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Introduction

Categorification, a term introduced by Louis Crane and Igor Frenkel, is the process of re-
placing set-theoretic notions by their corresponding category-theoretic analogues. We replace
sets with categories, elements with objects, functions with functors, and equations with nat-
ural isomorphisms. The goal of categorification is to obtain extra structure on the original
object with which to study it. However, the opposite process, decategorification, wherein
isomorphic objects are identified as “equal”, is a more natural starting point of study as it
is easier to forget information than to create it.

Consider, for instance, a scenario1 set somewhere around the dawn of civilization where
a horse tamer wishes to gift two of his patrons an equal number of horses. He picks out the
horses to give away, and divides them into two groups. He then tries to verify that he is indeed
being fair to his patrons, attempting to construct an isomorphism by lining up each horse
in one group to a horse in the other. This, however, turns out to be quite a time-consuming
and confusing process since the horses refuse to stay still and reins hadn’t yet been invented.
But then, he thinks of a solution! Instead of trying to find an explicit isomorphism between
these two finite sets, he uses some abstract “counting system” consisting of “1”, “2”, “3”,
. . . , to “count” each group! No longer concerned with the fact that he is dealing with horses
at all, he has made the task easier by only remembering the necessary information. And
thus, by decategorifying the category of finite sets, we obtain the natural numbers N.

The first chapter of this paper provides the reader with the necessary background knowl-
edge in category theory – and of course, readers with prior knowledge of the subject may
wish to skip straight to Chapter 2. It is in Chapter 2 that we discuss one of the most nat-
ural ways to decategorify the information in a category – that of taking its corresponding
Grothendieck group2. Certain types of categories (additive, abelian and triangulated cate-
gories) lend themselves to the construction of Grothendieck groups in a natural way. We
discuss properties that these categories can have that give the Grothendieck groups nice
bases. Finally, in Chapter 3, we discuss categories with extra information (monoidal cate-
gories) whose Grothendieck groups (sometimes) have the structure of a ring, and conclude
by relating abelian categories to modules over a ring.

1This scenario is purely hypothetical. The authors make no claim as to whether the invention of N can
actually be attributed to a horse tamer.

2The Grothendieck group is named for Alexander Grothendieck, author of the modern mathematical
masterpiece Éléments de Géométrie Algébrique.
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Chapter 1

Categories

In this chapter, we first develop the definition of a category and provide examples of familiar
algebraic structures viewed as categories. Then, we examine some special objects and mor-
phisms that often exist in categories. Finally, we consider categories themselves as entities
with morphisms from one to the other, in the form of functors and natural transformations.

1.1 The Notion of a Category

Before we can give the definition of a category, we require some set theory. We would like
to define a structure that contains all sets, which begins with the following observation:

Proposition 1.1.1. There is no set which contains every set.

Proof. Suppose, on the contrary, that there exists some set X such that X is the set of all
sets. We know that for any set, there exists a subset consisting of elements of that set that
satisfy any given property. So there is a subset A = {x ∈ X | x /∈ x} ⊆ X. Since A is a set,
it is a member of X. Now if A ∈ A, then A /∈ A. But if A /∈ A, then A ∈ A. These two cases
are exhaustive and in both, we have A ∈ A and A /∈ A. This is, of course, a load of nonsense.
Thus, no such set X exists. This well-known result is called Russell’s Paradox .

Therefore, we need to define a new structure that is “large enough” to contain all sets.

Definition 1.1.2 (Class). A class is a collection of objects for which the following are true:

(a) All members of a class are sets.

(b) For any property P , there exists the class of all sets with property P .

(c) If C1, ..., Cn are classes, then the n-tuple (C1, ..., Cn) is a class.

(d) All sets are classes (and hence, all members of sets are sets).

(e) The largest class is called the universe, which we denote by U ; it is precisely the class
of all sets.
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In practice, the things we know about sets (subsets, unions, intersections, cartesian prod-
ucts, relations and functions) behave exactly the same way for classes. If a class is a set,
then we call it a small class . Otherwise, we say that the class is a proper class or large
class . Since a proper class is not a set, no proper class can be a member of a class. If we
now revisit Russell’s Paradox by considering U as the class of all sets, then the subclass
A = {x ∈ U | x /∈ x} ⊆ U does not cause any problems! The subclass A is simply the class
of all sets which are not members of themselves, and is a proper class.

Remark 1.1.3. A set can be viewed as a class by identifying each element with the set
containing precisely that element.

Definition 1.1.4 (Category). A category consists of a class Ob of objects and a class Mor
of morphisms (also called arrows) together with four assignments called domain, codomain,
identity and composition:

(a) Domain (respectively, codomain) is an assignment of the form Mor→ Ob that assigns
to every morphism f an object dom(f) (respectively, cod(f)). We write

f : a→ b or a
f−→ b

to mean that a morphism f satisfies dom(f) = a and cod(f) = b.

(b) Identity is an assignment of the form Ob → Mor that assigns to every object a a
morphism ida such that cod(ida) = a = dom(ida).

(c) We define the class K of composable morphisms to be a subclass of Mor×Mor that
consists of all pairs (g, f) such that dom(g) = cod(f). Composition is an assignment
of the form K → Mor that assigns to every pair (g, f) of composable morphisms a
new morphism g ◦ f such that dom(g ◦ f) = dom(f) and cod(g ◦ f) = cod(g). The
morphism g ◦ f is called the composite morphism of g and f .

In addition, the following axioms must be satisfied:

(CA1) Associativity : for any sequence of objects and morphisms of the form a
f→ b

g→ c
h→ d,

we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(CA2) Unit Law : for any morphism f : a→ b, we have idb ◦f = f = f ◦ ida.

When working with one or more categories in a specific context, we will write Ob C and
Mor C to respectively mean the objects and morphisms of the category C. For brevity, we
will sometimes use a common abuse of notation and write c ∈ C for c ∈ Ob C.

Definition 1.1.5 (Small category, large category). We say a category C is a small category
if Ob C and Mor C are sets. Otherwise, C is a large category .
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Definition 1.1.6 (Homomorphism class, locally small category). Let C be a category. We
define the homomorphism class from a to b to be

HomC(a, b) := {f ∈ Mor | dom(f) = a and cod(f) = b}.

We will often say hom-class for short and write Hom(a, b) if the category is understood. A
category whose hom-classes are, in fact, sets is called a locally small category .

Remark 1.1.7. The term hom-set appears in place of hom-class in some of the literature
(for instance, [15]), where different definitions of small and large categories are given. Since
for us, a hom-class is not necessarily a set, we will refrain from using the term hom-set.

Definition 1.1.8 (Subcategory, full subcategory). Let C and D be categories. Then, D is
a subcategory of C if the following hold:

(a) Ob D ⊆ Ob C.

(b) Mor D ⊆ {f ∈ Mor C | dom(f), cod(f) ∈ Ob D}.

(c) For all a ∈ Ob D, we have ida ∈ Mor D.

(d) If f, g ∈ Mor D and dom(g) = cod(f), then g ◦ f ∈ Mor D.

(e) Composition in D is given by composition in C.

Additionally, if HomD(a, b) = HomC(a, b) for all pairs (a, b) of objects in D, then D is a full
subcategory of C.

Examples 1.1.9. The following are examples of small categories:

(a) The empty category 0 has Ob = ∅ and Mor = ∅.

(b) The category 1 has Ob = {a} and Mor = {ida}.

(c) The category 2 has Ob = {a, b} and Mor = {ida, idb, a
f→ b}.

(d) The category 3 has Ob = {a, b, c} and the three identity morphisms along with three
non-identity morphisms arranged in a triangle as follows:

a

��

// b

c

@@

(e) The category � has Ob = {a, b} and Mor = {ida, idb, a
f→ b, a

g→ b}. We call f and g
parallel morphisms.
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Examples 1.1.10. The following are examples of large categories:

(a) Set is the category of sets, where the objects are all sets and the morphisms are all
functions between sets.

(b) FinSet is the category of finite sets, a full subcategory of Set.

(c) Grp is the category of groups, where the objects are all groups and the morphisms are
all group homomorphisms.

(d) Ab is the category of abelian groups, a full subcategory of Grp.

(e) Abfg is the category of finitely generated abelian groups, a full subcategory of Ab.

(f) FinAb is the category of finite abelian groups, a full subcategory of Abfg.

(g) Mon is the category of monoids, where the objects are all monoids and the morphisms
are all monoid homomorphisms.

(h) Ring is the category of rings, where the objects are all rings and the morphisms are
all (unity-preserving) ring homomorphisms.

(i) CRing is the category of commutative rings, a full subcategory of Ring.

(j) Given a ring R, the category R-Mod has all left modules over R as its objects and all
module homomorphisms between them as its morphisms.

(k) Given a field K, the category VectK has all vector spaces over K as its objects and all
K-linear transformations as its morphisms.

(l) Given a field K, the category FinVectK is the full subcategory of VectK consisting of
all finite-dimensional vector spaces over K.

Example 1.1.11. The category Rel has sets as its objects and binary relations as its
morphisms. If R and S are composable relations, then the composite relation is defined by

(a, c) ∈ S ◦R if and only if there exists b such that (a, b) ∈ R and (b, c) ∈ S.

For any object A, the identity morphism is the relation idA = {(a, a) | a ∈ A}.

Example 1.1.12. A discrete category is category such that every morphism is an identity
morphism (e.g. 1 is the discrete category with a single object). Note that every discrete
category is uniquely determined by its class of objects and, furthermore, every class X
defines the object class of a discrete category with Mor = {idx | x ∈ X}. A category C is
discrete if and only if every subcategory of C is a full subcategory.
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Example 1.1.13. Consider a small category C where Ob = {a} but where there may be
any number of nonidentity morphisms. Since the only object is a, any pair of morphisms f, g
satisfy cod(f) = a = dom(g) and so are composable. By CA1, composition is associative
and by CA2, the identity morphism acts as a left and right identity for composition. Hence,
Mor C is a monoid under composition. Indeed, given any object x in any small category, the
set Hom(x, x) is a monoid under composition.

Example 1.1.14. Let V be a class (recall that X ∈ V =⇒ X is a set). Then, EnsV is a
category1 where Ob = V and Hom(X, Y ) = {f | f is a function X → Y } for each pair (X, Y )
of sets in V . The identity morphisms are simply the identity functions and composition of
functions is interpreted in the usual way.

Definition 1.1.15 (Opposite category). For any category C, we define its opposite category
Cop to be the category with Ob Cop = Ob C and HomCop(A,B) = HomC(B,A) for every
pair (A,B) of objects – that is, for every morphism f : A → B ∈ Mor C we have the
corresponding morphism f op : B → A ∈ Mor Cop. Composition of morphisms in Cop is
given by f op ◦ gop = (g ◦ f)op and is defined precisely when g ◦ f is defined in C.

Definition 1.1.16 (Product category). Given two categories C and D, we define the product
category C × D to be the category whose objects are pairs (c, d) with c ∈ C and d ∈ D,

and whose morphisms (c, d)→(c′, d′) are pairs (f, g) of morphisms c
f→ c′ and d

g→ d′. The
identity morphism of (c, d) is simply (idc, idd) and composition of two morphisms

(c, d)
(f,g)→ (c′, d′)

(f ′,g′)→ (c′′, d′′)

is given by
(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

Definition 1.1.17 (Morphism category). Let C be a category. The morphism category of
C, denoted C→, is the category given by the following data:

(a) Ob C→ = Mor C

(b) HomC→(f, f ′) = {(g, g′) | g, g′ ∈ Mor C and f ′ ◦ g = g′ ◦ f}

(c) For any morphism f : a→ b, idf = (ida, idb).

(d) Composition is given by (g, g′) ◦ (h, h′) = (g ◦ h, g′ ◦ h′).

In other words, for any objects f : a→ b and f ′ : a′ → b′ in C→, a morphism (g, g′) : f → f ′

in C→ consists of a pair of morphisms g : a→ a′ and g′ : b→ b′ in C such that the following
diagram commutes:

a
f //

g

��

b

g′

��
a′

f ′
// b′

1This notation, which appears in [15], is likely to originate from ensemble, the French word for “set”.
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1.2 Objects & Morphisms

Now that we have plenty of categories to work with, we turn our attention to special objects
and morphisms that may exist in them. Many of these notions are similar to those in group
theory and ring theory, but there are sometimes subtle differences. One should be careful not
to simply gloss over a definition because it shares a name with a similar term in a different
context!

Definition 1.2.1 (Isomorphism, isomorphic objects). A morphism f : a → b is an isomor-
phism if there exists a morphism g : b → a such that g ◦ f = ida and f ◦ g = idb. We say
that g is the inverse of f and write g = f−1.

For any pair of objects (a, b), if an isomorphism f : a→ b exists, we say that a is isomorphic
to b and write a ∼= b.

Proposition 1.2.2. In any category we have the following:

(a) The composition of two isomorphisms is an isomorphism.

(b) Being isomorphic is an equivalence relation on the objects.

Proof. (a) Let f : a→ b and g : b→ c be isomorphisms. Then, we have (f−1 ◦g−1)◦ (g ◦f) =
ida and (g ◦ f) ◦ (f−1 ◦ g−1) = idc so g ◦ f is an isomorphism.

(b) Reflexivity is obvious (for any object a, ida is an isomorphism), and symmetry follows
directly from the definition. Suppose now that a ∼= b and b ∼= c. Then, there exist isomor-
phisms f : a → b and g : b → c. By (a), we have g ◦ f : a → c is an isomorphism, so a ∼= c,
proving transitivity . Therefore, the relation ∼= is an equivalence relation on the objects.

Remark 1.2.3. We say two morphisms f and g are isomorphic if they are isomorphic as
objects in the morphism category and write f ∼= g. Equivalently, we have f ∼= g if and only
if there exist two isomorphisms h and h′ such that f = h ◦ g ◦ h′.

In this paper, we will discuss several objects defined by a property that are unique up
to isomorphism. By this, we mean that all objects fulfilling the property are isomorphic.
Furthermore, all properties studied in this paper will be invariant under isomorphism —
that is, if a ∼= b, then a has the property if and only if b has the property. Thus, any
object that is unique up to isomorphism will be characterized by all the objects contained
in precisely one isomorphism equivalence class.

Definition 1.2.4 (Skeleton subcategory, essentially small category). A category D is a
skeleton subcategory of C if it has the following properties:

(a) The category D is a full subcategory of C.

(b) Every object in C is isomorphic to some object in D.

(c) No two distinct objects in D are isomorphic.

We will sometimes refer to a skeleton subcategory of C as simply a skeleton of C and denote
it by C. A category is essentially small if it has a small skeleton.
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Remark 1.2.5. Essentially small categories are locally small.

Example 1.2.6. (a) The category FinVectC of finite-dimensional vector spaces over the
complex numbers has a skeleton subcategory with objects {Cn | n ∈ N}.

(b) The category Abfg of finitely generated abelian groups has a skeleton subcategory with

Ob Abfg = {Zk ⊕ Zn1 ⊕ · · · ⊕ Znm | ni|ni+1 and k,m ∈ N}.

See [19, p. 338] for the group theory details.

Definition 1.2.7 (Initial/terminal/zero object). Let C be a category. We say that a ∈ C is
an initial object if for every object c ∈ C, there exists a unique morphism a→ c. Conversely,
b ∈ C is a terminal object if for every object c ∈ C, there exists a unique morphism c → b.
A zero object is an object that is both initial and terminal.

