 2-cocycle of ) on N. This
proves (a).

Let f, f': @ — G be two sections of p such that f(1) = 1 = f'(1), and let pys,pp
their respective induced 2-cocycles. Then, for all ¢ € @, we have ¢(f(q)1 ()) =gq =
¢(f'(¢) Im(7)) and thus, since ¢ is a group isomorphism, f(q)Im(i) = f'(¢) Im(i), for all
¢ € Q. Therefore f(q)f'(¢)~" € Im(:), for all ¢ € Q. Thus, define the set map f: Q — N
by setting f(q) = i (f(q)f' (¢)™"), for all ¢ € Q. Then, since 7 is a homomorphism, Im(i) <
Z(G) and N is abelian, we have:

i(ps(r,s)pp(r,s) 1) =ilps(r,9))i(pp(r,s))

for all 7,5 € Q. Then, since 7 is injective, we have ps(r, s)pp(r, )" = f(r)f(s)f(rs)", for

all r, s € (). Therefore p; and py are cohomologous. This concludes the proof. U

Proposition 3.2.1 shows us that for each central extension (G, p) of @ by N we have an
associated cohomology class that is idependent of the choice of a section for p. In this way,
we have the next definition:

Definition 3.2.2 (Cohomology class of central extension). Let (G, p) be a central extension
of ) by the normal group NV and ¢(g ) be the cohomology class of the 2-cocycle py: Q@ x Q —
N induced by any section f: Q@ — G of p. Then we call ¢, € H*(Q,N) the cohomology
class of the central extension (G, p).
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Proposition 3.2.3. Let1 — N A, G2 Q—1andl — N R Gy 25 Q) —> 1 be
equivalent central extensions of the group Q) by the abelian group N. Then their cohomology
classes ¢y p1)s CGaps) € H*(Q, N) are equal.

Proof. Since (G, p1) and (Gg, ps) are equivalent, there is a group isomorphism ¢: G; — Gs
such that is = ¢ 017 and p; = ps 0 ¢.
Let fi: @ — Gj be a section of py, such that fi(1) = 1, and define the set map fo: Q — G
by fo = ¢ o fi. Then we have:
p2ofa=prodofi=piofi=Idg.

Since ¢ is a group homomorphism, we also have fo(1) = 1. Therefore f, is a section of ps.
Thus, let ps, and py, be the 2-cocycles associated to f; and f, as in Proposition 3.2.1(a).
Then, since ¢, 71 and iy are group homomorphisms and ¢ o 7; = i3, we have:

pa(9:h) = iy ' (f2(9) fofolgh) )
=iy (¢(fr(9) fr(P) fr(gh) ™))
=iy ' dir(ps (9. 1))
=iy 'i2(p1, (9, 1) = pri (9. 1),
for all 7,s € Q). Hence py, = py, and ¢, p,) = C(Gopo)- O

By Proposition 3.2.3, the associated cohomology class is invariant up to equivalence of
central extensions.

Proposition 3.2.4. Let c € H*(Q, N) and p be a 2-cocycle representative of c. Define the set
G, = Q x N and the multiplication (r,n)(s,m) = (rs, p(r, s)nm), for all (r,n),(s,m) € G,,.
Then the following statements are true:
(a) Provided with the multiplication defined above, G, is a group with identity element
(1,1) and inverse given by (g,n) ' = (g%, p(g,g7 ") 'n"t), for all g,n € G,.
(b) The set maps u: N — G, and 7: G, — @, respectively defined by setting p(n) =
(1,n) and 7(q,m) = q, for all g € Q and n,m € N, are group homomorphisms such
that the sequence:

1—>NL>GPL>Q—>1,

is a central extension of Q by N with associated cohomology class ¢, r) € H?*(Q, N)
equal to c.

Proof. Since p is a 2-cocycle, we have:

((qa a) (Tv b))(57 C) =
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for all (¢, a), (r,
we have p(r 1

r,b), (s,c) € G,. Therefore the multiplication is associative. By Lemma 1.2.1,
)= p(1, )—p(l s) =1, for all r, s € Q. Then we have:

(¢:n)(1,1) = (g, p(
= (¢;n)
= (g, p(1,q)n)
= (1,1)(g,n),

for all (¢,n) € G,. Therefore (1,1) is an identity element of G,. Also by Lemma 1.2.1, we
have p(q,q ') = p(q¢ !, q), for all g € Q. Then we have:

q,p(g, 1)n)
q,
L,q

(¢,n) (" p(g,a7) ') = (qa7 ", plg, a7 )pla. ¢ ) 'an ™)
= (17 1)
= (¢ 'q,p(q " @)p(a. ) 'n 7 n)
= (¢ " p(g,a7 ") 'n7 (g, n),

for all (¢,n) € G,. Therefore (g,n)™' = (¢7*, p(g,g~')"'n71), for all g,n € G,. Therefore G,
is a group, proving (a).
Clearly 7 is surjective. Now, for all (r,n), (s,m) € G, we have
7((ryn)(5,m)) = (s, plr, synm) = 15 = 7(r,n)7 (5, m)

therefore 7 is a surjective group homomorphism. It’s easy to see that ker(7) = {(1,n) € G, :
n € N} = Im(u). Futhermore we have:

p(nm) = (1,nm)
= (L p(1, 1)nm)
= (Ln)(1,m)
= p(n)p(m),

for all n,m € N. And u(n) = (1,1) if, and only if, n = 1. Then u is an injective group
homomorphism. Also, since p(q,1) = p(1, q), for all ¢ € @, and N is abelian, we have
(1,7)(¢;m) = (g, p(1, g)nm)
= (q,p(q, 1)nm)
= (Q7m)(1’ n)’
for all ¢ € Q and n,m € N. Then Im(u) < Z(G,). Therefore 1 — N -5 G, > Q — 1
is a central extension of ) by N.

To complete the proposition, let the set map f: @) — G, be defined by setting f(q) =
(q,1), for all g € Q. Clearly f is a section for 7, and we have:

F@)f(s)f(rs)™ = (r, 1) (s, ) (s~ plrs, s~ ™) ™)

= (rs,p(r,s)1)(s7 '™, p(rs, s~ ™))
= (1, p(r,s)p(rs, s 'r Y p(rs, s 'r=1)™h
= (1,p(r, s)),
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for all 7, s € Q. Thus p~'(f(r)f(s)f(rs)~") = p= (1, p(r, s)) = p(r,s). Therefore ¢, = ¢
This concludes the proof.

Definition 3.2.5 (Induced central extension). Let p € Z%(Q, N). Then the central extension
(G, T) constructed as in Proposition 3.2.4 is called central extension induced by p.

Proposition 3.2.4 show us that for any cohomology class there is a central extension
associated with it. Now, let us see if that relation is one-to-one.

Lemma 3.2.6. Let | — N —5 G 25 Q — 1 be a central extension of the group Q by
the group N, f: Q — G be a section for p, such that f(1) =1, and let ps be its associated
2-cocycle as in Proposition 5.2.1(a). Let (G,;,7) be the central extension induced by py.
Then (G,p) and (G,,,T) are equivalent extensions.