Remark 1.2.8. Note that an initial object in C is a terminal object in the opposite category
Cop, and vice versa. Hence, we say that initial and terminal objects are dual notions to
each other. When a certain type of object or morphism is dual to another, the details of
proofs involving them are often similar – one simply reverses the direction of the morphisms
involved. For this reason, we sometimes prove only one of the dual cases and remark that
the details of the other are analogous.

Lemma 1.2.9. The initial, terminal, and zero objects of a category, if they exist, are unique
up to isomorphism.

Proof. Suppose a and a′ are initial objects of a category C. Then there exists a unique
morphism f : a → a′ and a unique morphism g : a′ → a. Then, we have the composite
morphisms g ◦ f : a → a and f ◦ g : a′ → a′. But then, since there is exactly one morphism
a→ a and exactly one morphism a′ → a′, these composites must be the identity morphisms
of a and a′ respectively. Hence, a ∼= a′. The proof for terminal objects is analogous, and the
result for zero objects follows directly.

Examples 1.2.10. (a) A discrete category with more than one object has neither an
initial object nor a terminal object.

(b) In Set, the initial object is ∅ since for any set X, there is exactly one function ∅→ X.
The terminal object is {?}, a set containing one element, since for any set X there is
exactly one function X → {?}.

(c) In Grp and Ab, the zero object is the trivial group {ε}.

(d) In Rel, the zero object is ∅ since any relation that has ∅ as its domain or codomain
must be the empty relation.
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Definition 1.2.11 (Constant/coconstant/zero morphism). A morphism f : a → b is called
a constant morphism if for any object c and morphisms g : c → a and h : c → a we have
f ◦ g = f ◦ h. A morphism f : a → b is called a coconstant morphism if for any object c
and morphisms g : b → c and h : b → c we have g ◦ f = h ◦ f . A morphism that is both
constant and coconstant is called a zero morphism. We say a category has zero morphisms
if for every pair of objects (a, b), there exists a zero morphism, denoted 0a,b : a→ b.

Examples 1.2.12. (a) Constant morphisms in Set are precisely constant functions. Fur-
thermore, constant functions in any subcategory of Set are constant morphisms, but
there may be nonconstant functions that are also constant morphisms. For instance,
in the discrete subcategory of Set, all identity morphisms are constant.

(b) In Set, the only coconstant morphisms are the empty functions fX : ∅ → X for any
set X. Hence, for any set A 6= ∅ and any set B, a zero morphism 0A,B does not exist.
Thus, the category Set does not have zero morphisms.

(c) For any G,H ∈ Grp, the trivial homomorphism φ : G → H which sends all elements
of G to the identity element of H is the zero morphism 0G,H . Thus, the category Grp
has zero morphisms.

Proposition 1.2.13. If a category has zero morphisms, then we have the following:

(a) For every pair of objects (a, b), the morphism 0a,b is unique.

(b) For any morphisms f : a→ b and g : b→ c, we have 0b,c ◦ f = 0a,c = g ◦ 0a,b.

Proof. (a) Suppose 0′a,b : a→ b is also a zero morphism. Then, we have 0′a,b = 0′a,b ◦ ida =
0′a,b ◦ 0a,a = 0a,b ◦ 0a,a = 0a,b ◦ ida = 0a,b.

(b) By definition, 0b,c ◦ f = 0b,c ◦ 0a,b. We leave to the reader the verification that
the composition of two zero morphisms is again a zero morphism. By the uniqueness of
zero morphisms, we have 0b,c ◦ 0a,b = 0a,c and so 0b,c ◦ f = 0a,c, as desired. Analogously,
g ◦ 0a,b = 0a,c.

Lemma 1.2.14. If a category C has a zero object 0, then it has zero morphisms.

Proof. Let a, b ∈ C. By the definition of the zero object, there exist morphisms f : a → 0
and g : 0→ b. We claim that g ◦ f : a→ b is a zero morphism.

Suppose we have morphisms h : c → a and k : c → a. Since 0 is terminal, we have
f ◦ h = f ◦ k and hence, (g ◦ f) ◦ h = (g ◦ f) ◦ k. Thus, g ◦ f is constant.

The proof that g ◦ f is coconstant uses the fact that 0 is initial and is similar. Therefore,
g ◦ f is a zero morphism and thus, C has zero morphisms.

Definition 1.2.15 (Monomorphism, epimorphism, bimorphism, balanced category).
A monomorphism is a morphism m : b → c such that for any two morphisms f : a → b and
g : a→ b we have

m ◦ f = m ◦ g =⇒ f = g.
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An epimorphism is a morphism e : a → b such that for any two morphisms f : b → c and
g : b→ c we have

f ◦ e = g ◦ e =⇒ f = g.

We also say that a morphism is monic if it is a monomorphism or epic if it as an epimorphism.
A morphism which is both monic and epic is called a bimorphism . A category where all
bimorphisms are isomorphisms is called balanced.

Remark 1.2.16. The notions of monomorphisms and epimorphisms are dual to each other.
Every monomorphism in C is an epimorphism in Cop, and vice versa.

Remark 1.2.17. Categories can have morphisms that are not functions so in general, it
does not make sense to ask if a morphism is injective or surjective. If our morphisms are
functions with the usual composition, then any injective morphism is a monomorphism and
any surjective morphism is an epimorphism. The converse of these statements are not true.
Consider the following functions:

f : {1, 2} → {1} g : {1} → {1, 2}
1 7→ 1 1 7→ 1

2 7→ 1

With the usual identity functions and the usual composition, it is easily verified that C and
D are categories wherein Ob C = Ob D = {{1}, {1, 2}}, Mor C = {id{1}, id{1,2}, f}, and
Mor D = {id{1}, id{1,2}, g}. Indeed, f is a monomorphism in C (but not injective) and g is a
epimorphism in D (but not surjective).

Example 1.2.18. Set, Rel, and Grp are balanced categories. The category Ring is not
balanced. For example, we shall show that the inclusion function i : Z ↪→ Q given by i(x) = x

1

is a bimorphism that is not an isomorphism. Since i is injective, it is a monomorphism by
Remark 1.2.17.

Suppose now that for some ring R, there exist ring homomorphisms g : Q → R and
h : Q → R such that g ◦ i = h ◦ i. Then, g(x

1
) = h(x

1
) for all x ∈ Z. Furthermore, for

any integer x and nonzero integer y we have the following, recalling that the multiplicative
inverse commutes with ring homomorphisms:

h
(x

1

)
= g

(x
1

)
= g

(
y

1
· x
y

)
= g

(y
1

)
g

(
x

y

)
= h

(y
1

)
g

(
x

y

)
=⇒ h

(
x

y

)
= h

(y
1

)−1
h
(x

1

)
= g

(
x

y

)
=⇒ h = g.

Hence, i is an epimorphism and, thus, a bimorphism. It is not an isomorphism because
HomRing(Q,Z) = ∅ (suppose there is a ring homomorphism k : Q → Z; then 2k(1

2
) = 1,

which is a contradiction).

Lemma 1.2.19. Let C be a category that has zero morphisms. If g : b → c is a monomor-
phism and for some f : a→ b we have g ◦ f = 0a,c, then f = 0a,b.

9



Proof. Since g ◦ f = 0a,c = g ◦ 0a,b, we have f = 0a,b.

Lemma 1.2.20. Let C be a category that has a zero object 0. Then 0a,a = ida if and only if
a ∼= 0.

Proof. The verification is left to the reader.

Proposition 1.2.21. Let C be a category and let f : a→ b and g : b→ c.

(a) If g ◦ f is a monomorphism, then f is a monomorphism.

(b) If g ◦ f is an epimorphism, then g is an epimorphism.

(c) If g and f are monomorphisms, then g ◦ f is a monomorphism.

(d) If g and f are epimorphisms, then g ◦ f is an epimorphism.

(e) If g and f are bimorphisms, then g ◦ f is a bimorphism.

Proof. (a) Suppose g ◦ f is a monomorphism and let k : d→ a and j : d→ a be arbitrary
morphisms. We see that f ◦ k = f ◦ j =⇒ g ◦ f ◦ k = g ◦ f ◦ j =⇒ k = j and, hence, f is
monomorphism.

(b) Suppose g ◦ f is an epimorphism and let k′ : c → d, and j′ : c → d be arbitrary
morphisms. We see that k′ ◦ g = j′ ◦ g =⇒ k′ ◦ g ◦ f = j′ ◦ g ◦ f =⇒ k′ = j′ and, hence, g
is an epimorphism.

(c) Let f and g be monomorphisms and suppose there exist morphisms h : d → a and
h′ : d→ a such that (g ◦ f) ◦ h = (g ◦ f) ◦ h′. Then, by associativity of composition, we have
the following:

g ◦ (f ◦ h) = g ◦ (f ◦ h′) =⇒ f ◦ h = f ◦ h′ =⇒ h = h′

(d) The proof is similar to part (c).
(e) The statement is a direct consequence of parts (c) and (d).

Definition 1.2.22 (Split monomorphism/epimorphism). A morphism f : a → b is a split
monomorphism if there exists a morphism g : b → a such that g ◦ f = ida. A morphism
f : a→ b is a split epimorphism if there exists a morphism g : b→ a such that f ◦ g = idb.

Lemma 1.2.23. A morphism f : a → b is an isomorphism if and only if it is both a split
monomorphism and a split epimorphism.

Proof. The forward implication is clear. For the reverse implication, let g : b → a and
h : b → a be the morphisms satisfying g ◦ f = ida and f ◦ h = idb. Then, we have g =
g ◦ idb = g ◦f ◦h = ida ◦h = h. We conclude that f is an isomorphism with g = h = f−1.

Lemma 1.2.24. Split monomorphisms are monomorphisms and split epimorphisms are epi-
morphisms.

10



Proof. Suppose f : b→ c is a split monomorphism and that there exist morphisms g : a→ b
and h : a→ b satisfying f ◦ g = f ◦ h. Then, by definition, there exists a morphism j : c→ b
such that j ◦ f = idb, giving us the following:

g = idb ◦g = j ◦ f ◦ g = j ◦ f ◦ h = idb ◦h = h.

Hence, f is a monomorphism. The proof that split epimorphisms are epimorphisms is similar.

Definition 1.2.25 (Kernel). Let C be a category that has zero morphisms. A kernel of
a morphism f : a → b, denoted ker(f), is a morphism k : c → a that satisfies the following
conditions:

(a) f ◦ k = 0c,b.

(b) For any morphism k′ : d → a such that f ◦ k′ = 0d,b, there exists a unique morphism
g : d→ c such that k ◦ g = k′.

This statement can be summarized by the following commutative diagram:

c k //

0c,b

��
a

f // b

d

g

OO
k′

@@

0d,b

88

Lemma 1.2.26. Let C be a category that has zero morphisms. If the kernel of a morphism
exists, then the kernel is a monomorphism.

Proof. Let f : a → b be a morphism that has a kernel k : c → a. Suppose that there exist
morphisms g : d → c and h : d → c such that k ◦ g = k ◦ h. Then, f ◦ k ◦ g = 0c,b ◦ g = 0d,b
and hence, there exists a unique morphism n : d→ c such that k ◦ g = k ◦n. By uniqueness,
we have g = n = h.

Lemma 1.2.27. The kernel of a morphism is unique up to isomorphism.

Proof. Let f be some morphism and suppose ker(f) and ker(f)′ are kernels of f . By defini-
tion, there exists a unique morphism g such that ker(f)◦g = ker(f)′ and a unique morphism
g′ such that ker(f)′ ◦ g′ = ker(f). We have

ker(f) ◦ (g ◦ g′) = ker(f) and ker(f)′ ◦ (g′ ◦ g) = ker(f)′.

By Lemma 1.2.26, we note that g ◦ g′ and g′ ◦ g are identity morphism since a kernel is
a monomorphism. In particular, g is an isomorphism and, thus, ker(f) ∼= ker(f)′ since
idcod(ker(f)) ◦ ker(f) ◦ g = ker(f)′.

11



The kernel is an example of an object with a universal property . Objects with universal
properties are always unique up to isomorphism. Henceforth, when an object has a uni-
versal property, we will take for granted that it is unique up to isomorphism, and that the
justification would be similar to that of the previous proof.

Example 1.2.28. Consider the morphism f : Z × Z → Z in Ab given by f(z, w) = z. We
have ker(f) ∼= k where k : Z → Z × Z is given by k(z) = (0, z). Uniqueness in the second
condition of Definition 1.2.25 is important. The morphism h : Z × Z → Z × Z given by
h(z, w) = (0, z) satisfies the first condition of Definition 1.2.25 but fails the second because
there is more than one morphism g : Z×{0} → Z×Z satisfying h◦g = k (for instance, both
g1(z, 0) = (z, 0) and g2(z, 0) = (z, z) suffice).

Proposition 1.2.29. The kernel of a homomorphism in Grp coincides with the traditional
group theory kernel.

Proof. Let f : A → B be a group homomorphism. Let C = {a ∈ A | f(a) = 0B}, which is
the traditional kernel and hence a normal subgroup of A. We claim that ker(f) ∼= i where
i : C ↪→ A is the inclusion map. Obviously, f ◦ i = 0C,B. Suppose there is some k : D → A
such that f ◦ k = 0D,B. Then, k(D) ⊆ C. Hence, i ◦ k̃ = k where k̃ : D → C is defined by
k̃(z) = k(z). The uniqueness of k̃ follows from the fact that i is injective and thus monic.

Henceforth, when working in Grp (or any other category with an algebraic notion of
“kernel”, such as Ab, VectK and R-Mod), if ker(f) denotes an object, then we are implicitly
referring to the object C defined above and assuming the inclusion map.

Example 1.2.30. If C has a zero object 0, then for any a ∈ C, ker(ida) ∼= 00,a.

Definition 1.2.31 (Cokernel). Let C be a category that has zero morphisms. The cokernel
of a morphism f : a→ b is a morphism k : b→ c, denoted coker(f), such that

(a) k ◦ f = 0a,c

(b) For any morphism k′ : b → d such that k′ ◦ f = 0a,d, there exists a unique morphism
g : c→ d such that g ◦ k = k′.

This statement can be summarized by the following commutative diagram:

a
f //

0a,c

��

0a,d
��

b k //

k′

��

c

g
xx

d

12



1.3 (Co)products, Pullbacks & Pushouts

In this section, we present the general notion of products and coproducts that may exist
in an arbitrary category. The reader is likely to be already familiar with some specific
cases. Understanding these objects will be important in the study of Grothendieck groups,
particularly the split Grothendieck group of an additive category.

Definition 1.3.1 (Binary product). Let a and b be objects in a category. An object is a
binary product of a and b, which we denote by a∏b, if there exist morphisms pa : a∏b → a
and pb : a∏

b→ b satisfying the property that for every object c and every pair of morphisms
fa : c→ a and fb : c→ b, there exists a unique morphism f : c→ a

∏
b such that the following

diagram commutes:
c

f
��

fa

}}

fb

!!
a a

∏
b

paoo pb // b

We will sometimes denote a binary product of a and b as a triple (a∏b, pa, pb) to emphasize
the morphisms pa and pb.

Lemma 1.3.2. The binary product is unique up to isomorphism.

Proof. This follows directly from the universal property.

Lemma 1.3.3. In a category with zero morphisms, if (a∏b, pa, pb) is a product of a and b,
then the morphisms pa and pb are split epimorphisms.