G
Proof. Let ¢: m — () be the group isomorphism induced by p. Notice that, for all
m(7

g € G, we have ¢(f(p(g)) Im(i)) = p(g) = ¢(gIm(i)). Therefore, since ¢ is an isomorphism,
gf(p(g))~" € Im(i) for all g € G. Thus define the set map ¢: G — G, by setting ¢(g) =
(p(9),i *(gf(p(g))™")), for all g € G. Then ¢ is a group homomorphism. In fact, since i and
p are group homomorphisms, Im(i) € Z(G) and by the definition of ps, we have:

¢(gh) = (p(gh),i ' (ghf(p(gh))™))
= (p(g)p(h), i~ (ghf(p(g)p(h))™"))

= (p(g)p(h),i~ (hf( (h) "9 f(p(9))tilps(p(9), p()))))
= (p(g9)p(h), ' V)i

= (p(g), l(hf( ()N (R, (gf (p(9) ™"
= ¢(g)o(h),

for all g,h € G. We also have 7(¢(g)) = p(g), for all g € G and, since Im(i) = Ker(p) and
f(1) =1, we have

¢(i(n)) = (p(i(n)), i~ (i(n) f(p(i(n))) ™))
= (La ') f(1)7))
= (L3 '(i(n)))
= (Ln) = pu(n),
for all n € N. Therefore ¢ is a group homomorphism between G' and G, such that = ¢ o
and p = 70 ¢. We conclude that (G, p) and (G,,,7) are equivalent extensions. O

Lemma 3.2.7. Let p, w: QxQ — N be cohomologous 2-cocycles. Then their induced central
extensions 1 — N % , 5 Q — 1 and 1 — N 25 G, 2 Q — 1 of the group Q
by the abelian group N are equivalent.

Proof. By Lemma 3.2.6, it is sufficient to find a section f: @Q — G, for 7, such that f(1) =
(1,1) and ps(r,s) = p3 ' (f(r)f(s)f(rs) ") = p(r,5), for all r,s € Q.

Since p and w are cohomologous, there is a set mep ¢: Q — N such that p(r,s)

P(r)(s)(rs)tw(r,s), for all 7, s € Q. Thus define f: Q — G, by setting f(q) = (¢,v(q )):
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It is clear that f is a section for 7. Since p(1,1) = 1 = w(1,1), we have (1) = 1, thus
f(1) = (1,1). Since N is an abelian group, we have:

F)f(s)f(rs)™ = (r, () (s, 9(s)) (s~ w(rs, 8_17“_1)_11/1(7“8)_1)
= (rs,w(r, s)p(r)(s)(s™r wlrs, s ™) Th(rs) )
= (rss™ 7t w(rs, sTrw(r, 8)w(r)w(s)w(rs, s~r) " (rs) ™)
= (1, w(r, 8)w(r)w(s)w(rs) )
= (L, p(r,5))
= pi2(p(r, 8)),

for all r, s € Q. Therefore, since py is injective, we have p(r,s) = uy ' (f(r)f(s)f(rs)™1) =
p(r,s), for all r, s € Q. O

Theorem 3.2.8. Two central extensions, (G1,p1) and (G, p2), of the group Q by the abelian
group N are equivalent if, and only if, their associated cohomology classes c(a, p,), C(Gaps) €
H?*(Q,N) are equal.

Proof. The implication follows by Proposition 3.2.3. Conversely, let p, w: @ x @ — N be
two 2-cocycles induced by some sections of p; and ps, respectively. Then, since they are
representatives of the cohomology classes ¢, p), (G2 p2), TeSPectively, and since ¢, p,) =
C(Ga,p2)s We have that p and w are cohomologous.

Now, let (G,, 1) and (G,,, 72) be the two central extensions induced by p and w, respecti-
vely. By Lemma 3.2.6, we have (G4, p1) and (Go, p2) are equivalent to (G,, ) and (G, 72),
respectively. But, since p and w are cohomologous, by Lemma 3.2.7 we have that (G,, ) is
equivalent to (G, 7).

Therefore, since equivalence of extensions is an equivalence relation, we conclude that
(G1,p1) and (G, p2) are equivalent extensions. O

Let CExt(Q, N)/~ be the set of all equivalence classes of central extensions of the group
Q@ by the abelian group N. Essentially, Proposition 3.2.1 and Theorem 3.2.8 say that there
is a bijection
®: CExt(Q,N)/~ — H*(Q,N)

Such conclusion can be founded in [Kar85, Theorem 2.1.2].

4. REPRESENTATION GROUPS

Throughout this section let K be an algebraically closed field of characteristic zero and G
a finite group. For any group @, from now on we will fix the notation Q' = [Q, Q] for the
commutator subgroup of Q.

In this section, we will study the relation between central extensions and projective re-
presentations.

4.1. Representation group.

Definition 4.1.1 (Representation group). A representation group of G is a finite central
extension (G*,7) of G such that Ker(7) € (G*)" and Ker(7) =~ H*(G,K*).
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Our next result will be the proof that for any group G there exists a representation group.
But first we need to prove some lemmas that will be helpful for us.

Lemma 4.1.2. Let H be the group H*(G,K*). Then there exists I' € Z*(G, H) such that:
I': Hom(H,K*) — H*(G, H)
s an isomorphism, where [ is the function given in Definition 1.2.35.
Proof. By Theorem 1.2.2(c), we have that H is a finite abelian grup. Thus H is a direct
product of cyclic groups. Let @7,...,ay be generators of these groups, represented by the
2-cocycles aq, ..., ay, respectively, and ey, ..., eq € N their orders.
By Theorem 1.2.2(b), we can assume that for each i € {1,...,d}, a;(g, h) is an e;-th root

of 1 e K, for all g,h € G, and «;(1,1) = 1. There exists for each i a primitive e;-th root of 1,
that we will call w;. Then, for allie {1,...,d} and g, h € G, there is a;(g,h) € {0,...,e; — 1}

such that a;(g, h) = w™“"_ Since a; is a 2-cocycle, we have:
1= ai(h, k)ai(gh, k)" ai(g, hk)ai(g, h) ™"

ai(hk) —ailghk) jai(g:hk) —ai(g.h)

= W 7 i i

=
(4.1) a;(h, k) — a;(gh, k) + a;i(g, hk) — a;(g,h) =0 mod e;,

for all g, h, k € G. And since a;(1,1) = 1, it follows that a;(1,1) = 0, for all 4.
Now, define the set map I': G x G — H by setting

['(g,h) = a—1a1(g,h) .. .Oé—dad(g,h)’

for all g,h e G. Clearly, I is well defined. By (4.1), and the fact that a; has order e; for all
1, we have:

(4.2) [(g,W)T(gh, k)" T(g, hk)T (g, k)" = 1,
for all g, h7k € G And since az’(l, ]-) = 0, for all i, we have F(17 1) = 1. Therefore I'" e
Z*(G, H)

Let C' € H be an arbitrary cohomology class. Since H = {aq) X --- x {(ag), there is a
2-cocycle p representative of C' such that:

(4.3) p(g,h) = (ai(g, 1)) -+ (calg, )™ = (wit) 1M - (wge) o),
for all g,h € G, where x; € {0,...,e; — 1}, for each i € {1, ..., d}.
Define a group homomorphism «,: H — K* by setting a,(a;) = w;", foralli e {1,...,d}.
Then, for all g, h € G, we have:
a,(T(g, h)) = ap(a_l‘“(g’h) . .a—dad(g,h))
= (wfl)al(g,h) o (wgd)ad(gﬁ)

= p(g, h).