Proof. There exists a unique morphism f that makes the following diagram commute:

a

f
��

ida

}}

0a,b

!!
a a

∏
b

paoo pb // b

Hence, pa ◦ f = ida and so pa is a split epimorphism. Similarly, one can show that pb is a
split epimorphism.

Lemma 1.3.4. If an object c is terminal, then a ∼= a∏c for all objects a.

Proof. Suppose c is terminal. Let a and b be an arbitrary objects and let fa : b → a and
fc : b → c be arbitrary morphisms. For every object d, denote the unique morphism from
d→ c by cd. Note that fa makes the following diagram commute (since ca ◦ fa = cb = fc):

b

fa

��

fa

��

fc

��
a a

idaoo ca // c

Suppose some morphism g : b→ a also makes this diagram commute. Then g = ida ◦g = fa.
Hence, a is a product of a and c and, thus, a ∼= a

∏
c.

13



Remark 1.3.5. The converse of the preceding lemma need not be true. For example, take
the full subcategory of Set where the only objects are countably infinite sets; there is no
terminal object and yet a∏Z ∼= Z for any object a.

Lemma 1.3.6. Let C be a category and a, b, c ∈ C. Then, we have the following:

(a) Product is commutative up to isomorphism. That is, if a∏
b exists, then a

∏
b ∼= b

∏
a.

(b) Product is associative up to isomorphism. That is, if a∏b, b∏c, and (a∏b)∏c exist,
then (a∏

b)∏
c ∼= a

∏ (b∏c).

Proof. (a) This follows immediately from the symmetry in the definition of product.
(b) Fix products (a∏b, pa, pb), (b∏c, p′b, pc), and ((a∏b)∏c, pa∏

b, p
′
c). Since products are

unique up to isomorphism, it suffices to show that (a∏
b)∏

c is a product of a and b
∏
c.

For any ha : d → a and hb∏ c : d → b
∏
c there are unique morphisms g : (a∏

b)∏
c → b

∏
c,

f : d→ a
∏
b and r : d→ (a∏

b)∏
c such that the following diagrams commute:

(a∏
b)∏

c

g

��

pb◦pa∏
b

��

p′c

��
b b

∏
c

p′boo pc // c

d

f

��

ha

��

p′b◦hb
∏

c

��
a a

∏
b

paoo pb // b

d

r

��

f

��

pc◦hb∏
c

��
a
∏
b (a

∏
b)

∏
c

pa
∏

boo p′c // c

We note that

p′b ◦ (g ◦ r) = pb ◦ pa∏
b ◦ r = pb ◦ f = p′b ◦ hb∏ c

and

pc ◦ (g ◦ r) = p′c ◦ r = pc ◦ hb∏ c.

Hence, hb∏ c = g ◦ r and the following diagram commutes:

d

r

��

ha

��

hb
∏

c

��
a (a

∏
b)

∏
c

pa◦pa∏
boo g // b

∏
c

Furthermore, if some r′ : d→ (a∏b)∏c satisfies (pa ◦pa∏
b)◦r′ = ha and g ◦r′ = hb∏ c. Then,

pa ◦ (pa∏
b ◦ r′) = ha = pa ◦ f and pb ◦ (pa∏

b ◦ r′) = p′b ◦ g ◦ r′ = p′b ◦ hb∏ c = pb ◦ f.

Hence, f = pa
∏
b ◦ r′. Then, since we also have p′c ◦ r′ = pc ◦g ◦ r′ = pc ◦hb∏ c, the uniqueness

in the product diagram for (a∏
b)∏

c yields r = r′. Therefore, (a∏
b)∏

c ∼= a
∏ (b∏c).
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Definition 1.3.7 (Binary coproduct). Let a and b be objects in a category. An object is
the binary coproduct of a and b, and is denoted a

∐
b, if there exist morphisms ia : a→ a

∐
b

and ib : b→ a
∐
b satisfying the property that for every object c and every pair of morphisms

fa : a→ c and fb : b→ c, there exists a unique morphism f : a∐
b→ c such that the following

diagram commutes:
c

a
ia //

fa

==

a∐b
f

OO

b
iboo

fb

aa

As with the product, we will sometimes denote a binary coproduct as a triple (a∐
b, ia, ib)

to emphasize the morphisms ia and ib.

Remark 1.3.8. The dual notions of the preceding results for the product hold for the
coproduct. Coproduct is also unique up to isomorphism, as well as associative and com-
mutative up to isomorphism. In a category with zero morphisms, the morphisms ia and ib
in Definition 1.3.7 are split monomorphisms. If c is an initial object, then a

∐
c ∼= a for all

objects a.

Example 1.3.9. Let A,B ∈ Set. Then the product of A and B is the cartesian product
A × B and the coproduct is the disjoint union A∪̇B = {(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B}.
Define π1 : A×B → A and π2 : A×B to be the usual projection maps. Define ι1 : A→ A∪̇B
and ι2 : B → A∪̇B to be the usual inclusion maps. For any set X and any functions
fa : X → A and fb : X → B, define:

f : X → A×B,
x 7→ (fa(x), fb(x)).

For any functions ga : A→ X and gb : B → X, define g : A∪̇B → X by:

g(x) =

{
ga(x) if x is of the form (a, 0), a ∈ A,
gb(x) if x is of the form (b, 1), b ∈ B.

This gives us the following commutative diagrams:

X

f
��

fa

{{

fb

##
A A×Bπ1oo π2 // B

X

A
ι1 //

ga
<<

A∪̇B

g

OO

B
ι2oo

gb

bb

We leave the verification that f and g are unique to the reader.

Definition 1.3.10 (Pullback square, pullback). Let f : X → Z and g : Y → Z be morphisms
with a common codomain. A pullback square is a commutative square consisting of an object
P and morphisms p1 : P → X and p2 : P → Y :

P

p1
��

p2 // Y

g
��

X
f
// Z
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such that for any commutative square of the form

Q

q1
��

q2 // Y

g

��
X

f
// Z

there exists a unique morphism k : Q→ P which makes the following diagram commute:

Q
k

��

q2

""
q1

��

P

p1
��

p2 // Y

g
��

X
f
// Z

We call X
p1← P

p2→ Y a pullback of X
f→ Z

g← Y wherein p1 is the pullback of g along f and
p2 is the pullback of f along g.

Definition 1.3.11 (Pushout square, pushout). Let f : Z → X and g : Z → Y be morphisms
with a common domain. A pushout square is a commutative square consisting of an object
P and morphisms i1 : X → P and i2 : Y → P :

P Y
i2oo

X

i1

OO

Z
f
oo

g

OO

such that for any commutative square of the form

Q Y
j2oo

X

j1

OO

Z
f
oo

g

OO

there exists a unique morphism u : P → Q which makes the following diagram commute:

Q

P

u

__

Y
i2oo

j2
kk

X

i1

OOj1

SS

Z
f
oo

g

OO

We call X
i1→ P

i2← Y a pushout of X
f← Z

g→ Y wherein i1 is the pushout of g along f and
i2 is the pushout of f along g.
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Lemma 1.3.12. Pullbacks of kernels are kernels.

Proof. We use the objects and morphisms as defined in Definition 1.3.10. Let A ∈ C and
h : Z → A be a morphism. We will show that if f ∼= kerh (given that p2 is the pullback of
f along g and p1 is the pullback of g along f), then p2 ∼= ker(h ◦ g).

Let K be an object and k2 : K → Y be a morphism such that h◦g◦k2 = 0K,A. Then, since
f ∼= kerh, there is a unique morphism k1 : K → X such that k2 ◦ g = k1 ◦ f . By the pullback
property, there is a unique morphism k which makes the following diagram commute:

K
k

  

k2

##

k1

��

0K,A

��

P

p1
��

p2 // Y

g
��

X
f
//

0X,A ++

Z
h

��
A

Since the composition of a zero morphism with any morphism is again a zero morphism, we
have that h ◦ f ◦ p1 = 0X,A ◦ p1 = 0P,A and hence h ◦ g ◦ p2 = 0P,A. Since K and k2 were
arbitrary, we see from the above diagram that p2 ∼= ker(h ◦ g), as desired.

Lemma 1.3.13. Pushouts of cokernels are cokernels.

Proof. The proof, which is dual to that of the previous lemma, is left to the reader.

1.4 Subobjects & Simple Objects

The reader is already familiar with the structure of many subobjects for specific categories
including subsets in Set, subgroups in Grp and subrings in Ring. In this section, we will
use morphisms to define the notion of a subobject of an object in an arbitrary category. The
notion of subobjects will be important for when we present the Jordan-Hölder Theorem.

Definition 1.4.1 (Subobject). Let C be a category and let a ∈ C. We define the following
preorder on {k ∈ Mor C | cod(k) = a}:

If f : b→ a and g : c→ a are monomorphisms, then

f ≤ g ⇐⇒ there exists a monomorphism h : b→ c such that f = g ◦ h.

If f ≤ g and g ≤ f , we write f ≡ g. An equivalence class of the relation ≡ is called a
subobject of a.
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Remark 1.4.2. For some special categories like Set and Grp, we identify each subobject
with a distinct object (usually the domain of some morphism in the equivalence class). This
cannot be done in general; for example, the object b of the category � given in Example 1.1.9
has three subobjects, but there are only two objects in this category and so each subobject
cannot be identified with a distinct object.

The reader may verify that the preorder ≤ from Definition 1.4.1 induces a partial order
on the subobjects of an object. We interpret this partial order as a category in the following
way:

Definition 1.4.3 (Sub(a)). Let C be a category and let a ∈ C. The category Sub(a) is
given by the following data:

(a) Ob Sub(C) consists of the subobjects of a in C.

(b)

HomSub(a)(X, Y ) =

{
{fX,Y } if X ≤ Y

∅ otherwise

Every object has an identity morphism since partial orders are reflexive. Since each hom-
class has at most one morphism, composition is completely determined by the domain and
codomain of the morphisms. Furthermore, the transitivity of the partial order ensures that
composition is well defined.

Example 1.4.4. In Grp and Ab, the notion of subobjects coincides with the notion of sub-
groups. For each subobject of a group G, the image of a representative morphism corresponds
to a subgroup of G. Moreover, each subgroup corresponds to the subobject represented by
its inclusion map. The partial order given by ≤ corresponds to ⊆, and the category Sub(G)
corresponds to the Hasse diagram of this partial order.

Definition 1.4.5 (Power class, power set). Let C be a category and A ∈ C. The partially
ordered class of subobjects of A is called the power class of A. If C is locally small, it follows
that power classes are sets, in which case they are called power sets . We will denote the
power set of A by P(A) when this will not cause confusion with the set-theoretic definition
of power sets.

Definition 1.4.6 (Minimal/maximal subobject). Let C be a locally small category, A ∈ C,
and let U be a subset of P(A). An object B ∈ U is minimal in U if C ∈ U and C ⊆ B
implies C = B. Similarly, B is maximal in U if C ∈ U and B ⊆ C implies B = C. When
we simply say that B is a minimal (respectively, maximal) subobject of A, we mean that it
is minimal (respectively, maximal) in P(A) \ {A}.

Definition 1.4.7 (Intersections and unions of subobjects). Let C be a category with a ∈ C.
Let Xi be a collection of subobjects of a indexed by elements i ∈ I for some non-empty set
I. A greatest lower bound of the Xi is a subobject Y of a such that

(a) Y ≤ Xi for all i ∈ I,
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(b) If for some subobject Z of a we have Z ≤ Xi for all i ∈ I, then Z ≤ Y .

This is also called a meet or intersection of the Xi and is denoted ∩Xi or X1 ∩ · · · ∩Xn if
I = {1, . . . , n}. A least upper bound of the Xi is a subobject Y of a such that

(a) Xi ≤ Y for all i ∈ I,

(b) If for some subobject Z of a we have Xi ≤ Z for all i ∈ I, then Y ≤ Z.

This is also called a join or union of the Xi and is denoted ∪Xi or X1 ∩ · · · ∩ Xn if I =
{1, . . . , n}.

Remark 1.4.8. Let C be a category and a ∈ C. The meet of two subobjects of a is a
product of the two as objects in Sub(a). The join of two subobjects of a is a coproduct of
the two as objects in Sub(a).

Definition 1.4.9 (Simple object). A simple object is an object that has precisely two sub-
objects – one having the zero morphism as a representative and one having the identity as
a representative. Equivalently, in a category with a zero object, an object A is simple if and
only if the zero object is a maximal subobject of A.

Examples 1.4.10. (a) In Grp and Ab, maximal objects are precisely maximal subgroups
and simple objects are precisely simple groups.

(b) In R-Mod, maximal objects are precisely maximal submodules and simple objects are
precisely simple modules.

Remark 1.4.11. It is important to note that intersections and unions of subobjects are
not dual to each other. Their respective dual notions are cointersections and counions, but
we will not discuss them in this paper. The dual notion to subobjects are quotient objects,
which will be discussed in further detail in Section 2.5.

1.5 Functors & Natural Transformations

As we have already seen, it is the morphisms rather than the objects that play the lead role of
interest in category theory. We now take a bird’s eye view and consider categories themselves
as “objects” with certain structure and discuss various morphisms between categories.

Definition 1.5.1 (Functor). Let C and D be categories. A functor F : C→ D is a function

which assigns to each object c ∈ C an object F (c) ∈ D, to each morphism c
f→ c′ ∈ C a

morphism F (c)
F (f)→ F (c′) ∈ D, and satisfies the properties:

(a) Preservation of identity: F (idc) = idF (c) for every object c ∈ C,

(b) Preservation of composition: if g, f are composable, then F (g ◦ f) = F (g) ◦ F (f).

We will write F : C→ D or C
F→ D to mean that F is a functor from C to D.
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Remark 1.5.2. Strictly speaking, a functor F : C→ D is a family of functions which con-
sists of a function FOb from the objects of C to the objects of D together with a function Fc,c′
from Hom(c, c′) to Hom(F (c), F (c′)) for each pair (c, c′) of objects in C. Furthermore, since
functors preserve identity morphisms and since there is an obvious bijective correspondence
between objects and identity morphisms, the action of a functor on objects is completely
determined by its action on morphisms.

Example 1.5.3. Just like morphisms between objects in a category, we may compose func-
tors when their domains and codomains agree. That is, for three categories C,D, and E
with functors F and G of the form

C
G→ D

F→ E,

we define the composite functor to be the following functor:

F ◦G : C→ E,

c 7→ F (G(c)) for all c ∈ C,

f 7→ F (G(f)) for all f ∈ Mor C.

Since this composition is associative and each category C has an identity functor idC : C→ C
(which simply maps all objects and morphisms of C to themselves), we can now define Cat,
the category of all small categories, which has all small categories as objects and functors as
morphisms.

Remark 1.5.4. We define Cat to be the category of all small categories rather than the
category of all categories as doing so would cause a contradiction analogous to Russell’s
Paradox with the definition of “category” that we have developed. It is possible to axiomatize
the category of all categories by adopting different foundational principles (in which category
theory is considered more “fundamental” than set theory; that is, set theory is developed
in terms of category theory). A detailed discussion is beyond the scope of this paper, but
interested readers are encouraged to consult [13].

Example 1.5.5. The power set functor P : Set→ Set is the functor which sends every set
X to its power set P(X) (the elements of which are the subsets of X), and which sends each
function f : X → Y to the function P(f) : P(X) → P(Y ) which maps each subset Z ⊆ X
to its image under f , f(Z) ⊆ Y .

Example 1.5.6. Let R, S be commutative rings. Recall that GLn(R), the general linear
group of degree n over R, is the multiplicative group of all invertible n × n matrices with
entries in R. Now let ϕ : R→ S be an arbitrary ring homomorphism. Define a map:

GLnϕ : GLn(R)→ GLn(S), a11 . . . a1n
...

. . .
...

an1 . . . ann

 7→
 ϕ(a11) . . . ϕ(a1n)

...
. . .

...
ϕ(an1) . . . ϕ(ann)

 .
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A routine verification reveals that GLnϕ is a group homomorphism. This data, which arises
naturally in algebra, defines an infinite family of functors; for each n ∈ N+ we have the
functor GLnF : CRing→ Grp which sends each commutative ring R to GLn(R) and which
sends each ring homomorphism ϕ : R → S to the group homomorphism GLnϕ : GLn(R) →
GLn(S).

Examples 1.5.7. A functor is forgetful if it simply causes us to lose some information (a
more precise definition of this term will be given in Section 3.2). For instance:

(a) Let U : Grp → Set be the functor which sends each group to its underlying set and
which sends each group homomorphism to the corresponding function between sets.
Thus, U is a forgetful functor whence we have “forgotten” the group operation.

(b) Let V : Ring → Grp be the functor which sends each ring to its additive group and
which sends each ring homomorphism to the corresponding group homomorphism.
Thus, V is a forgetful functor whence we have “forgotten” the multiplication operation.

(c) The composite functor U ◦ V : Ring → Set sends each ring to its underlying set and
sends each ring homomorphism to the corresponding function between sets. Thus,
U ◦ V “forgets” both of the ring operations.

Definition 1.5.8 (Isomorphism of categories). Two categories C and D are isomorphic if
there exist functors F : C → D and G : D → C such that G ◦ F = idC and F ◦ G = idD.
When this is the case, we say that G is the two-sided inverse of F and write G = F−1.

Lemma 1.5.9. Let C be some category. A skeleton subcategory of C is unique up to iso-
morphism.

Proof. Suppose C and C′ are two skeleton subcategories of C. Let F : Ob C→ Ob C′ assign
to each object of C the unique object in C′ that is isomorphic to it in C. Clearly, every
object in C′ can be written in the form F (a) for some a ∈ C. For every object a ∈ Ob C,
fix an isomorphism fa : a→ F (a). We leave it to the reader to verify that the maps

F : C→C′ G : C′ →C

a 7→F (a) and F (a) 7→a
(f : a→ b) 7→fb ◦ f ◦ f−1a (f ′ : F (a)→ F (b)) 7→f−1b ◦ f

′ ◦ fa

quantified over the objects and morphisms of their respective categories, are mutually inverse
functors (i.e. they satisfy Definition 1.5.1 and Definition 1.5.8).

Definition 1.5.10 (Faithful/full functor). As we have noted in Remark 1.5.2, the data of
a functor F : C→ D includes a function Fc,c′ : Hom(c, c′)→ Hom(F (c), F (c′)) for each pair
(c, c′) of objects in C. If all of these functions on hom-classes are injective, we say that F
is faithful . If they are all surjective, we say that F is full . A functor which is both faithful
and full is fully faithful .
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Remark 1.5.11. A faithful functor need not be injective on either objects or morphisms
and a full functor need not be surjective on either objects or morphisms.

Examples 1.5.12. (a) The forgetful functor U : Grp → Set is faithful but not full (for
instance, there are functions from R to R which are not group homomorphisms and
thus not in the image of UR,R).

(b) Let C be some category and let C be a skeleton of C. The natural inclusion functor
I : C ↪→ C is fully faithful. If two distinct objects are isomorphic in C, then this
functor is surjective on neither objects nor morphisms.

(c) Recall the category 1 from Example 1.1.9. Let F : Set→ 1 be the functor which sends
every set to the unique object a of 1 and every function to ida. Then, F is full but not
faithful.

(d) Recall the category � from Example 1.1.9. Let G : �→ Set be the functor which
sends a to Z, b to Q, and both f and g to the inclusion map. Then, G is neither full
nor faithful.

Definition 1.5.13 (Covariant/contravariant functor). The functors we have discussed thus
far are covariant functors in that they preserve the direction of morphisms. We will continue
to simply say “functor” to mean a covariant functor. A contravariant functor F : C→ D, on
the other hand, reverses morphisms in that it assigns to each morphism f : A→ B ∈ Mor C
a morphism F (f) : F (B)→ F (A) ∈ Mor D and composable morphisms f, g ∈ Mor C satisfy
F (g ◦ f) = F (f) ◦ F (g). A contravariant functor otherwise satisfies the same properties as
a covariant functor.

Remark 1.5.14. A contravariant functor F : C → D is equivalent to a covariant functor
F ′ : Cop → D.

Example 1.5.15. Fix a field K and consider FinVectK. Recall that every vector space V
has a dual space V ∗ = Hom(V,K). Define the dual functor D : FinVectK → FinVectK to be
the functor which sends each K-vector space V to its dual V ∗ and each linear transformation
T : V → W to its transpose T ∗ : W ∗ → V ∗ defined by T ∗(g) = g ◦ T for all g ∈ W ∗. Hence,
D is a contravariant functor.

Definition 1.5.16 (Bifunctor). Let C, D, and E be categories. A bifunctor B : C×D→ E
is a functor from the product category C×D to E. When unspecified, we assume a bifunctor
is covariant in both arguments. We may consider a bifunctor which is contravariant in one
or both arguments by considering Cop or Dop in place of C or D, respectively, in the product
category.

Example 1.5.17. Fix a field K and consider VectK with the tensor product ⊗ defined in
the usual way. This defines a bifunctor ⊗ : VectK × VectK → VectK, covariant in both
arguments, which sends each pair of K-vector spaces (U, V ) to U ⊗V and each pair of linear
maps (T : V → V ′, S : W → W ′) to T ⊗ S : V ⊗W → V ′ ⊗W ′.
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Definition 1.5.18 (Hom-functor). Let C be a locally small category with A,B ∈ C.
Throughout this definition, all hom-classes are in C. We define the covariant hom-functor
to be the following functor:

Hom(A,−) : C→ Set,

X 7→ Hom(A,X) for all X ∈ C,

f 7→ Hom(A, f) for all f ∈ Mor C,

where for every morphism f we have Hom(A, f)(g) = f ◦ g for all g ∈ Hom(A, dom(f)).
Similarly, we define the contravariant hom-functor to be the following functor:

Hom(−, B) : C→ Set,

X 7→ Hom(X,B) for all X ∈ C,

h 7→ Hom(h,B) for all h ∈ Mor C,

where for every morphism h we have Hom(h,B)(g) = g ◦ h for all g ∈ Hom(cod(h), B).

Definition 1.5.19 (Natural transformation, natural isomorphism). Let F : C → D and
G : C→ D be functors. A natural transformation τ : F → G (or F

τ→ G) is a function:

Ob C→ Mor D,

a 7→ (F (a)
τa→ G(a)),

such that for every morphism a
f→ a′, the following diagram commutes:

F (a)
τa //

F (f)
��

G(a)

G(f)
��

F (a′)
τ ′a

// G(a′)

Natural transformations are also called morphisms of functors . A natural transformation
τ : F → G is a natural isomorphism if for every object a ∈ C, the function τa : F (a)→ G(a)
is invertible. When this is the case, the inverses (τa)

−1 are the component functions of the
natural isomorphism τ−1 : G→ F and we write τ : F ∼= G.

Example 1.5.20. Consider the forgetful functor U : Grp → Set and define a new functor
S : Grp→ Set:

Ob Grp→ Ob Set, Mor Grp→ Mor Set,

G 7→ G×G, (G
φ→ H) 7→ (G×G φ×φ−−→ H ×H).

Now for any group (G, ·), define the function (where the domain and codomain are objects
of Set):

τG : G×G→ G,

(x, y) 7→ x · y.
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Now fix an arbitrary group homomorphism φ : G→ H and consider the following diagram:

G×G τG //

φ×φ
��

G

φ
��

H ×H τH
// H

This simply translates into the statement that for any x, y ∈ G, φ(x · y) = φ(x) · φ(y) – a
true statement by the definition of a group homomorphism. Hence, this diagram commutes
and so the family τ = {τG | G ∈ Grp} defines a natural transformation from S to U . Note
that in the above diagram, all the “action” occurs in the category of sets – this is fine, since
we have defined τG on sets rather than on groups. The forgetful functor may have forgotten
the group operation, but we haven’t!

Example 1.5.21. Fix a field K and consider FinVectK. Recall that any vector space V
over K has a double dual, V ∗∗ = Hom(Hom(V,K),K). It is known that when V is finite-
dimensional, V ∼= V ∗∗, and that the linear map

τV : V → V ∗∗,

x 7→ (f 7→ f(x)) for any f ∈ V ∗,

is an isomorphism (we will accept this fact without proof – details can be found in [9,
Theorem 2.26]). We thus have a canonical one-to-one identification between elements of V
and V ∗∗ and so for any linear map T : V → W , we have the map T ∗∗ : V ∗∗ → W ∗∗ (we may
obtain T ∗∗ by applying the transpose twice, but to see the naturality of this identification
more explicitly: if dimK(V ) = n and we choose an arbitrary basis {v1, . . . , vn} for V , then the
matrix of T will be the same as the matrix for T ∗∗ in the basis {τV (v1), . . . , τV (vn)} of V ∗∗).
Now consider the identity functor idFinVectK and the double dual functor DD : FinVectK →
FinVectK which sends each vector space to its double dual and each linear map T : V → W
to T ∗∗ : V ∗∗ → W ∗∗. We have the following commutative diagram:

V
τV //

T
��

V ∗∗

T ∗∗

��
W τW

//W ∗∗

Hence, the family τ = {τV | V ∈ FinVectK} defines a natural isomorphism from idFinVectK

to DD.

Remark 1.5.22. Even though it is also true in the finite-dimensional case that V ∼= V ∗,
it does not make sense to ask whether the dual functor D defined in Example 1.5.15 is
naturally isomorphic to idFinVectK since, considered as covariant functors, D is a functor
from FinVectK

op to FinVectK whilst idFinVectK is a functor from FinVectK to FinVectK.
An isomorphism between a finite-dimensional vector space and its dual space, unlike the
case of its double dual, is dependent on a choice of basis.

24



Definition 1.5.23 (Equivalence, Duality). Let C and D be categories. Covariant functors
F : C→ D and G : D→ C are said to be equivalences of categories if natural isomorphisms

G ◦ F τ−→ idC and F ◦G η−→ idD

exist. If this is the case, then C and D are said to be equivalent. If the same holds except
that F and G are contravariant functors, then we say C and D are dually equivalent and F
and G are a duality of categories .

Definition 1.5.24 (Essentially surjective). Let C and D be categories. A functor F : C→ D
is essentially surjective if for every d ∈ D there is some c ∈ C such that F (c) ∼= d.

Lemma 1.5.25. Let C and D be categories. A functor F : C → D is an equivalence of
categories if and only if F is a fully faithful essentially surjective functor.

Proof. See [15, p. 93] for a proof.

Definition 1.5.26 (Isomorphism reflecting). Let C and D be categories. A functor F : C→
D is isomorphism reflecting if for every c, c′ ∈ Ob C we have F (c) ∼= F (c′) =⇒ c ∼= c′.
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Chapter 2

The Grothendieck Group

We now reach the main chapter of the paper, where we will investigate the structure of
Grothendieck groups of various types of categories. We will begin by discussing binary
operations on categories, much like binary operations on a set, and see how this data leads
us to our first examples of Grothendieck groups. We then move on to special types of
categories that generalize structures occurring in various areas of mathematics, and see how
their constructions also give rise to different Grothendieck groups.

2.1 Binary Operations on a Category

We say that a category is nonempty if its class of objects is nonempty. It follows that the
class of morphisms of a nonempty category is also nonempty since each object has an identity
morphism.

Definition 2.1.1 (Binary operation on a category). Let C be a nonempty category. A
binary operation on C is a bifunctor of the following form:

∗ : C×C→ C,

(a, b) 7→ a ∗ b for all a, b ∈ C

(f, g) 7→ f ∗ g for all f, g ∈ Mor C.

(2.1.1)

Note that we will sometimes will write ∗(a, b) and ∗(f, g) instead of a∗b and f∗g to emphasize
the action on the product category.

From now on, we will assume that all categories discussed are nonempty.

Lemma 2.1.2. Let ∗ be a binary operation on a category C. Then, we have the following:

(a) For any objects a, b ∈ C, we have ida ∗ idb = ida∗b.

(b) If for some morphisms g, f, g′, f ′ we have that (g, f) and (g′, f ′) are composable pairs,
then (g ◦ f) ∗ (g′ ◦ f ′) = (g ∗ g′) ◦ (f ∗ f ′).
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Proof. (a) Functors preserve identity morphisms and id(a,b) = (ida, idb) in the product
category, so we have

ida ∗ idb = ∗(ida, idb) = id∗(a,b) = ida∗b .

(b) By the preservation of composition, we have

(g ◦ f) ∗ (g′ ◦ f ′) = ∗(g ◦ f, g′ ◦ f ′) = ∗((g, g′) ◦ (f, f ′)) = (g ∗ g′) ◦ (f ∗ f ′).

Recall that morphism f and g are isomorphic if and only if f = r ◦ g ◦ r′ for some
isomorphisms r and r′ (see Remark 1.2.3).

Lemma 2.1.3. Let C be a category with a binary operation ∗. There is a natural choice
of binary operation ∗ on C→ such that the functor F : C → C→ given by a 7→ ida for all
a ∈ C and f 7→ (f, f) for all f ∈ Mor C preserves the binary operation. This functor is fully
faithful and isomorphism reflecting.

Proof. Let the action of ∗ on the objects of C→ be given by the action of ∗ on the morphisms
of C and let the action of ∗ on the morphisms of C→ be given by (g, g′)∗(f, f ′) = (g∗f, g′∗f ′).

We see that F (a ∗ b) = ida∗b = ida ∗ idb = ida ∗ idb = F (a) ∗ F (b) and F (g ∗ f) =
(g ∗ f, g ∗ f) = (g, g) ∗ (f, f) = F (g) ∗ F (f). Hence, F preserves the binary operation.

It is easy to see that F is faithful. Suppose now that (g, f) ∈ Hom(F (a), F (b)) =
Hom(ida, idb). Then, g = f and thus (g, f) = F (f), so F is full.

Now, suppose a ∼= b. Then, there exists an isomorphism h : a→ b. Since ida = h−1◦idb ◦h,
we have F (a) ∼= F (b) and hence, F is isomorphism reflecting.

Remark 2.1.4. Note that the functor in the previous lemma is not necessarily an equivalence
of categories. This is because F is not necessarily essentially surjective. To see this, let F be
essentially surjective and suppose that f is a morphism that is not an isomorphism. Then,
there exists an object a such that F (a) ∼= f . Thus, we have ida ∼= f and so f = g ◦ ida ◦h,
where g and h are isomorphisms. Since composition of isomorphisms are again isomorphisms,
f is an isomorphism, which is a contradiction.