Therefore o, o I' = p. This proves that [ is surjective. But, by [Kar85, Corollary 2.3.9],
Hom(H,K*) and H are isomorphic, and hence they have the same number of elements.
Therefore I' is an isomorphism. U
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Lemma 4.1.3. Let G be a finite group and A, B < G be two abelian subgroups such that B
is a proper subgroup of A. Then the following statements are true:
(a) Let fo: B — K* be a group homomorphism. Then there exists a non-trivial group
homormophism fi: A — K* such that fi|g = fo.
(b) Let fo: AG'" — K* be a group homomorphism such that G' < Ker(fy). Then there
ezists a group homomorphism f1: G — K* such that fi|,o = fo.

Proof. Since K is an algebraically closed field, then K* is a divisible group. Then, (a) follows
from [Kar87, Lemma 2.1.6].
For (b), let fo: AG" — K* be a group homomorphism such that G' < Ker(fy). Define the
/

— K* by setting po(zG’) = fo(z), for all z € AG’. Since G' < Ker(fy),

this function is well defined. Furthermore, since f; is a group homomorphism, so is (.
!

set map q: ;

Now, since is a subgroup of el and both are abelian groups, we can apply the first

G
statement. Then there is a group homomorphism ¢ : o K> that is an extension of .

Therefore, define the set map fi: G — K* by setting f1(g) = ¢1(¢9G’). It’s easy to see that
f1 is a group homomorphism extending f. O

Now, we can prove the main result of this subsection:

Theorem 4.1.4 ([HH92, Theorem 1.2]). Let G be a group. Then there is a representation
group G* of G.

Proof. Let H = H*(G,K*). Let I' € Z?(G, H) be as in Lemma 4.1.2 and consider the central
extension of G by H
1—H-5Gr 5 G—1,

given in Proposition 3.2.4, i.e., the central extension of G by H induced by the 2-cocycle T'.
Define G* = Gr and let’s prove that G* is a representation group of G.
It is sufficient to prove that i(H) € (G*)'. Let’s identify H with ¢(H). Then, defining
Y = H n (G*)', it is sufficient to prove that Y = H.
Suppose that Y is a proper subgroup of H. By Lemma 4.1.3(a), there exists a non-
H

trivial group homomorphism f: H — K* such that Y < Ker(f). Since Y " HA Gy S
H(G*)/ : : *®\/ X 3
Gy and f is a group homomorphism, the set map fo: H(G*) — K* defined by setting
fo(zg') = f(x), for all z € H, ¢’ € (G*)', is a well defined group homomorphism satisfying
(G*) < Ker(fp). Then, by Lemma 4.1.3(b), there is a group homomorphism f;: G* — K*
such that f1|H(G*), = fo.

Now, for all g, h € G we have:

fi(g. 1) fu(h,1) = fi(gh,T(g. k) = f1((1,T(L, gh)~"T(g, 1)) (gh, 1)).
Since, for all g,h € G, we have (1,T(1,gh) 'T'(g, 1)) = i(I'(g, h)) and fi|ggey = fo, identi-
fying H with i(H), we have:

filg: D) fi(h, 1) = f(T(g, b)) fi(gh, 1),
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for all g,h € G. Then, define the set map ¢: G — G* by setting ¢(g) = (g, 1), for all g € G.
Let ¢ = fo¢p: G — KX, then, for all g, h € G we have:

foT(g,h) = o(g)p(h)p(gh) !

Therefore f oI is in the trivial cohomology class, i.e, f( f) = 1. Since [ is a group isomor-
phism, we have that f is equal to the trivial group homomorphism which is a contradiction.
Therefore Y = H, and the central extension is a representation group. O

You can notice that Lemma 4.1.2 is essential to prove the existence of a representation
group. But actually we can prove that for any representation group we have an associated
2-cocycle such as in Lemma 4.1.2. Precisely:

Proposition 4.1.5. Let (G*, 1) be a representation group of G, H = Ker(r) and let I': G x
G — H be a 2-cocycle representative of the cohomology class associated to the central exten-
sion (G*, 7). Then the group homomorphism

p: Hom(H,K*) — H*(G,K*)
giwen in Definition 1.2.3, is a bijection.

Proof. At first, without loss of generality consider G* to be the central extension of G by
H = H*(G,K*) induced by the 2-cocycle T":

1—wH-5 G5 G —1.

Let o € Ker(f’). Then, there is a set map ¢: G — K* such that, for all g, h € G we have

aol(g,h) = o(g)e(h)p(g, h) ™.
Define the function f: G* — K* by setting 5(g, p) = ¢(g9)a(p), for all (g, p) € G* = Gr.

Then f is a group homomorphism. In fact, for all (g, p), (¢, p') € G* we have:
9

B9, p)(d',P") = Blgg' . T(g.9")ppr)
= ¢(99")a(l'(g,9)pr")
= ¢(g9")a(I'(g,9'))e(p)(p’)
= (g)e(g)alp)alp’)
= B(g, 0B, p)-
Furthermore, for all p € H, we have B(u(p)) = a(p). Since pu(H) < (G*) and K* is an

abelian group, we can conclude o p is the trivial homomorphism. Therefore « is the trivial
homomorphism and [ is injective.

Since Hom(H, K*) and H have the same quantity of elements, we can conclude that T' is
a bijection. O

4.2. Representation groups and projective representations. Now, we will study the
relation between projective representations, linear representations and central extensions.
Precisely, we will study conditions on a central extension of a group G that ensure that
every projective representation of GG corresponds to a linear representation of this central
extension.
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Lemma 4.2.1. Consider a commutative diagram of group homomorphisms

such that each line is a short exact sequence. Then there is an unique group homomorphism
v: Q — Q such that yog = gop.

Proof. Let ¢': Q — G be a section for g. Define the set map v: Q — Q by setting v =
go [ og. Then, since it is an exact sequence, it follows that v is a group homomorphism.
The uniqueness follows from commutativity of the diagram. We leave the details for the
reader.

OJ

Corollary 4.2.2. Let 1 — N — G - Q — 1 be a central extension of groups and
let 1 — K* - GL(V) - PGL(V) — 1 be the central extension of Ezample 3.1.4.
Then, for all pairs of group homomorphisms T: G — GL(V) and a: N — K* such that
doa =T oi, there is a projective representation P: () — PGL(V) such that moT = P o p,
i.€, the following diagram commutes:

1 K* —2°

GL(V) —"=PGL(V) — 1.
Proof. The proof follows directly from Lemma 4.2.1. 0

The next step is to study the opposite direction, i.e., study when it is possible to find a
central extension (G, p) of @ by an abelian group N, such that, given a projective represen-
tation of @) there is a corresponding linear representation of the group G.