Lemma 2.1.5. If ∗ is a binary operation on a category C, then the following hold:

(a) For any objects a, a′, b, b′ ∈ Ob C, we have

a ∼= a′ and b ∼= b′ =⇒ a ∗ b ∼= a′ ∗ b′. (2.1.2)

(b) For any morphisms f, f ′, g, g′ ∈ Mor C, we have

f ∼= f ′ and g ∼= g′ =⇒ f ∗ g ∼= f ′ ∗ g′. (2.1.3)

Proof. (a) If f : a → a′ and g : b → b′ are isomorphisms, then f ∗ g : a ∗ b → a′ ∗ b′ is an
isomorphism with (f ∗ g)−1 = f−1 ∗ g−1.
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(b) Suppose we have f = a′
k−→ a

f ′−→ b
k′−→ b′ and g = c′

r−→ c
g′−→ d

r′−→ d′ where k, k′, r, and
r′ are isomorphisms. Then, we have

f ∗ g = (k′ ◦ f ′ ◦ k) ∗ (r′ ◦ g′ ◦ r) = (k′ ∗ r′) ◦ (f ′ ∗ g′) ◦ (k ∗ r).

Since k′ ∗ r′ and k ∗ r are both isomorphisms, the statement holds.

Example 2.1.6. Recall that a set X can be viewed as a discrete category X with Ob X = X.
For every binary operation ∗ on a nonempty set X, there is a unique binary operation ∗ on
X that has its action on objects defined by the action of ∗ on X. Since the only morphisms
are the identity morphisms, the action of ∗ on morphisms is completely determined, namely
by (ida, idb) 7→ ida∗b for all pairs (a, b) of objects in X.

By Example 2.1.6, a binary operation on a category can be thought of as a generalization
of a binary operation on a set. The following notions extend to a binary operation on a
category:

(a) We say ∗ is associative on C if (a ∗ b) ∗ c ∼= a ∗ (b ∗ c) for all objects a, b, c ∈ C and
f ∗ (g ∗ h) ∼= (f ∗ g) ∗ h for all morphisms f, g, h ∈ Mor C.

(b) We say ∗ has identity if for some e ∈ C, we have e ∗ a ∼= a ∼= a ∗ e for all a ∈ C and
f ∗ ide ∼= f ∼= ide ∗f for all f ∈ Mor C.

(c) We say ∗ is commutative on C if a ∗ b ∼= b ∗ a for all a, b ∈ C and f ∗ g ∼= g ∗ f for all
f, g ∈ Mor C.

Example 2.1.7. Every (nonempty) category has a binary operation. Let C be some category
and e ∈ C be an arbitrary object. Then, the map

∗ : C×C→ C,

(a, b) 7→ e for all a, b ∈ C,

(f, g) 7→ ide for all f, g ∈ Mor C,

is a binary operation on C. It is easy to see that ∗ is associative and commutative on C.
We call ∗ a trivial binary operation on C.

Definition 2.1.8 (Siso(C)). Let C be a category. We define

Siso(C) := Ob C/ ∼=,

to be the class of all isomorphism classes of objects in C. If ∗ is a binary operation on C, we
define a binary operation on Siso(C) by [a] ∗ [b] = [a ∗ b] and this is well defined by (2.1.2).
The class Siso(C) equipped with this operation is denoted by (Siso(C), ∗). Although we use
the same symbol here, the intended operation will always be clear from the context.

Lemma 2.1.9. Let ∗ be a binary operation on a category C and let ∗ be the corresponding
binary operation on C→ (see Lemma 2.1.3). Then, the map f : (Siso(C), ∗)→ (Siso(C→), ∗)
given by f([a]) = [ida] preserves the binary operation.
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Proof. Note that f([a]) = [F (a)] where F is the functor given in Lemma 2.1.3. The map is
well defined since F is isomorphism reflecting. Since F preserves the binary operation, we
have f([a]∗ [b]) = f([a∗ b]) = [F (a∗ b)] = [F (a)∗F (b)] = [F (a)]∗ [F (b)] = f([a])∗ f([b]).

Lemma 2.1.10. Let ∗ be an binary operation on an essentially small category C. If ∗ on C
is associative, then (Siso(C), ∗) and (Siso(C→), ∗) are semigroups. If ∗ on C is associative
and has identity, then (Siso(C), ∗) and (Siso(C→), ∗) are monoids. If ∗ is commutative on
C, then (Siso(C), ∗) and (Siso(C→), ∗) are commutative.

Proof. (Siso(C)) is a semigroup because ([a]∗[b])∗[c] = [(a∗b)∗c] = [a∗(b∗c)] = [a]∗([b]∗[c]).
The proofs of the remaining statements are similar and are left to the reader.

In order to discuss the Grothendieck group with respect to a binary operation on a cate-
gory, we must first restrict the categories we are working with to essentially small categories.
This is because we need Siso(C) to be a set.

Definition 2.1.11 (Giso(C)). Let C be an essentially small category. The free abelian group
generated by Siso(C) is denoted by Giso(C).

Example 2.1.12. Recall that two finite sets are isomorphic if and only if they have the
same cardinality. Thus, if for each n ∈ N we fix a set Xn of cardinality n, then Giso(FinSet)
is the free abelian group generated by {[X0], [X1], [X2], . . .}.

Definition 2.1.13 (Grothendieck group with respect to ∗). Let C be an essentially small
category and let ∗ be a binary operation on C. Define N(C) E Giso(C) to be the (normal)
subgroup generated by {[a ∗ b] − [a] − [b] | a, b ∈ Ob C}. The Grothendieck group with
respect to ∗, denoted G0(C, ∗), is the quotient group Giso(C)/N(C). By a common abuse
of terminology, we will write [a] to mean the image of the isomorphism class [a] in G0(C, ∗)
when this will not cause confusion. It follows that [a∗b] = [a]+[b] in G0(C, ∗) for all a, b ∈ C.

Example 2.1.14. A classic example is G0(Set, ∐ ). Recall that the binary coproduct in Set
is given by the disjoint union:

X1
∐X2 = {(x, i) | i ∈ {1, 2} and x ∈ Xi}

Since |X∐
Y | = |X|+ |Y |, the binary operation (X, Y ) 7→ X

∐
Y satisfies (2.1.2). There is a

natural choice of binary operation on Mor Set, namely for arbitrary morphisms f : X → Y
and g : X ′ → Y ′ we map (f, g) 7→ f

∐
g where f ∐

g : X∐
X ′ → Y

∐
Y ′ is given by

(f ∐g)(x, i) =

{
f(x) if i = 1

g(x) if i = 2
.

We leave the verification that this binary operation satisfies (2.1.3) to the reader. The group
G0(Set, ∐ ) is isomorphic to Z by the First Isomorphism Theorem—cardinality induces a
surjective group homomorphism from Giso(Set) to Z whose kernel coincides with N(Set).
As first discussed in the introduction, this is the process of decategorification – that of
reducing structures on categories to set-theoretic structures. This example is considered
classic because, according to some mathematicians, it recovers the integers in a way that
parallels how the human brain initially understands the integers.
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Lemma 2.1.15. If ∗ has identity e on C, then [e] = 0 in G0(C, ∗).

Proof. Since [e] = −[e] + [e] + [e] = −([e ∗ e] − [e] − [e]) ∈ N(C), we have [e] = 0 in
G0(C, ∗).

Lemma 2.1.16. Let ∗ be an associative binary operation on an essentially small category
C. Then, in G0(C, ∗) we have the following:

(a) Every element can be written in the form [a]− [b] for some a, b ∈ C,

(b) We have [a] = [b] if and only if a ∗ c ∼= b ∗ c for some c ∈ C.

Proof. (a) Suppose x is an element in G0(C, ∗). Since the addition in G0(C, ∗) is com-
mutative, x can be written in the form α1[a1] + · · · + αn[an] − β1[b1] − · · · − βm[bm] where
n,m ∈ N+ and αi, βi > 0 for all i. We thus have

x =

[
n∗
i=1

αi∗
j=1

ai

]
−
[
m∗
i=1

βi∗
j=1

bi

]
.

(b) The reverse implication holds since [a] + [c] = [a ∗ c] = [b ∗ c] = [b] + [c]. For the
forward implication, if [a] = [b] in G0(C, ∗), then [a] − [b] ∈ N(C). So, in Giso(C), [a] − [b]
is of the form

∑n
i=1([xi ∗ yi]− [xi]− [yi])−

∑m
i=1([wi ∗ zi]− [wi]− [zi]) for some n,m ∈ N+.

Rearranging the terms, we obtain

[a] +
m∑
i=1

[wi ∗ zi] +
n∑
i=1

([xi] + [yi]) = [b] +
n∑
i=1

[xi ∗ yi] +
m∑
i=1

([wi] + [zi]).

Since the isomorphism classes are a basis of Giso(C), the terms on one side of the equation
are a permutation of the terms on the other. Since (2.1.2) holds, we have a ∗ c ∼= b ∗ c, where

c =
(

n∗
i=1

(xi ∗ yi)
)
∗
(
m∗
i=1

(wi ∗ zi)
)
.

Proposition 2.1.17 (Group completion of a commutative semigroup). Let (M, ∗) be a
commutative semigroup. There exists a unique (up to isomorphism) group completion which
is a pair (G,ϕ) where G is an abelian group and ϕ : M → G is a semigroup homomorphism
satisfying the universal property that for all semigroup homomorphisms ψ : M → H where
(H,+) is some (not necessarily abelian) group, there exists a unique group homomorphism
θ : G → H such that ψ = θ ◦ ϕ. This statement can be summarized with the following
commutative diagram:

M

ϕ
��

ψ // H

G
θ

>>

Proof. See [21, p. 4] for a proof of this statement.
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Theorem 2.1.18. Let C be a category and let ∗ be an associative and commutative binary
operation on C. Then, the Grothendieck group with respect to ∗ is a group completion of the
semigroup (Siso(C), ∗).

Proof. Let ϕ : Siso(C) → G0(C, ∗) be the natural map [a] 7→ [a]. Let ψ : Siso(C) → H be
some semigroup homomorphism where H is a (not necessarily abelian) group. We claim that
the group homomorphism

θ : G0(C, ∗)→ H,

[c] 7→ ψ([c]),

extended by linearity is the unique morphism such that ψ = θ ◦ ϕ. Since ψ is defined on
Siso(C), it is clear that θ is well defined on Giso(C). For any objects a and b, we have

θ([a ∗ b]− [a]− [b]) = ψ([a ∗ b]) · ψ([a])−1 · ψ([b])−1

= ψ([b ∗ a]) · ψ([a])−1 · ψ([b])−1

= ψ([b]) · ψ([a]) · ψ([a])−1 · ψ([b])−1

= 0

and, thus, θ is well defined on G0(C, ∗). Note that the commutativity of ∗ is necessary since
we did not assume that H is abelian. Suppose σ : G0(C, ∗)→ H is a group homomorphism
that also satisfies ψ = σ ◦ ϕ. Then we have

σ([c]) = σ(ϕ([c])) = ψ([c]) = θ([c])

and, thus σ = θ.

Corollary 2.1.19. Let Cat∗ be the category of all pairs consisting of a category and a binary
operation (on that category). Morphisms in this category are functors between the categories
that preserve the binary operation. The Grothendieck group with respect to a binary operation
induces the following functor:

G0 : Cat∗ → Ab,

(C, ∗) 7→ G0(C, ∗) for all (C, ∗) ∈ Cat∗,

F 7→ (a 7→ [F (a)]) for all F ∈ Mor Cat∗.

We now have two good ways of verifying the structure of G0(C, ∗) where ∗ is an associative
and commutative binary operation on a category C. Suppose we suspect that G0(C, ∗) ∼= G.
One way to show it is to look for a surjective group homomorphism Giso(C) → G whose
kernel coincides with N(C) and, thus, conclude that G0(C, ∗) ∼= G by the First Isomorphism
Theorem. Alternatively, we can show that G is a group completion of (Siso(C), ∗) and then
conclude G0(C, ∗) ∼= G by Theorem 2.1.18.

Lemma 2.1.20. Let C be a category and let ∗ be a binary operation on C. Suppose there
is an object c such that c ∗ a ∼= c for all objects a ∈ C. Then G0(C, ∗) is the trivial group.
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Proof. Since [a] = [c]− [c] + [a] = [c ∗ a]− [c]− [a] ∈ N(C), the Grothendieck group must be
trivial.

Example 2.1.21. Suppose we have two binary operations + and · on a category C such
that (Siso(C),+, ·) is a ring. Let 0 be a representative object in C for the additive identity
of Siso(C). By Lemma 2.1.20, we have that G0(C, ·) is the trivial group since 0 · a ∼= 0 for
all objects a.

2.2 Additive Categories

Additive categories form the basic building block for the remainder of the categories discussed
in this chapter. We will see that, in additive categories, binary products and coproducts
coincide, and we will use this operation to define the split Grothendieck group of an additive
category.

Definition 2.2.1 (Preadditive/additive category). A category C is additive if the following
conditions hold:

(AD1) Every hom-class has the structure of an abelian group (an addition), denoted by +
unless stated otherwise, and composition is distributive over this addition. By this, we
mean for any morphisms f : a→ b, f ′ : a→ b, g : b→ c, and g′ : b→ c we have:

(a) (g + g′) ◦ f = g ◦ f + g′ ◦ f ,

(b) g ◦ (f + f ′) = g ◦ f + g ◦ f ′,

(AD2) The category C has a zero object.

(AD3) The binary product and the binary coproduct of any two objects exists.

We will typically emphasize that a category is additive by opting to denote the category by
A. Categories where (AD1) holds are called preadditive.

Example 2.2.2. Ab, VectK, and R-Mod are additive categories for any field K and any
ring R.

Remark 2.2.3. It follows from (AD1) that any preadditive category has zero morphisms,
and the zero morphisms are the identities of the hom-classes. Furthermore, for any f : a→ b,
g : b→ c, and z ∈ Z we have:

(zg) ◦ f = g ◦ (zf) = z(g ◦ f).

Therefore, the addition of the hom-classes is bilinear over Z with respect to composition.

Example 2.2.4. A simple example of a category that is not preadditive is Set. For instance,
Hom({1, 2}, {1, 2}) = {f1, f2, id, r}, where f1 and f2 are the respective constant functions
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and r is the function that maps each number to the other. Hence, the hom-class has the
following composition:

◦ f1 f2 id r

f1 f1 f1 f1 f1
f2 f2 f2 f2 f2
id f1 f2 id r
r f2 f1 r id

Furthermore, if this hom-class had an addition bilinear with respect to composition, then
r ◦ (f1 + f2) = r ◦ f1 + r ◦ f2 = f2 + f1 = f1 + f2 and, by the above composition structure,
no choice of morphism for f1 + f2 satisfies this equation.

Lemma 2.2.5. Let A be an additive category and f : b → c ∈ Mor A. The following are
equivalent:

(a) The morphism f is monic.

(b) For any object a and morphism g : a→ b the following holds:

f ◦ g = 0ac =⇒ g = 0ab.

Proof. Suppose f satisfies (b), and for some morphisms h : d → b and h′ : d → b, we have
f ◦ h = f ◦ h′. Then, f ◦ (h − h′) = 0dc so h − h′ = 0db and hence, h = h′. Thus, f is a
monomorphism. The other implication was proved in Lemma 1.2.19.

Definition 2.2.6 (Binary biproduct). Let C be a category that has a zero object 0. An
object is a binary biproduct of a and b, denoted a⊕ b, if there are morphisms pa : a⊕ b→ a
and pb : a ⊕ b → b that make a ⊕ b a product of a and b and morphisms ia : a → a ⊕ b and
ib : b→ a⊕ b that make a⊕ b a coproduct of a and b that, in addition, satisfy the following
equations:

pa ◦ ia = ida, pb ◦ ib = idb, pb ◦ ia = 0a,b, and pa ◦ ib = 0b,a. (2.2.1)

To emphasize the morphisms, we will sometimes denote the biproduct of a and b as a
quintuple (a⊕ b, pa, pb, ia, ib).

Remark 2.2.7. Biproducts are unique up to isomorphism because they are a product (and
products are unique up to isomorphism).

Proposition 2.2.8. Let A be an additive category. Then, the following hold:

(a) Binary products and coproducts are equivalent and are biproducts.

(b) A binary biproduct of two objects a and b satisfies an additional equation:

ia ◦ pa + ib ◦ pb = ida⊕b .
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Proof. (a) Let a∐b be a binary coproduct of objects a and b, and fix morphisms ia : a→
a
∐
b and ib : b→ a

∐
b as in the definition of a coproduct. Let pa : a∐

b→ a and pb : a∐
b→ b

be the unique morphisms that make the following diagrams commute:

a

a
ia //

ida

==

a
∐
b

pa

OO

b
iboo

0b,a
aa b

a
ia //

0a,b

==

a∐b
pb

OO

b
iboo

idb

aa

(2.2.2)

Let fa : c→ a and fb : c→ b be arbitrary morphisms. Then, the morphism f = ia◦fa+ib◦fb
makes the following diagram commute:

c
fa

}}

fb

!!
f
��

a a
∐
b

paoo pb // b

Suppose f ′ : c→ a
∐
b also satisfies fa = pa ◦ f ′ and fb = pb ◦ f ′. Then,

f = ia ◦ (pa ◦ f ′) + ib ◦ (pb ◦ f ′) = (ia ◦ pa + ib ◦ pb) ◦ f ′.

Let u = ia ◦ pa + ib ◦ pb. Note that ida∐
b also makes the following diagram commute in place

of u:
a
∐
b

a
ia //

ia
>>

a
∐
b

u

OO

b
iboo

ib
``

By the uniqueness of such a morphism in the definition of coproduct, we have u = ida∐
b

and hence f = f ′. Thus, we have shown that a∐
b is a product of a and b. Since there is a

coproduct for every pair of objects in an additive category, every coproduct is a product, and
both coproducts and products are unique up to isomorphism, we conclude that coproducts
and products are equivalent. Additionally, the equations that make a∐b a biproduct are
given by the commutativity of (2.2.2).

(b) Since a ⊕ b is both a coproduct and a product of a and b, the exact same argument
as in part (a) shows that u = ida∐

b.

Proposition 2.2.9. Let A be an additive category. For any objects a, b, c ∈ A, the following
are equivalent:

(a) c ∼= a⊕ b.

(b) There are morphisms ia : a → c, ib : b → c, pa : c → a, and pb : c → b that satisfy the
following equations:

pa ◦ ia = ida, pb ◦ ib = idb, pa ◦ ib = 0ba,

pb ◦ ia = 0ab, and ia ◦ pa + ib ◦ pb = ida⊕b .
(2.2.3)
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Proof. The forward implication holds since biproducts are unique up to isomorphism and,
thus, the equations in (2.2.3) are satisfied by definition and by Proposition 2.2.8(b). For the
other direction, by Proposition 2.2.8(a), it suffices to show that that c is a coproduct of a and
b. Suppose that (2.2.3) holds. For any morphisms fa : a → d and fb : b → d, the morphism
f = fa ◦ pa + fb ◦ pb clearly satisfies both f ◦ ia = fa and f ◦ ib = fb. It remains to show that
f is unique. Suppose there is an f ′ : a⊕ b→ d such that f ′ ◦ ia = fa and f ′ ◦ ib = fb. Then,

f = (f ′ ◦ ia) ◦ pa + (f ′ ◦ ib) ◦ pb = f ′ ◦ (ia ◦ pa + ib ◦ pb) = f ′ ◦ ida⊕b = f ′.

Hence, c is a coproduct of a and b and, thus, is a biproduct of a and b.

Remark 2.2.10. The biproduct is not always cancellative. That is, if a ⊕ b ∼= a ⊕ c, then
we do not necessarily have b ∼= c. For example, consider the additive category Z-Mod. Let
M =

⊕∞
i=1 Z. We have M ⊕ Z ∼= M ∼= M ⊕ {0}, but Z 6∼= {0}.

Definition 2.2.11 (Diagonal morphism, codiagonal morphism, biproduct morphism). Let
C be an additive category and a be any object. Fix morphisms for ia, i

′
a, pa, and p′a as in the

definition of the biproduct a ⊕ a. The morphisms 4a : a → a ⊕ a, the diagonal morphism,
and Oa : a⊕ a→ a, the codiagonal morphism, are defined to be the unique morphisms that
make the following diagrams, respectively, commute:

a

4a

��

ida

||

ida

""
a a⊕ apaoo p′a // a

a

a
ia //

ida

<<

a⊕ a
Oa

OO

a
i′aoo

ida

bb

Let a⊕ c and b⊕ d be biproducts, with morphisms denoted in the usual way. The biproduct
morphism of f : a→ b and g : c→ d is the unique morphism f ⊕ g : a⊕ c→ b⊕ d satisfying

pb◦(f⊕g)◦ia = f, pd◦(f⊕g)◦ic = g, pb◦(f⊕g)◦ic = 0c,b, and pd◦(f⊕g)◦ia = 0a,d.

Such a morphism exists as one can take

f ⊕ g = ib ◦ f ◦ pa + id ◦ g ◦ pc. (2.2.4)

To show uniqueness, first consider the following two commutative diagrams:

a

(f⊕g)◦ia
��

f

ww

0a,d

''b b⊕ dpboo pd // d

c

(f⊕g)◦ic
��

0c,b

ww

g

''b b⊕ dpboo pd // d

Hence, the morphisms (f ⊕g)◦ ia and (f ⊕g)◦ ic are unique by the definition of product. By
the definition of coproduct, (f ⊕ g) is the unique morphism making the following diagram
commute:

b⊕ d

a
ia //

(f⊕g)◦ia
<<

a⊕ c
f⊕g

OO

c
icoo

(f⊕g)◦ic
aa
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Proposition 2.2.12. In an additive category, the addition (that is bilinear with respect to
composition) of a hom-class Hom(a, b) is unique and given by

f + g = Ob ◦ (f ⊕ g) ◦ 4a.

Proof. Fix an addition + on the hom-sets and let ia, i
′
a, pa, and p′a be as in Definition 2.2.11.

By uniqueness, we have 4a = ia + i′a. Similarly, we have Ob = pb + p′b. Hence,

Ob ◦ (f ⊕ g) ◦ 4a = (pb + p′b) ◦ (f ⊕ g) ◦ (ia + i′a) = f + 0a,b + 0a,b + g = f + g

Fix another addition +′ on the hom-sets, but keep ia, i
′
a, pa, and p′a as before. By uniqueness,

we have 4a = ia +′ i′a and Ob = pb +′ p′b. Hence,

f + g = Ob ◦ (f ⊕ g) ◦ 4a = f +′ g

We conclude the addition on every hom-class Hom(a, b) is unique.

Lemma 2.2.13. Let A be an additive category. Fix a biproduct for every two objects. The
functor

⊕ : A×A→ A

(a, b) 7→ a⊕ b for all a, b ∈ A

(f, g) 7→ f ⊕ g for all f, g ∈ Mor A

is well defined, and thus ⊕ is a binary operation on A.

Proof. The biproduct of any two objects is guaranteed by (AD3). We noted in the definition
of biproduct morphism that the biproduct of any two morphisms exists. Hence, it remains
to check that the functor preserves identity morphisms and composition. Let a, b ∈ A and
fix a biproduct (a⊕ b, ia, ib, pa, pb) of a and b. By writing biproducts in the form (2.2.4) and
then using Proposition 2.2.8(b), we have

ida⊕ idb = ia ◦ ida ◦pa + ib ◦ idb ◦pb = ida⊕b .

Thus, the map ⊕ preserves identity morphisms. Now, let there be morphisms a
f−→ b

g−→
c and a′

f ′−→ b′
g′−→ c′, and fix biproducts (a ⊕ a′, ia, ia′ , pa, pa′), (b ⊕ b′, ib, ib′ , pb, pb′), and

(c⊕ c′, ic, ic′ , pc, pc′) of the obvious objects. By again writing biproducts in the form (2.2.4),
we see that

(g ◦ f)⊕ (g′ ◦ f ′) = ic ◦ g ◦ f ◦ pa + ic′ ◦ g′ ◦ f ′ ◦ pa′
= (ic ◦ g ◦ pb + ic′ ◦ g′ ◦ pb′) ◦ (ib ◦ f ◦ pa + ib′ ◦ f ′ ◦ pa′)
= (g ⊕ g′) ◦ (f ⊕ f ′).

Hence, the map ⊕ preserves composition and is, therefore, a binary operation on A.

Proposition 2.2.14. Let A be an additive category and let ⊕ be the binary operation on A
given in Lemma 2.2.13. Both (Siso(A),⊕) and (Siso(A→),⊕) are commutative monoids.
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Proof. By Lemma 1.3.6, we have that ⊕ is associative and commutative up to isomorphism
on Ob A (since the biproduct is a product). Let (a ⊕ b, pa, pb, ia, ib), (b ⊕ a, p′b, p

′
a, i
′
b, i
′
a),

(c⊕ d, pc, pd, ic, id), and (d⊕ c, p′d, p′c, i′d, i′c) be the fixed biproducts of the binary operation.
By writing f ⊕ g : a⊕ c→ b⊕ d in the form (2.2.4), we note that

ic ◦ f ◦ pa + id ◦ g ◦ pb = (id ◦ p′d + ic ◦ p′c) ◦ (i′d ◦ g ◦ p′b + i′c ◦ f ◦ p′a) ◦ (i′b ◦ pb + i′a ◦ pa)

and, hence, f ⊕ g ∼= g ⊕ f since id ◦ p′d + ic ◦ p′c and i′b ◦ pb + i′a ◦ pa are isomorphisms. The
associativity of the morphisms up to isomorphism is proved in a similar manner and is left
to the reader. Hence, ⊕ is associative and commutative on A. By Lemma 1.3.4, we have
that ⊕ has identity 0 since f ⊕ id0 = ia ◦ f ◦ pa ∼= f . Hence, by Lemma 2.1.10, (Siso(C),⊕)
and (Siso(A→),⊕) are commutative monoids. Note that this monoid is independent of our
choice of biproducts since biproducts are unique up to isomorphism.

Definition 2.2.15 (Split Grothendieck group). The Grothendieck group with respect to ⊕
of an additive category A, which we denote G0(A,⊕), is called the split Grothendieck group
of A. The subgroup generated by {[a⊕ b]− [a]− [b] | a, b ∈ A} is denoted by N⊕(A).

Remark 2.2.16. By Lemma 2.1.15, [0] = 0 in G0(A,⊕).

Example 2.2.17. The split Grothendieck group of FinVectC is isomorphic as a group
to Z. Consider the homomorphism f : Giso(FinVectC) → Z given by f([V ]) = dim(V )
(and then extended by linearity). This is well defined as dimension is unique up to iso-
morphism. Since dimension is additive (i.e. dim(V ⊕ W ) = dim(V ) + dim(W )), we
have N⊕(FinVectC) ⊆ ker(f). Now, let

∑n
i=1 αi[Vi] be arbitrary in ker(f). We have∑n

i=1 αi dim(Vi) = f(
∑n

i=1 αi[Vi]) = 0. In G0(FinVectC,⊕), since [Vi] = dim(Vi)[C], we
have

∑n
i=1 αi[Vi] = (

∑n
i=1 αi dim(Vi))[C] = 0, so ker(f) = N⊕(FinVectC). By the First

Isomorphism Theorem,

G0(FinVectC,⊕) ∼= Giso(FinVectC)/ ker(f) ∼= Z.

The following example illustrates why we usually only consider categories whose objects
consist of the “finite” or “finitely generated” type.

Example 2.2.18. Let K be a field. Consider the category VectK. Let V ∈ VectK. Let
B =

⊕∞
i=1 V . In G0(VectK,⊕), we have [V ] + [B] = [V ⊕ B] = [B] and, hence, [V ] = 0.

Therefore, the split Grothendieck group of VectK is trivial.

Definition 2.2.19 (Additive functor). A functor F : C→ D where C and D are preadditive
categories is said to be a additive functor if it acts as a group homomorphism on the hom-
classes with respect to the addition.

Lemma 2.2.20. Let C and D be additive categories. A functor F : C→ D is additive if and
only if it preserves biproducts. By preserving biproducts, we mean F (a ⊕ b) ∼= F (a) ⊕ F (b)
for any a, b ∈ C.
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Proof. The equations (2.2.3) are preserved by an additive functor (since an additive functor
preserves composition and addition of morphisms as well as the identity and zero morphisms)
and, thus, an additive functor preserves biproducts. For the reverse implication, we refer the
reader to [5, Proposition 1.3.4].

Proposition 2.2.21. Let A and A′ be additive categories. An additive functor F : A→ A′

induces a group homomorphism [F ] : G0(A,⊕) → G0(A
′,⊕) such that [F ]([a]) = [F (a)] for

any object a ∈ A and extended by linearity.

Proof. Recall the generating set of N⊕(A) defined by {[a ⊕ b] − [a] − [b] | a, b ∈ A}. Note
that [F ] sends each element of this generating set to zero:

[F ]([a⊕ b]− [a]− [b]) = [F (a⊕ b)]− [F (a)]− [F (b)] = [F (a)⊕ F (b)]− [F (a)]− [F (b)] = 0.

Hence, if x = y in G0(A,⊕), then x− y ∈ N⊕(A) so [F ](x− y) = 0. Hence, [F ](x) = [F ](y)
and so [F ] is well defined.

Lemma 2.2.22. If A is an additive category and x ∈ A, then the functor Hom(x,−) given in
Example 1.5.18 can be defined to have codomain Ab. Furthermore, this functor is additive.

Proof. For every a ∈ A, the object Hom(x, a) is a group by (AD1). For every morphism
f : a→ b, the morphism Hom(x, f) : Hom(x, a)→ Hom(x, b) is a group homomorphism, as
we see that

Hom(x, f)(k + k′) = f ◦ (k + k′) = f ◦ k + f ◦ k′ = Hom(x, f)(k) + Hom(x, f)(k′).

The proof that the functor is additive is similar:

Hom(x, f + f ′)(k) = (f + f ′) ◦ k = f ◦ k + f ′ ◦ k = Hom(x, f) + Hom(x, f ′).

From now on if A is an additive category, we will assume that for any x ∈ A, the codomain
of Hom(x,−) is Ab and not Set.

Example 2.2.23. If an additive functor is an equivalence of categories, then it is both
isomorphism reflecting and essentially surjective. However, if an additive functor is both
isomorphism reflecting and essentially surjective, then it is not necessarily an equivalence of
categories. Let R be a ring. The category Mat(R) is given by the following information:

Ob = N,
Hom(m,n) = {m× n matrices with entries in R, and m,n ∈ N},

X ◦ Y = Y X.