Lemma 4.2.3. Let 1 — N -5 G -2 Q — 1 be a central extension and P: Q) — Q be
a group homomorphism. Suppose that there is a section P': Q — G for P and a 2-cocycle
p€ Z*Q,N) satisfying

i(p(r,s))P'(rs) = P'(r)P'(s),

for allr,s € Q. If there is a homomorphism a: N — N of abelian groups and p € Z*(Q,N)
such that ccop = p, then there is a group homomorphism T': G, — G such that the following
diagram commutes:

1 N1t-a,—-Q 1
I
La A lP
oo Yy Py
1 N—-G-L1-Q 1,

where (G, T) is the central extension of @ by N induced by p.
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Proof. Define T': G, — G by setting T(¢g,n) = P'(q)i(a(n)), for all (¢,n) € G,. Then, since
i and « are group homomorphisms, a o p = j and Im(i) € Z(G), we have:
T((r,n)(s,m)) = T(rs, p(r,s)nm)
= P'(rs)i(a(p(r, s)nm))
=i(p(r,s)) ti(alp(r, s))i(a(n))i(a(m))P'(r)P'(s)
=i(p(r,$))"i(p(r, ) P (r)i(a(n)) P'(s)i(a(m))
= P'(r)i(a(n)) P'(s)i(a(m))
=T(r,n)T(s,m),

for all (r,n), (s,m) € G,. Therefore T' is a group homomorphism. And, since po P’ = P and
p o is the trivial map, we have:

p(T'(q,n)) = p(P'(q))p(i(a(n))) = P(q) = P(r(q,n)),
for all (¢,n) € G,-1 . Therefore poT = Por. O

Remark 4.2.4. Notice that Lemma 4.2.3 gives us a relation between projective representa-
tions of G and central extensions of G by K*. In particular, the fact that all homomorphism
of central extensions of G' by K* are isomorphisms (by Remark 3.1.8) corresponds to the fact
that we consider only isomorphisms of projective representations, as opposed to arbitrary
homomorphisms.

Definition 4.2.5 (Lifting). Let 1 — N —ﬁ» G- Q-—landl — N SINye RN Q —
1 be two central extensions. Let f: () — @ be a group homomorphism. A [lifting of f is a
morphism of exact sequence (a, f, f):

1 N-Lt-G-—1-Q 1
b
1 NG 1.0 1.

Theorem 4.2.6 ([HH92, Theorem 1.3, Theorem 1.4]). Let 1 — H -5 G* "5 G —> 1 be
a representation group. Then, for any projective representation P: G — PGL(V) there is a
lifting for P:

% GL(V) —> PGL(V) — 1.

Proof. Let I" be any 2-cocycle representative of the cohomology class associate to the repre-
sentation group. Then, by Proposition 4.1.5, we have that I' is an isomorphism.

Let 1 — H 5 Gr 5 G —> 1 be the central extension induced by I'. Since r
is an isomorphism, there exists a group homomorphism « € Hom(H,K*) such that the
cohomology class of avol is the cohomology class associated to P. Then, by Proposition 2.2.2,
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there exists a section P': G — GL(V) for P with Schur multiplier o o I". By Lemma 4.2.3,
there exists a lifting (o, 7", P):

% GL(V) — PGL(V) — 1.

Since two central extensions with the same associated cohomology class are equivalent, there
is a group isomorphism ¢: G* — G such that the following diagram commutes:

1 H- Yo" T @ 1

|, b
w !

1 H Gr —=G 1.

Define the group homomorphism 7: G* — GL(V) by T' = T" o ¢. Then it’s clear that
(a, T, P) is a lifting for P. O

Theorem 4.2.7. Let 1 — H % G* - G — 1 be a representation group of G,
a € Hom(H,K*) and T' a 2-cocycle representative of the cohomology class associated to
the representation group. Then:

(a) There is a bijection between projective equivalence classes of linear representations of
G* that acts on H by a and projective equivalence classes of projective representations
of G with associated cohomology class T'(c).

(b) There is a bijection between linear equivalence classes of linear representations of G*
that acts on H by a and linear equivalence classes of o o I'-representations of G.

Proof. Without loss of generality, consider (Gr, 7) to be the central extension induced by I'
in the place of (G*, 7).

Let P: G — PGL(V) and Q: G — PGL(W) be two projective representations and
(o, T, P) and (o, U, Q) their liftings, respectively. Define P': G — GL(V) and @Q’: G —
GL(W) by setting P'(g) = T(g,1) and Q'(g) = U(g,1), for all g € G. By Lemma 4.2.1, it Is
easy to see that P" and )" are sections for P and @), respectively. Furthermore

T(g,p) = T((9,1)(1,T'(g,1) 'p))
=T(g, )T (1u(p))
= a(p)P'(g),

for all (g, p) € Gr. The same calculations gives U(g, p) = a(p)Q'(g), for all (g, p) € Gr.
If P and @) are projectively equivalent, there exists an isomorphism ¢: V' — W and a set
map c: G — K> satisfying:

poP(g) oo™ = c(9)Q'(9),
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for all g € G. Then, for all (g, p) € Gr, we have:

¢poT(g,p)od™" =doalp)P(g)
= a(p)p o P'(g)
= a(p)c(9)Q'(9)
= c(9)U(g, p)-

Therefore T and U are projectively equivalent.
Conversely, suppose T and U are projectively equivalent. Then there exists an isomor-
phism ¢: V — W and a set map c: Gr — K* satisfying:

¢poT(g,p)od" =clg,p)Ul(g,p),

for all (g, p) € Gr. Define the set map d: G — K* by setting d(g) = ¢(g,1), for all g € G.
Then, for all g € G, we have:

o gb_l

ogbl

oP'(9)¢~" = pa(1)P'(9)¢"
= ¢T(g, 1) "
= c(g,1)U(g,1)
= d(9)Q'(g,1).
Therefore P and @) are projectively equivalent. This completes the proof of (a).

Now, suppose 1" and U linearly equivalent. Notice that P’ and )’ are (aol')-representations.
In fact:

P'(gh) = T(gh,1)
=T(g,1)T(h,1)T(1,T(g,h) 'T(gh, 1))
= P'(g)P'(M)Tu(T'(g,h))™"
= P'(g)P'(h)a(T(g, b)),
for all g,h € G. The same calculation give us Q’'(gh) = Q'(9)Q'(h)a(T(g,h))™", for all
g,h € G. Then the proof of (a), with ¢ equal the constant map to 1, shows that P’ and @’

are linearly equivalent.
The argument above may be reversed finishing the proof of (b). O

Let 1 — H % G* =5 G — 1 be a finite central extension. Then we will say that

such an extension satisfies the property of lifting of projective representations if it satisfies
the statement: for any projective representation P: G — PGL(V), there is a lifting for P

l—g—* . ogx— = . @ 1

U

1 K* —° GL(V) —> PGL(V) — 1.

Lemma 4.2.8. Let 1 — H %5 G* 5 G — 1 be a finite central extension that satisfies

the property of lifting of projective representations. Then |G*| = |G||H?*(G,K*)|.
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Proof. To simplify notation, we will identify H with its image p(H) and view p as the
inclusion map.

Let f: G — G* be a section for 7, such that f(1) = 1, and define I': G x G — H by
setting T'(g,h) = f(g)f(h)f(gh)~!, for all g,h € G. By Proposition 3.2.1, T is a 2-cocycle
representative of the cohomology class associated to 1 — H -5 G* 5 G — 1. Let r
be the function given in Definition 1.2.3. Since, by [Kar85, Corollary 2.3.9], Hom(H, K*)
and H are isomorphic, and hence | Hom(H,K*)| = |H|, to prove the theorem, it is sufficient
prove that T': Hom(H, K*) — H%(G,K*) is a surjective homomorphism.

Let c € H*(G,K*) and P: G — V be a projective representation with associated coho-
mology class C'p = ¢. There exists such a representation by Remark 2.2.5. Consider a lifting
of P:

% GL(V) —> PGL(V) —= 1.

Define P/ = T o f. Then P’ is a section for P such that, for all ¢, h € G:
P(g)P'(h) = T(f(g))T(f(h)) = T(f(g)f(R))
= T(I'(g, ) f(gh)) = o(T'(g, h)) P’ (gh).

Thus « o T is the Schur multiplier of P’. Therefore, there exists o« € Hom(H, K*) such that
['(a) = ¢. Hence T is surjective. O

Remark 4.2.9. Lemma 4.2.8 says that the smallest central extensions with the property of
lifting of projective representations are the representation groups.

Now we can prove an important characterization of the representation groups.

Theorem 4.2.10 ([Kar85, Theorem 3.3.7]). Let E : 1 — H % G* 5 G — 1 be a
finite central extension such that |G*| = |G||H*(G,K*)|. Then the following statements are
equivalent:

(a) E is a representation group of G.
(b) E has the property of lifting of projective representations.

Proof. The proof that (a) implies (b) follows by Theorem 4.2.6.

T

Conversely, suppose that 1 — H % G* - G — 1 has the property of lifting of
projective representations. The proof of Lemma 4.2.8 shows that there exists a 2-cocycle I'
representative of the cohomology class associated to the central extension (G*, 7), such that
the group homomorphism I': Hom(H,K*) — H%(G,K*) is a surjective homomorphism.
Since H and Hom(H,K*) are isomorphic groups and |HI||G| = |G*| = |G||H*(G,K*)],
we conclude that I is a group isomorphism. Thus, the same arguments of the poof of
Theorem 4.1.4 show us that 1 — H - G* - G — 1 is a representation group. 0J

Concerning the number of non-equivalent representation groups of G, we have the follo-
wing theorem:
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Theorem 4.2.11. Let G be a finite group and suppose we have group isomorphisms:
G
el = Tigy X oo X L, HY(G,KX) = Zg, X - X Ly, .

Then the number of non-equivalent representation groups of G is at most

[] (e dy),

0<i<n
0<j<m

where (e;,d;) is the greatest commom divisor of e; and d;.
Proof. See [Kar87, Theorem 2.5.14]. O

4.3. Perfect groups. In this section we will define perfect groups and universal central ex-
tensions, and prove that there exists, up to equivalence, only one universal central extension
for a perfect group, and such an extension is a representation group.

Definition 4.3.1 (Perfect group). A group G is called perfect group if G = G'.

Definition 4.3.2 (Universal central extension). Let £ : 1 — N — G — @ — 1 and
E:1— N-—G-— Q — 1 be two central extensions of Q. We say that £ covers
(respectively, uniquely covers) E if there exists a morphism (respectively, unique morphism)

of extensions:
f g

N G Q
b
1 N G Q 1.

If E uniquely covers every central extension of (), we say that F is a universal central
extension of Q).

Lemma 4.3.3. Let E : (G,7) and E : (G,7) be two central extensions of Q. Then the
following statements are true:

(a) Suppose that £ and E are universal extension. Then there exists a group isomorphism
¢: G — G such that p(Ker(1)) = Ker(7). ) i
(b) Suppose G is a perfect group. Then E covers E if and only E uniquely covers E.

Proof. Suppose E and E universal central extensions. Then there exist two unique morphisms:

1 ——Kerr¢ G—=Q 1
k]
] —=Ker 7= G —>Q 1,
and )
1 —— Ker7¢€ G—=Q 1
.
1 ——Ker ¢ G—=Q 1.

(Here all left vertical maps are the restriction of the middle vertical homomorphisms)
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By the commutativity of the diagram, we have 7 = 7o ¢ and 7 = 7 o ¢/. Thus we have
To¢ o¢p=r71. And we have the following morphism of central extension:

1 ——=Kerr¢ G—=Q 1

|

1 ——Ker7¢ G—=Q 1.

By uniqueness of the definition of universal central extension, we have ¢’ o ¢ = Idg. A
similar argument shows that ¢ o ¢’ = Ids. Therefore ¢ is a group isomorphism such that, by
commutativity of the diagram, ¢(Ker(7)) = Ker(7). This proves (a).

Now suppose that G is perfect and E covers E. Let p;i: G — G,i=1,2, be two group
homomorphisms such that 7o p; =7 = 7o y. Then, for all g € G, ¢1(g)p2(g) ' € Ker7 =
Z(G). Thus we have a group homomorphism ¢: G — Ker 7 defined by ¢(g) = ¢1(g)p2(g) 1,
for all g € G. Then, since ¢ is a group homomorphism and Ker 7 is an abelian group, we
have ¢([z,y]) = [¢(x), ¢(y)] = 1, for all 2,y € G, and hence G’ < Ker ¢. Since G' = G, we

conclude that ¢; = ps. O

It is well know that any group G can be written as G = F'/R, where F' is a free group
and R a normal subgroup of F. Identify G with F//R. Notice that R/[F, R] is a central
subgroup of F/[F,R]. In fact, for all r[F, R] € R/[F,R] and f[F, R] € F/[F, R], we have
that v fr='f~! € [F, R] and thus r f[F, R] = fr[F, R]. By third Theorem of Homomorphism,

F/|F, R]

we have m = F'/R. Therefore there exists a natural central extension of G:

1 — R/|F,R] — F/|F,R] — G — 1.
This extension has the following important property.

Lemma 4.3.4. Let G = F//R, where F is free. Let (B,T) be a central extension of C, with
A = Kert, and v: G — C be a group homomorphism. Then there exists a morphism of
extensions:

11— R/|F,R| — F/|R,F| — G ——1

| )
1 A B———C L.
Here the unmarked vertical map is the restriction homomorphis of § to R/[F, R].

Proof. Since F' is free and 7 is surjective, there exists a homomorphism f: F' — B such that
the following diagram commutes:

F——G
e
B—=C,

where the map F' — G is the canonical map given by its presentation.
Thus f maps R into Ker7 = A. We will show that [F,R] < Ker f. Let x € F,r € R.

Then we have:
f([z,r]) = [f(2), f(r)].
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Since f(r) € A and A is a central subgroup of B, we conclude that f([z,r]) = [f(x), f(r)] =
1. Therefore the generators of [F, R] are mapped to 1 by f, and hence [F, R] < Ker f.

Therefore f induces a group homomorphism S: F/[F, R] — B such that the following
diagram commutes:

1 ——> R/[F,R] —= F/[F,R] —= G ——~ 1 O
l .
1 A B C 1.

Before prove the main result of the subsection, we enunciate an important result of Schur.
Theorem 4.3.5. Let G = F/R, where F is free. Then H*(G,K*) = (F' n R)/|F, R].
Proof. See [Kar87, Theorem 2.4.6]. O

Let G be a perfect group and G = F/R, where F is free, and consider the central extension
1 — R/[F,R] — F/[F,R] — G — 1. Let g€ G = G'. Then there are h,h’ € G such
that g = [h,1']. Let x € 77 '(h) and y € 7 1(I'). Thus 7([z,y]) = [7(z),7(y)] = [h, I'] = g
Therefore G is the image of F'/[F, R], the commutator subgroup of F/[F, R]. Therefore,
the restriction of F'/[F, R] — G to F’/|F, R] induces a central extension
1— (F'nR)/|F,R] — F'/[F,R] — G — 1.