We use the convention that a matrix with 0 columns or 0 rows is empty and acts like a zero
morphism. This category is additive with zero object 0. The addition on a hom-class is
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given by the usual addition of matrices. The biproduct of two objects is just the sum of the
corresponding natural numbers. Consider the functor:

F : Mat(Z)→Mat(Z2),

n 7→n,
[ai,j] 7→[ai,j].

This additive functor is both isomorphism reflecting and essentially surjective, but not an
equivalence of categories.

Definition 2.2.24 (Additive completion). Let C be a preadditive category. The additive
completion of C, denoted C+, is a category given by the following:

(a) Objects in C+ are ordered tuples of objects in C:

Ob C+ = {(a1, . . . , an) | n ∈ N, ai ∈ Ob C for all i}.

By a common convention, the case where n = 0 is called the empty tuple and is denoted
∅. In this setting, ∅ will serve as a zero object.

(b) Hom-classes are given by

HomC+((a1, . . . , an), (b1, . . . , bm)) = {[fi,j] | fi,j ∈ HomC(aj, bi), 1 ≤ i ≤ m, 1 ≤ j ≤ n},
HomC+(∅, x) = {0∅,x} for all x ∈ Ob C+,

HomC+(x,∅) = {0x,∅} for all x ∈ Ob C+.

(c) Composition is given by X ◦Y = Y X, where Y X denotes the usual matrix product in
the following sense: if X = [fi,j] (1 ≤ i ≤ m and 1 ≤ j ≤ n) and Y = [gi,j] (1 ≤ i ≤ n
and 1 ≤ j ≤ m′) are composable, then

[(XY )i,j] =

[
n∑
k=1

(fi,k ◦ gk,j)

]
.

Remark 2.2.25. If C is a preadditive category, then its additive completion is an additive
category. The biproduct is given by (a1, . . . , an)⊕ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm). The
zero object is ∅. Addition on the hom-classes of C+ is given by [fi,j] + [gi,j] = [fi,j + gi,j].
We now justify the the word “completion” by showing that the natural additive fully faithful
functor

F : C→ C+,

a 7→ (a) for all a ∈ C,

f 7→ [f ] for all f ∈ Mor C,

satisfies the property that for all additive functors G : C→ A where A is additive, there is
a unique (up to natural isomorphism) additive functor H : C+ → A such that H ◦ F = G.
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Existence is fairly obvious, simply fix biproducts in A and let H be defined by (a1, . . . , an) 7→
G(a1)⊕ · · · ⊕G(an) for all (a1, . . . an) ∈ C+. Now, suppose there is another additive functor
H ′ : C+ → A such that H ′ ◦ F = G. Let [fi,j] : (a1, . . . , an) → (b1, . . . bm) be an arbitrary
morphism in C+ with n,m > 0 (when n = 0 or m = 0, the morphism is a zero morphism
and the verification is quite straightforward). Define two matrices

Ci =



0bi,b1
...

0bi,bi−1

idbi
0bi,bi+1

...
0bi,bm


and Rj =

(
0a1,aj · · · 0aj−1,aj idaj 0aj+1,aj · · · 0an,aj

)

for i = 1, . . . ,m and j = 1, . . . , n. Note that

[fi,j] =
m∑
i=1

n∑
j=1

Ci
(
fi,j
)
Rj.

Also, note that the matrices

C ′i =
(
0b1,bi · · · 0bi−1,bi idbi 0bi+1,bi · · · 0bm,bi

)
and R′j =



0aj ,a1
· · ·

0aj ,aj−1

idaj
0aj ,aj+1

· · ·
0aj ,an


are respectively left inverses and right inverses for Ci andRj for i = 1, . . . ,m and j = 1, . . . , n.
The natural isomorphism between H and H ′ can now be summarized in the following com-
mutative diagram:

H(a1, . . . , an)
H([fi.j ]) //

α

��

H(b1, . . . , bm)

β

��
H ′(a1, . . . , an)

H′([fi.j ]) // H ′(b1, . . . , bm)

where α =
∑n

j=1H
′(R′j)H(Rj) and β =

∑m
i=1H

′(Ci)H(C ′i). Note that α and β are isomor-

phisms since α−1 =
∑n

j=1H(R′j)H
′(Rj) and β−1 =

∑m
i=1H(Ci)H

′(C ′i).

Remark 2.2.26. If A is an additive category and A+ is its additive completion, then, as a
direct consequence of the universal property, A and A+ are equivalent categories.
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Alternately, we may prove this assertion by noting that the additive functor F : A→ A+

given by a 7→ (a) and f 7→ [f ] is fully faithful. Then, F is essentially surjective because

(a1, . . . , an) ∼= (a1)⊕ · · · ⊕ (an) ∼= F (a1)⊕ · · · ⊕ F (an) ∼= F (a1 ⊕ · · · ⊕ an).

The last isomorphism above is by Lemma 2.2.20 as the functor is between two additive
categories.

2.3 The Krull-Schmidt Property

In this section, we give a more precise description of the split Grothendieck group of categories
that have a property called the Krull-Schmidt property. This property is useful because if a
category has the Krull-Schmidt property, then the split Grothendieck group of the category
admits a nice basis. We begin with a motivating example—the category of finitely generated
abelian groups.

Example 2.3.1. The split Grothendieck group of Abfg is isomorphic (as a group) to Z[x].
By the fundamental theorem of finitely generated abelian groups, we have that every finitely
generated abelian group is isomorphic to a group of the form Zn ⊕ Zq1 ⊕ · · · ⊕ Zqm where
q1, . . . , qm are not necessarily distinct powers of primes and n,m ∈ N. Furthermore, this
decomposition is unique up to permutation of the indices qi. Let p1, p2, . . . denote the primes
in increasing order, from which it follows that {[Z]} ∪ {[Zpji ] | i, j ∈ N+} freely generates

G0(Abfg,⊕). In other words, every element of the split Grothendieck group can be written
uniquely in the form

g = n0,0[Z] +
∞∑
i=1

∞∑
j=1

ni,j[Zqji ],

where all but finitely many integers ni,j are zero. One can verify that the map

G0(Abfg,⊕)→Z[x]

g 7→n0,0 + n1,1x+ n1,2x
2 + n2,1x

3 + n3,1x
4 + n2,2x

5 + n1,3x
6 + n1,4x

7 + · · · .

is a group isomorphism.

Definition 2.3.2 (Indecomposable object). Let C be a category with an initial object c.
An object a is indecomposable if whenever a ∼=

∐
i∈I bi where I is some index set, then there

is a unique index j ∈ I such that a ∼= bj and bi ∼= c for all i 6= j.

Lemma 2.3.3. An initial object is not indecomposable.

Proof. Let c ∈ C be initial. By Remark 1.3.8, we have c ∼= c
∐
c. Hence, the object c cannot

satisfy the uniqueness of the index j in Definition 2.3.2 since c is isomorphic to both the first
and second instance of c.

Example 2.3.4. In Abfg, any group of the form Zq where q is a power of a prime is
indecomposable. The trivial group {ε} is not indecomposable because it is an initial object.
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Definition 2.3.5 (Krull-Schmidt property). An additive category C has the Krull-Schmidt
property if the following hold:

(a) Every object in C is isomorphic to a1 ⊕ · · · ⊕ an for some n ∈ N and indecomposable
objects a1, . . . , an ∈ C. By convention, the zero object is isomorphic to the case of
n = 0.

(b) For any m ∈ N and indecomposable objects b1, . . . , bm we have

n⊕
i=1

ai ∼=
m⊕
i=1

bi =⇒ n = m and ai ∼= bρ(i) for all i,

where ρ is some permutation of the indices.

Theorem 2.3.6. Let A be an essentially small additive category in which the Krull-Schmidt
property holds and let S denote the set of equivalence classes of indecomposable objects in
A. Then, S is a basis of the split Grothendieck group G0(A,⊕).

Proof. Let X =
∑n

i=1 αi[xi] be an arbitrary element of G0(A,⊕). By the Krull-Schmidt
property, we have

[xi] =

[
mi⊕
j=1

ai,j

]
=

mi∑
j=1

[ai,j],

where ai,j are indecomposable objects for all i and j. Since

X =
n∑
i=1

αi

mi∑
j=1

[ai,j],

we have that X ∈ 〈S〉. Since α[a] =
∑α

i=1[a] when α > 0, let A =
∑n

i=1[ai] −
∑n′

i=1[a
′
i] and

B =
∑m

i=1[bi]−
∑m′

i=1[b
′
i] be arbitrary elements of G0(A,⊕) where n, n′,m,m′ ∈ N and ai, a

′
i,

bi, and b′i are indecompsable for all applicable i. Without loss of generality, we do not have
ai ∼= a′j or bi ∼= b′j for any applicable i or j (since summands that appear in both sums can
be cancelled out). Then,

A = B =⇒

[(
n⊕
i=1

ai

)
⊕

(
m′⊕
i=1

b′i

)]
=

[(
n′⊕
i=1

a′i

)
⊕

(
m⊕
i=1

bi

)]
Hence, by Lemma 2.1.16(b), we have(

n⊕
i=1

ai

)
⊕

(
m′⊕
i=1

b′i

)
⊕ c ∼=

(
n′⊕
i=1

a′i

)
⊕

(
m⊕
i=1

bi

)
⊕ c

for some c ∈ Ob A. By the Krull-Shmidt property, c ∼=
⊕r

i=1 ci where r ∈ N and ci is
indecomposable for all i. So,(

n⊕
i=1

ai

)
⊕

(
m′⊕
i=1

b′i

)
⊕

(
r⊕
i=1

ci

)
∼=

(
n′⊕
i=1

a′i

)
⊕

(
m⊕
i=1

bi

)
⊕

(
r⊕
i=1

ci

)

42



We apply the Krull-Shmidt property again and thus, n + m′ = n′ + m. Furthermore, each
indecomposable object on one side is isomorphic to one on the other. Clearly, ci ∼= ci for
i = 1, . . . , r. Since we declared that ai ∼= a′j for no applicable i and j, we must have ai ∼= bj
for some i and j. We conclude that A and B only differ by the order of the summands.
Hence, S is a basis for G0(A,⊕).

Definition 2.3.7 (Endomorphism, idempotent). A morphism f is an endomorphism if
dom(f) = cod(f). An endomorphism is an idempotent if f ◦ f = f .

Definition 2.3.8 (Invariant basis number (IBN), IBN category). A ring R satisfies the
invariant basis number (IBN) property if whenever Rn ∼= Rm in R-Mod with n,m ∈ N,
then n = m.

Let FR denote the full subcategory of R-Mod consisting of finitely generated free left
R-modules. An IBN category is an essentially small additive category where all idempotents
have a kernel and, in addition, is equivalent to FR for some ring R that satisfies the (IBN)
property.

Example 2.3.9. Any non-trivial commutative ring satisfies the IBN property. For any
non-trivial field K, the category FinVectK is clearly an IBN category.

Definition 2.3.10 (Coproduct category). Let {Cj | j ∈ J} be a collection of categories.
We define the coproduct category of these categories, denoted

∐
j∈J Cj, as follows:

Ob
∐
j∈J

Cj = {(j, c) | j ∈ J and c ∈ Cj}

Hom∐
j∈J Cj

((j, c), (j′, c′)) =

{
HomCj

(c, c′) if j = j′

∅ if j 6= j′

where composition is given by composition on Cj for all j.

Theorem 2.3.11. Let C be an essentially small additive category where all idempotents
have a kernel. The following are equivalent:

(a) There is some family {Ci | i ∈ I} of IBN categories and an additive functor F : C→∐
i∈I Ci that is essentially surjective and isomorphism reflecting.

(b) The split Grothendieck group G0(C,⊕) is free.

(c) The category C has the Krull-Schmidt property.

Proof. The details of the proof are beyond the scope of this paper. We refer the interested
reader to [7, p. 127].
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2.4 Abelian Categories

In this section, we examine Grothendieck groups of abelian categories, which are additive
categories with some extra structure, and show that the Grothendieck group of an abelian
category is a quotient of the split Grothendieck group (of the same category regarded as an
additive category).

Definition 2.4.1 (Abelian category). A category A is abelian if the following hold:

(AB1) The category A is additive.

(AB2) Every morphism in Mor A has both a kernel and a cokernel.

(AB3) Every monomorphism in Mor A is a kernel and every epimorphism in Mor A is a
cokernel.

Proposition 2.4.2. Abelian categories are balanced.

Proof. Let h : a → b be a bimorphism. By Lemma 1.2.19, ker(h) = 00,a. Note also that
coker(00,a) = h. Now, ida ◦00,a = 00,a, so there exists a unique morphism g satisfying
g ◦h = ida. In addition, (h◦g)◦h = h and, since h is a bimorphism, we have h◦g = idb.

Recall that a sequence is a set with a bijection to a countable totally ordered set called
the index set. In some areas of mathematics, such as analysis, it is common to restrict the
choice of index sets to subsets of N. For us, it will be more convenient to instead use subsets
of Z, as this better suits the diagrams that follow.

Definition 2.4.3 (Exact sequence, short exact sequence). Let A be an abelian category. A
exact sequence is a sequence of arrows

· · · fi−1−−→ ai
fi−→ ai+1

fi+1−−→ ai+2
fi+2−−→ · · · (2.4.1)

such that ker(fi+1) = fi. A short exact sequence is an exact sequence of the form

· · · → 0→ a
f→ b

g→ c→ 0→ · · · .

We will write simply,

0→ a
f→ b

g→ c→ 0.

Remark 2.4.4. In a short exact sequence 0 → a
f→ b

g→ c → 0, the morphism f is a
monomorphism and the morphism g is an epimorphism. This fact follows from the definition
of kernel and the fact that the unnamed morphisms are zero morphisms.

Remark 2.4.5. In Grp, Definition 2.4.3 implies that an exact sequence is a sequence of
arrows (2.4.1) such that ker(fi+1) = im(fi) where ker and im are the traditional kernel and
image. By Proposition 1.2.29, the kernel of a morphism f can be identified with the inclusion
map from the traditional kernel to the domain of f . Hence, im(i) = ker(f) where ker and
im are the tradition kernel and image. The same is true for many other categories including
Ab, FinAb, and VectK.
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Lemma 2.4.6. Let A be an abelian category. For any morphisms g : b→ c and g′ : b′ → c′,
we have ker(g ⊕ g′) ∼= ker(g)⊕ ker(g′).

Proof. The statement follows from Theorem 3.3.1 and the equivalent statement for modules.
The following is an alternate proof. Let ker(g) = f and ker(g′) = f ′ and let dom(f) = a and
dom(f ′) = a′. Fix the obvious notation for biproducts a⊕ a′, b⊕ b′ and c⊕ c′. Since ⊕ is a
binary operation on A, we have, by Lemma 2.1.2(b),

(g ⊕ g′) ◦ (f ⊕ f ′) = (g ◦ f)⊕ (g′ ◦ f ′) = 0a,c ⊕ 0a′,c′ = 0a⊕a′,c⊕c′

Suppose for some morphism k : d→ b⊕ b′, we have (g ⊕ g′) ◦ k = 0. Applying pc and pc′ to
this equality, we get g ◦ (pb ◦ k) = 0 and g′ ◦ (pb′ ◦ k) = 0 respectively. By definition of the
kernel of g, there are morphisms ua : d → a and ua′ : d → a′ such that f ◦ ua = pb ◦ k and
f ′ ◦ ua′ = pb′ ◦ k. Thus,

(f ⊕ f ′) ◦ (ia ◦ ua + ia′ ◦ ua′) = ib ◦ f ◦ ua + ib′ ◦ f ′ ◦ ua′ = k.