Naturally, 1 — R/[F, R] — F/[F, R] —> G — 1 is covered by 1 — (F'n R)/[F, R] —
F'/[F,R] — G — 1.
Theorem 4.3.6. Let G be a perfect group and let G = F/R, where F is free. Then
(a) 1 — (F' n R)/|F,R] — F'/[R,F| — G — 1 is a representation group of G and
a universal central extension.

(b) Let 1 — H — G* — G —> 1 be universal central extension. Then it is a
representation group of G.

Proof. Since H*(G,K*) = (F' n R)/|F, R], to show that

1— (F'nR)/|F,R| — F'/[F,R] — G —1
is a representation group it is sufficient to prove that F’/[F, R] is perfect group. The inclusion
F"/[F,R] < F'/[F,R] is obvious. Now let z,y € F'. Since G = F/R and G is a perfect

group, there exist fi, fo € F and r1,7, € R such that x = fir; and y = fary. Then, using
the identities,

[ab, c] = [a, c][[a, c], b][b, c] and
[CL, bc] = [av C] [a’ b][[a> b]v C]>
we have that:
[IL‘,y] = [flay][[fhy]vrl][rlvy] and
[f1, yl = [f1,rallf1, folllf1s fos o]

Therefore [z, y][F, R] € F"/[F, R], and hence F'/[F, R] is a perfect group.
We will prove now that 1 — (F' n R)/[F, R] — F'/[R, F] — G — 1 is an universal
central extension. Let (G*,7) be a central extension of G. By Lemma 4.3.4, using the
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identity map of G instead of ~y, we have that 1 — R/|F, R] — F/|F, R] —— G — 1 covers
(G*,7), and hence (G*, 1) is covered by 1 — (F' n R)/[F,R] — F'/[F,R] — G — 1.
By Lemma 4.3.3(b), we conclude that 1 — (F' n R)/[F,R] — F'/[F,R] — G — lis a
universal central extension. This completes the proof of part (a).

The proof of (b) is a direct consequence of (a) and Lemma 4.3.3(a). O

Notice now that Theorem 4.2.11 gives us that there exists a unique, up to equivalence,
representation group of a perfect group G, since G/G' = 1, and, by Theorem (b), this
representation group is equal to the universal central extension of G.

5. SYMMETRIC GROUP

Throughout this section we will work of the field of complex numbers C, instead of an
arbitrary field K, and study the projective representation theory of the symmetric group S,
and the Sergeev algebra.

5.1. Representation groups of symmetric groups. The purpose of this subsection is to
study the 2"d-cohomology group of the symmetric groups on C making it possible to list all
representation groups of the symmetric groups.

Let S,, be the symmetric group of degree n, and denote the transpositions (i i + 1) by ¢,
for all i € {1,...,n — 1}. A well known presentation for S, is:

Spo= Lty ooty | 8 =15 tity = ity ity = teoatitesn;
foralli,j,ke{l,...,n—1}, k<n—2and i — j| > 2).
Using the commutator of elements and the relation t? = 1, we can write the second and
the third relation as [t;,¢;] = 1 and (txtr1)® = 1, respectively. Thus, defining F to
be the free group generated by {ti,...,t,_1} and R to be the normal closure of the set
{t?a [tzatj]> (tkt/c-‘rl)g | i?j)ke {17”-’”_ 1}7 k< n_27 |Z_j| = 2}a we have Sn = F/R
Concerning the 2"4-cohomology group of S,,, we have:

Theorem 5.1.1. The 2™¢-cohomology group of S,, H*(S,,C), has order at most 2 and is
trivial for n < 3.

Proof. See [HH92, Theorem 2.7]. O

Let n = 3. We will construct two groups of order 2(n!), which will subsequently be proved
to be representation groups of S,. With one of these groups we will be able to establish a
lower bound for |H?(S,, C)|.

Definition 5.1.2. Let n > 3. We define S, to be the group with presentation given by:
Sp={2 oty |2 = (tatrn)® = (i) = 2; 22 = [z, 8] = 1
forall i,j,ke{l,....n—1}, k<n—2and |i — j| = 2).
And we define S, to be the group with presentation:
Sp =Lzt oty |12 = (i) = 22 = [2,t] = 1 (tit;)? = 2
foralli,j,ke{l,...,n—1}, k<n—2and |i — j| > 2).
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It is not clear, only by the definition above, that S, and S, have order 2(n!), since the
relations given in the presentation could impose z = 1, defining S,, instead. In order to prove
that |S,| = 2(n!) = |S,|, we begin with the following lemma:

Lemma 5.1.3. Let n = 3 be a positive integer and let m be the greatest integer less then

(n — 1)/2. Then there exists n — 1 complex square matrices of order 2™, My, ..., M, 1,
satisfying:

(5.1) M? =—1 (1<i<n-1),

(5.2) (M;Mjq) = 1 (1<j<n-2),

(5.3) (MpM,)? = -1 A<kl<n—1;k=1>2),

where I is the identity matriz of order 2™.

Proof. We will show just an outline of the poof, referring the reader to [Kar87, Lemma 2.12.2]
and [HH92, Proposition 6.1] for more details. Define the following 2 x 2 matrix:

PR ) A A RN A I T
Consider the tensor product of matrices ®. Define Xy = I, X; = A®™ and, for all k €
{1,...,m}:

Xop = A¥" " @QB@I® and Xy = A¥"F@C QI
where M® = M@ M ® ---® M, with tensor product applied r times in the right term.

Now, let o = 0 and take a family of complex numbers z; and y;, with i € {1,...,n — 1},
satisfying 22 | + y? = (—1)""! = 2z;9;. Then, define M; = z;_1X;_; + y; X;, for all i €
{1,...,n—1}. Those M;’s will satisfy (5.1), (5.2) and (5.3). O

Let G be the group generated by My, ..., M, ;. Defining a group homomorphism ¢: G —
S, by setting ¢(M;) = t;, for all i € {1,...,n — 1}, we will have =~ S,,. Therefore

|G| = 2(n!), since |{I,—1}| = 2.

Notice that the generators of G satisfy the same relation given in the presentation of S,,.
Thus G is a homomorphic image of S,. Therefore, since |S,| < 2(n!) = |G|, we conclude
1S, = 2(n)).

Now, define N; = iM;, for all j € {1,...,n — 1}. Therefore, by (5.1), (5.2) and (5.3), we
have:

{Iv_l}

Ni2:I (1<Z<7’L—1),
(NjNj)* =1 (1<j<n-—2),
(NpIN;)? = =1 (I<kil<n—1;k—1]>2).

Defining H to be the group generated by Np,..., N, 1, and repeating the same argument
as above, we conclude that H is isomorphic to S, and |S,| = 2(n!).

Also, notice that the presentations of S, and S, give us that {1, z} is a central subgroup
of S, and S,,. Therefore, the canonical projections

~

7S, —S, and 7:S,—> 9,
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give us two central extensions (S, 7) and (S,, 7).
We are able now to prove the following:

Theorem 5.1.4. Let n > 4. Then H*(S,,C) = Zy. Furthermore (S,,7) and (Sn,7) are
representation groups of Sy, non-isomorphic if, and only if, n # 6.

Proof. Notice that for both, S, and S,, we have (t;it;)* =z, for all i, j € {1,...,n — 1} and
i — j| = 2. For S,, since we have t;! = t;, for all i € {1,...,n — 1}, it is easy to see that
z = [ti,t;], foralli,j e {1,...,n—1} and |[i—j| = 2. For S, since 2% = L and t; ' = t;2 = 2t;,
for all i € {1,...,n — 1}, then we have

zZ = (tltj)z = tlt]tlt] = tzt]tzt]ZZ = tlt]tlzt]z = [ti,t]’],

~ A

for all 4,5 € {1,...,n — 1} and |i — j| = 2. Hence {1, z} is subgroup of (S,)" and (S,)".
Therefore, we just need to prove that H?(S,,C) = Z,, to prove that (S,,7) and (S%T’)
are representation groups of S,. Since |H?(S,,C)| < 2, it is sufficient to find a non-trivial
2-cocycle.

Fix the natural group homomorphim ¢: S,, — S, defined by setting ¢(z) = 1 and ¢(t;) =
t;, for all i € {1,...,n — 1}. It is clear that ¢ is surjective with kernel equal to {1, z}. Let
f: S, — S, be a section for ¢, such that f(1) = 1. Then, by Proposition 3.2.1, we have
that ps: S, x S, — {1,2} defined by ps(0,0") = f(o)f(c")f(oa’)7!, for all 0,0’ € S, is a
2-cocycle. Thus, there exists a set map a: S, x S, — {0,1} such that p;(c,0’) = 2%,
for all 0,0’ € S,. Define p: S, x S,, — C by setting p(c,0’) = (=1)*=?)_for all 0,0’ € S,,.
Since py is a 2-cocycle, so is p. We will prove that p is a non-trivial one.

First, notice that, since f(1) = 1, we have, for all o0 € S,,:

1= f(1) = floo™") = 27 Df(a) f(o™).
Thus we have
(5.4) flo)t =24 D™, forall o € S,.

Let s1,s3 € S, be the images of t1,t3 € S, under ¢. Then, by the presentation of S, and
(5.4), we have:

z = [ti,ts] = f(s1)f(s3)f(s1) 7" fs3) ™" = 2V f([s1, 83]) = 27,

where N = a(sy, s77) +a(ss, s3°) +a(s1, s3) +a(sis3, s;') +a(si1s35, ", s31). Therefore N = 1.
But, by definition of p, we have:

(5.5) — 1= p(s1,57")p(s3, 535 )p(s1, 53)p(s153, 57 )p(s18357 ", 55 )

Suppose that there exists a set map ¢: .5, — C, such that p is its coboundary. Then, by
(5.5), we have:

(5.6) —1=6(51)%(s3)%5(s;1)?0(s5 1)
Since (1) = 1, it follows from (5.6) that:
—1=p(s1,57")plss,557)".

This is a contradiction, since p takes values only 1. Therefore H?(S,,,C) = Zy and (S, T),
(Sn, ') are representation groups of S,,.
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To conclude the theorem, we have only to prove that (S~n, 7) and (gn, 7') are non-isomorphic
if, and only if, n # 6. Such a proof can be found in [HH92, Theorem 2.12]. O

Remark 5.1.5. Let n > 4. Since S, is a representation group for S, and H?(S,,C) = Zy, by
Proposition 2.3.2 and Theorem 4.2.7, we conclude that the projective representations of S,
are naturally partitioned into two sets, those projectively equivalent to linear representations
of S, and those corresponding to linear representations of S, with z acting by —Id. We call
those of the second type spin representations of .S,,.

Let n = 3. Since all permutation of S,, are products of transpositions we have that [0, o]
is an even permutation, for all o, 0’ € S,,. Therefore (S,,)" is a subgroup of A,,, the alternating
group of degree n. Furthermore, let (a b ¢) € S, be a 3-cycle. A simple calculation gives us
that (a b ¢) = [(a b),(a c¢)]. Therefore, since A, is generated by the 3-cycles (for n = 3),
we conclude that A, is a subgroup of (S,)". Hence (S,) = A, and (5”), > Zo.

Therefore, by Theorem 4.2.11, we have that there exist no more than 2 representation
groups for S,, when n > 4. By Theorem 5.1.4, we conclude that S, and S, are the only
representation groups for S,,, for n > 4 and n # 6.

Let a € Z2(S,,C) be a non-trivial 2-cocycle and consider its twisted group algebra C,.S,,,
given in Definition 2.2.3. We will denoted C,S,, by 7,. Therefore, by Remark 5.1.5 and
Theorem 2.2.4, we conclude that the study of projective representation of S, is equivalent
to representation theory of CS,, and 7,.

Remark 5.1.6. It is not hard to show that 7, and CS,/{z — 1) are isomorphic algebras.
Therefore, by the given presentation of S,, 7, can be defined as the algebra generated by
ty,...,t, subject to the relations:

— 1, (tjtj+1)3 =1, [thtj] =—1,

()

where 1 <i,j <n, and |i — j| = 2. See [Kle05, Section 13.1] for more details.
5.2. Digression on superalgebras.

Definition 5.2.1 (Vector superspace). A wvector superspace over K, is a Zo-graded K-vector
space V. = V5@ Vi, If m = dimVj and n = dim Vi, then we write sdimV = (m,n).
The elements of Vj are called even and elements of V5 are called odd. A vector v is called
homogeneous if is either even or odd and we denote its degree by |v| € Zs.

A subsuperspace of V' is a superspace W < V with grading W = (W n V5) @ (W n V5).
We say that such a W is homogeneous.

For any super vector space V', we define the parity reversed space I1V to be the super
vector space with the even and odd subspaces interchanged.

Let V be a superspace. Defining the linear map dy: V — V by setting oy (v) = (—1)"lv,
for all homogenious v € V', we can notice that a superspace W is a subsuperspace of V' if,
and only if, it is a subspace of V' stable under dy .
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Let W be another superspace. We can view the direct sum V@ W and the tensor product
V ® W as superspace in the following way:

(5.7) VeW),=VieoW;, (ieZ)
(5.8) VoW =(Vo®@Ws) ® (Vi®W;) and
(5.9) VeWw)=1;eW)®(ViWs).

We can see Homg(V, W) as a superspace by defining Homg(V, W); to be the linear maps
f: V. — W such that f(V;) € Wi, for all i,j € Z,. Elements of Homg(V, W)s and
Homy (V, W)j are called even and odd linear maps, respectively. The parity of a homogeneous
linear map f will be denoted by |f|. The dual superspace Homg (V, K) is denoted by V* and
called the dual superspace.

Definition 5.2.2 (Superalgebra). A superalgebra A is a vector superspace A = Aj @ Aj
with a bilinear multiplication such that A;A; < A, ;, for all 7, j € Zs.

A superideal of A is a homogeneous ideal Z of A. A superalgebra is called simple when
it has no non-trivial superideals.

A superalgebra homomorphism is an even linear map that is also an algebra homomor-
phism in the usual sense.

Let A and B be two superalgebras. We can view the tensor product of superspaces AQ B
as a superalgebra, by defining the multiplication:

(a®b)(d' ®V) = (~1)!"1"(aa’) @ (01),

for all homogeneous a,a’ € A and b,V € B.
An superalgebra A viewed only as an algebra is denoted by |A].
Now we are able to show three important examples.

Example 5.2.3 (Superalgebra M,, ). Let V be a superspace with sdim V' = (m,n). And
define M (V') to be Homg (V, V). By grading M (V') as the direct sum of even and odd linear
maps, and defining the multiplication to be the composition of maps, we can easily see that
M(V) is a superalgebra with sdim M(V) = (m? + n?, 2mn).

Also, let W be another superspace. It can be proved (see [Kle05, Example 12.1.1]) that:
(5.10) MOV)YQMW) = MV QW).

Since, up to isomorphism, the algebra M (V') does not depend on the supervector space V,
but only its superdimention (m,n) € V, we can identify M (V') with the matrix superalgebra
M. By (5.8), (5.9) and (5.10), we have

(511) Mn,m & Mk,l = Mkarnl,mlJrnk-

Example 5.2.4 (Superalgebra Q,,). Let V' be a vector superspace with sdim V' = (n,n) and
let J be an involution in Homg (V, V) of degree 1. We define the superalgebra Q(V, J) to be:

Q(V,J) = {f e Homg(V, V) | fJ = (-1)7 T f}

It is possible to show that the superalgebra Q(V, J) can be identified with the superalgebra
Q,, of all matrices of the form
A B
54
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where A and B are arbitrary n x n matrices.
By the definition of Q(V, J), (5.10) and (5.11), it is possible to show the following equi-
valences of superalgebras:

MOV)YRQW,J) = Q(V® W, Idy ®J) and
Minn @ Qi = Qingnk-
For more details see [Kle05, Exemple 12.1.2].
Example 5.2.5 (Clifford superalgebra Cl,,). Define the Clifford superalgebra Cl, to be the

superalgebra given by odd generators cy, ..., c,, subject to the relations
(5.12) =1 (1<i<n),
(5.13) cicj = —cjc; (1 <i#j<n).

Now we can define supermudules.

Definition 5.2.6 (Supermodule). Let A be a superalgebra. A (left) A-supermodule is a
vector superspace wich is a left A-module in the usual sense, such that A;V; < V;,;, for all
1,] € Zs. Right supermodules are defined similarly.
A subsupermodule of an A-supermodule is a subsuperspace which is A-stable. A non-zero
A-supermodule is irreducible (or simple) if has no non-zero proper A-subsupermodules.
We call an A-supermodule M completely reducible if any subsupermodule of M is a direct
summand of M.

A homomorphism f:V — W of A-supermodules V and W is a linear map such that
f(av) = (=D)Hllalg £ (v) (v e V, homogeneousa € A).

Notice that an A-supermodule M can be considered as a usual |A|]-module denoted by | M.
There exists an isomorphism of vector spaces between Hom 4(V, W) and Homj4 (|V], |W])
(see [Kle05, Lemma 12.1.5]). Let V be an irreducible A-supermodule. It might happen
that |V is a reducible |A|-module. In this case we say that V' is a supermodule of type Q.
Otherwise we say that V is of type M. By [Kle05, Lemma 12.2.1] an A-supermodule V' of
type Q is a direct sum of two non-isomorphic irreducible |.A|-modules.

The category of finite-dimensional A-supermodules will be denoted by A-smod. We have
the (left) parity change functor

IT: A-smod — A-smod,

where, for an object V', IIV is view as an A-supermodule under the new action defined by
a-v = (—1)l%qv, for all v € IIV and homogenecous a € A, where the juxtaposition denote the
original action of A on V.

When studying the representation theory of algebras, we come across two important
results: Schur’s lemma and Wedderburn’s Theorem. There are also analogous versions
of these results in the theory of supermodules, but taking into account the two types of
irreducible supermodules. For more detail statements see [Kle05, Lemma 12.2.2] and [Kle05,
Theorem 12.2.9].

Let A be a superalgebra. The result shown in [Kle05, Corollary 12.2.10] allows us to
construct a complete set of pairwise non-isomorphic irreducible |A|-modules from a com-
plete set of pairwise non-isomorphic irreducible A-supermodules. That way, we do not lose
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information in studying supermodule theory instead module theory, providing we keep track
of types of irreducible supermodules.

5.3. Sergeev and Hecke-Clifford superalgebras. Back to our main discussion of this
section, in this subsection we define two important superalgebras and explain how their
study is equivalent to the study of projective representation of S,,.

As shown in Subsection 5.1, studying 7,-modules is equivalent to studying spin represen-
tations of S,,. Furthermore, we have a superalgebra structure on 7,, defining the Z,-grading:

(Tn)o = span{g | g€ A}, (Ta)1 = span{g | g € Sp\A,},

where A, is the alternating group of degree n.

Definition 5.3.1 (Sergeev superalgebra). We define the Sergeev superalgebra Y, to be the
tensor product of superalgebras

Now, notice that there is a natural action of the group 5, on the generators ¢y, ..., ¢, of
the Clifford superalgebra CI,, by defining o - ¢; = ¢,(;. We can extend this action and define
a new algebra structure on the space KS,, ® Cl,,. Precisely:

Definition 5.3.2 (Heck-Clifford algebra). Let cq,..., ¢, be the generators of the Clifford
superalgebra. Identify 1® ¢; with ¢;, for all i € {1,...,n}, and 0 ® 1 with o, for all o € S,,.
Then we define the Heck-Clifford superalgebra H,, to be the smash product KS,, x Cl,,, where

OCi = Co(i)O,
forallie {1,...,n} and o € S,,, and extending linearly.
The algebra H,, is naturally a superalgebra by defining the Z,-grading:
(Hn)g =spanf{o | 0 € S}, (Hn)i =span{c; |i=1,...,n}.

It can be proved that Hecke-Clifford and Sergeev superalgebras are isomorphic, by the
isomorphism ¢: Y, — H,, defined by:

P(l®a) =c, (1<i<n),
1
o(t;) = —MSi(Ci = Cit1), (1<i<n-—1),

where the s; are the usual generators of S,, and the ¢; the generators of Sm given in Re-
mark 5.1.6.

It can be shown that Cl, is a simple superalgebra with a unique, up to isomorphism,
supermodule U,, of dimension 22 and type M, if n is even, and of dimension 2(**1/2 and
type Q, if n is odd (see [Kle05, Exemple 12.1.3]). Then, define the functors:

Sn: Tn-smod — H,-smod, V —V QU,,

&, Hy,-smod — Tp-smod, V +— Homgy, (Uy, V).
These functors define a Morita super-equivalence between the superalgebras H,, and 7, in
the sense of:

Lemma 5.3.3 ([Kle05, Proposition 13.2.2]).
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(a) If n is even, then §, and &, are equivalences of categories with

Sno®, =Id, 6,0%, =1d.

(b) If n is odd then §, and &, satisfy:

In this way, Hecke-Clifford and Sergeev superalgebras give us two new approaches to
studying spin representations of .S,,.
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