Suppose for some w we have (f ⊕ f ′) ◦w = k. Since g ◦ (f ◦ pa ◦w) = 0, we have pa ◦w = ua
by uniqueness of the factoring morphism in the definition of kernel of g. Similarly, pa′ ◦w =
ua′ . Hence, w = ia ◦ ua + ia′ ◦ ua′ . The statement follows since kernels are unique up to
isomorphism.

Corollary 2.4.7. If

· · · fi−1−−→ ai
fi−→ ai+1

fi+1−−→ ai+2
fi+2−−→ · · ·

and
· · · gi−1−−→ bi

gi−→ bi+1
gi+1−−→ bi+2

gi+2−−→ · · ·

are exact sequences, then their biproduct sequence

· · · fi−1⊕gi−1−−−−−−→ ai ⊕ bi
fi⊕gi−−−→ ai+1 ⊕ bi+1

fi+1⊕gi+1−−−−−−→ ai+2 ⊕ bi+2
fi+2⊕gi+2−−−−−−→ · · ·

is an exact sequence.

Example 2.4.8. Fix a vector space K and consider FinVectK. Recall that the Rank-
Nullity Theorem states that for any K-linear map T : V → W , we have that dimK V =
dimK(imT ) + dimK(kerT ). It follows that any short exact sequence 0→ V1 → V2 → V3 → 0
in FinVectK satisfies the property that dimK V2 = dimK V1 + dimK V3.

Example 2.4.9. In Ab, if

0→ A
f−→ B

g−→ C → 0

is a short exact sequence, then C ∼= B/A (identifying A with im f since f is injective).
Denoting the order of a group G by o(G), we have in FinAb as a consequence of the First
Isomorphism Theorem that o(B) = o(A) · o(C).
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Definition 2.4.10 (Additive function). A map ψ from Ob C into an abelian group is called
additive if for every exact sequence

0→ a→ b→ c→ 0

we have that ψ(b) = ψ(a) + ψ(c).

Definition 2.4.11. The rank of a finitely generated abelian group G, denoted Rank(G), is
the maximum cardinality of a linearly independent set of elements over Z. It follows that
every element of such a set must be free in the group, and that every free element in the
group must be a linear combination of elements in this set. If Ob C consists of abelian
groups, then we will also use Rank to denote the following group homomorphism defined by
how it acts on its generators:

Giso(C)→Z
[G] 7→Rank(G).

Since any two isomorphic abelian groups share the same rank, this group homomorphism is
well defined.

Lemma 2.4.12. The map Rank is additive on Abfg.

Proof. For this example, let all tensor products be over Z. For any G ∈ Abfg, the tensor
productQ⊗G is aQmodule where r(q⊗g) = (rq⊗g) where r, q ∈ Q and g ∈ G. If f : G→ H
is a group homomorphism, then f : Q ⊗ G → Q ⊗ H is a Q-module homomorphism given
by f(q ⊗ g) = q ⊗ f(g) and extended by linearity. Now, if 0 → G → H → K → 0 is a
short exact sequence in Abfg, then 0 → Q ⊗ G → Q ⊗ H → Q ⊗ K → 0 is a short exact
sequence in Q-Mod. To show this, note that any tensor of the form Q ⊗ G where G is a
group is rank one since dimQQ = 1. Next, let f : H → K be a group homomorphism and
let f ′ : Q⊗H → Q⊗K be its corresponding Q-module homomorphism. Note that

q ⊗ g ∈ ker(f ′) ⇐⇒ q = 0 or nf(g) = 0 for some n ∈ N.

If q = 0, then q⊗g = 0 = q⊗0 ∈ Q⊗ker(f). If nf(g) = 0, then q⊗g = q
n
⊗ng ∈ Q⊗ker(f).

The converse that q ⊗ g ∈ Q ⊗ ker(f) means that q ⊗ g ∈ ker(f ′) is obvious. Hence,
ker(f ′) = Q ⊗ ker(f). Note that Rank(G) = dimQ(Q ⊗ G). Since Q is a field, the Rank-
Nullity Theorem applies.

Definition 2.4.13 (Grothendieck group of an abelian category). Let A be an essentially
small abelian category. Define N0(A) E Giso(A) to be the (normal) subgroup generated by
{[b] − [a] − [c] | 0 → a → b → c → 0 is a short exact sequence}. The Grothendieck group
G0(A) of A is the quotient group Giso(A)/N0(A). By a common abuse of terminology, we
will write [a] to mean the image of the isomorphism class of [a] in G0(A) when this will not
cause confusion. It follows that for every short exact sequence 0→ a→ b→ c→ 0, we have
the relation [b]− [a]− [c] = 0 (or equivalently, [b] = [a] + [c]) in G0(A).
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We will henceforth assume all categories discussed are essentially small, unless otherwise
specified.

Proposition 2.4.14. The Grothendieck group G0(A) of an abelian category A satisfies the
following universal property. Let ϕ : Ob A → G0(A) be the natural map a 7→ [a] for all
a ∈ Ob A. For every additive function ψ : Ob A→ H where H is an abelian group there is
a unique group homomorphism θ : G0(A) → H such that θ ◦ ϕ = ψ. This statement can be
summarized by the following commutative diagram:

Ob A

ϕ

��

ψ // H

G0(A)
θ

;;

Proof. The morphism θ : G0(A) → H given by θ([a]) = ψ(a) and extended by linearity is
well defined on Giso(A) because if a ∼= b then

0→ 0→ a→ b→ 0

is an exact sequence so ψ(a) = ψ(b). Clearly, for any short exact sequence 0 → a → b →
c→ 0 we have θ([b]− [a]− [c]) = ψ(b)− ψ(a)− ψ(c) = 0 and so θ is well defined on G0(A).
Note that θ ◦ ϕ = ψ. Now, if θ′ is a group homomorphism that also satisfies θ′ ◦ ϕ = ψ we
see that

θ′([a]) = (θ′ ◦ ϕ)(a) = ψ(a) = (θ ◦ ϕ)(a) = θ(a)

and, thus, the group homomorphism is unique.

Proposition 2.4.15. Let A be an abelian category. Let a, b ∈ Ob A. There are morphisms
ia and pb such that

0→ a
ia→ a⊕ b pb→ b→ 0 (2.4.2)

is an exact sequence.

Proof. Let A be an abelian category. Let a, b ∈ A. We aim to show that ker(pb) ∼= ia where
pb and ia are the morphisms in the definition of biproduct. By definition, pb ◦ ia = 0ab. Now,
suppose there is some k : c→ a⊕ b such that pb ◦ k = 0cb. Note that the following diagram
commutes:

c

k
��

pa◦k

||

0cb

""
a a⊕ bpaoo pb // b

Since ia ◦ pa ◦ k also makes this diagram commute in place of k, we have k = ia ◦ (pa ◦ k).
Suppose for some h : c → a we also have k = ia ◦ h. Then, h = pa ◦ ia ◦ h = pa ◦ k so
the morphism is unique. Hence, ker(pb) ∼= ia. We leave it to the reader to verify that
ker(ia) ∼= 00,a and ker(0c,0) ∼= pb. Therefore, (2.4.2) is an exact sequence.
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Corollary 2.4.16. Let A be an abelian category. The Grothendieck group G0(A) is a quo-
tient of the split Grothendieck group G0(A,⊕).

Lemma 2.4.17. Let A be an essentially small abelian category and let 0 be its zero object.
Then, [0] is the identity element of G0(A).

Proof. For every C ∈ C we have the short exact sequence:

0→ C
idC→ C → 0→ 0

Hence, [C] = [C] + [0]. Since G0(A) is generated by the elements [C] where C ∈ A, all
elements of G0(A) are of the form m1[C1] + . . . +mn[Cn] for some integers m1, . . . ,mn and
some (not necessarily distinct) objects C1, . . . , Cn of A. We thus have for all elements of
G0(A):

[0] +m1[C1] + . . .+mn[Cn] = [0] + [C1] + (m1 − 1)[C1] + . . .+mn[Cn]

= m1[C1] + . . .+mn[Cn]

Lemma 2.4.18. Let A be an abelian category. Then, for every short exact sequence 0 →
A→ B → C → 0 and any object D ∈ A, there exist short exact sequences

0→ A⊕D → B ⊕D → C → 0

and
0→ A→ B ⊕D → C ⊕D → 0.

Proof. We apply Corollary 2.4.7 to 0 → A → B → C → 0 together with 0 → D
id→ D →

0→ 0 and 0→ 0→ D
id→ D → 0, respectively.

Proposition 2.4.19. Let A be an abelian category with A,B ∈ A. Then, the following are
equivalent:

(a) [A] = [B] in G0(A).

(b) There exist objects C,U, V such that

0→ U → A⊕ C → V → 0

and
0→ U → B ⊕ C → V → 0

are short exact sequences.

Proof. Assume first that (b) holds. Then, we have

[A] + [C] = [A⊕ C] = [U ] + [V ] = [B ⊕ C] = [B] + [C],

and thus, [A] = [B].
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Now assume that (a) holds. Then, [A]− [B] ∈ N0(A), so there exist nonnegative integers
n,m and exact sequences

0→ Xi → Yi → Zi → 0,

0→ X ′j → Y ′j → Z ′j → 0,

for all 0 ≤ i ≤ n and all 0 ≤ j ≤ m giving us the following equation in Giso(A):

[A]− [B] =
n∑
i=0

([Yi]− [Xi]− [Zi])−
m∑
j=0

([Y ′j ]− [X ′j]− [Z ′j]).

Rearranging terms to eliminate negative expressions, we obtain

[A] +
n∑
i=0

[Yi] +
m∑
j=0

([X ′j] + [Z ′j]) = [B] +
n∑
i=0

[Y ′i ] +
m∑
j=0

([Xj] + [Zj]) (2.4.3)

Now define

X =
n⊕
i=0

Xi, Y =
n⊕
i=0

Yi, Z =
n⊕
i=0

Zi,

X ′ =
m⊕
j=0

X ′i, Y ′ =
m⊕
j=0

Y ′i , Z ′ =
m⊕
j=0

Z ′i.

By similar reasoning as in Lemma 2.1.16(b), we conclude from (2.4.3) that

A⊕ Y ⊕X ′ ⊕ Z ′ ∼= B ⊕ Y ′ ⊕X ⊕ Z. (2.4.4)

By Corollary 2.4.7, we have short exact sequences:

0→ X → Y → Z → 0 (2.4.5)

and
0→ X ′ → Y ′ → Z ′ → 0. (2.4.6)

Applying Lemma 2.4.18 to (2.4.5), we obtain a short exact sequence

0→ X ⊕X ′ → Y ⊕X ′ → Z → 0,

and applying Lemma 2.4.18 again we obtain another short exact sequence

0→ X ⊕X ′ → (Y ⊕X ′)⊕ (A⊕B ⊕ Z ′)→ Z ⊕ (A⊕B ⊕ Z ′)→ 0,

which we rearrange to become

0→ X ⊕X ′ → B ⊕ (A⊕ Y ⊕X ′ ⊕ Z ′)→ B ⊕ A⊕ Z ⊕ Z ′ → 0.

Now setting U = X ⊕X ′, C = A ⊕ Y ⊕X ′ ⊕ Z ′, V = B ⊕ A ⊕ Z ⊕ Z ′, the last sequence
above becomes

0→ U → B ⊕ C → V → 0.

Similarly, applying Lemma 2.4.18 to (2.4.6) together with the isomorphism (2.4.4), we obtain
a short exact sequence

0→ U → A⊕ C → V → 0.
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Example 2.4.20. The Grothendieck group G0(Abfg) is isomorphic to Z as a group. By
Proposition 2.4.15, we have [Zn] = [

⊕n
i=1 Z] = n[Z]. For every n ∈ N+,

0→ Z n·−→ Z mod n−−−−−→ Zn → 0.

is a short exact sequence. Hence, [Zn] = 0 for all n > 0. We have shown in Lemma 2.4.12
that the group homomorphism

Giso(Abfg)
Rank−−−→ Z

is additive, so clearly N0(Abfg) ⊆ ker(Rank). Suppose x ∈ ker(Rank). By what we have
noted thus far, x = α[Z] in G0(Abfg) for some integer α. Since 0 = Rank(x) = αRank([Z]) =
α, we have x ∈ N0(Abfg). Hence, ker(Rank) = N0(Abfg). Furthermore, since Rank is
surjective (n[Z] 7→ n), we have by the First Isomorphism Theorem ([19, p. 135]):

G0(Abfg) = Giso(Abfg)/ ker(Rank) ∼= Z.

Example 2.4.21. The Grothendieck group G0(FinAb) is isomorphic to Z[x] as a group.
Let pi denote the primes in increasing order. Consider the group homomorphism (additive
with respect to biproduct) defined by its action on generators of Giso(FinAb):

Card: Giso(FinAb)→Z[x],

[G] 7→r0 + r1x+ r2x
2 + · · · ,

where |G| = pr00 p
r1
1 · · · . This is well-defined because isomorphic groups share the same

order and the natural numbers with multiplication form a free commutative monoid. By
Example 2.4.9, we have Card([B]− [A]− [C]) = Card([B])−Card([A])−Card([B/A]) = 0.
Therefore, we have N0(FinAb) ⊆ ker Card. For the other inclusion, we observe that any
nontrivial element in FinAb can be written uniquely in the form

⊕r
i=1 Zqi where qi are

powers of primes and r ∈ N (up to isomorphism and up to permutation of the qi). So, since
G0(FinAb) is a quotient of G0(FinAb,⊕), the set {[Zq] | q is a power of a prime} generates
G0(FinAb). Furthermore, for any prime p and k ∈ N+,

0→ Zp
pk−1·−−−→ Zpk

mod p−−−−→ Zpk−1 → 0 (2.4.7)

is a short exact sequence. Hence, the finite abelian groups of prime order generateG0(FinAb).
Suppose now that x ∈ Giso(FinAb) and Card(x) = 0. Then, for some integers αi, we have
x = α0[Zp0 ] + α1[Zp1 ] + · · · in G0(FinAb) and hence, Card(x) = α0 + α1x + α2x

2 · · · =
0 =⇒ α0 = α1 = · · · = 0 =⇒ x = 0. Thus, ker(Card) = N0(FinAb) and so by the First
Isomorphism Theorem:

G0(FinAb) = Giso(FinAb)/ ker(Card) ∼= Z[x].

Example 2.4.22. Fix a fieldK. We show thatG0(FinVectK) ∼= Z. Elements ofGiso(FinVectK)
are of the form

∑n
i=1 ai[Vi] with ai ∈ Z and n ∈ N+. Define a map:

ν : Giso(FinVectK)→ Z,
n∑
i=1

ai[Vi] 7→
n∑
i=1

ai(dimK Vi).
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As the reader should verify, ν is a group homomorphism. We claim that ker(ν) = N0(FinVectK).
It follows from Example 2.4.8 that any generator of N0(FinVectK) as in Definition 2.4.13

is mapped to 0 by ν. Thus, N0(FinVectK) ⊆ ker(ν).
It follows from Proposition 2.4.15 that, in G0(FinVectK), [Kn] = [

⊕n
i=1K] = n[K] for

every n ∈ N+, so G0(FinVectK) is generated by [K]. Now consider y ∈ ker(ν). We have
that y = m[K] in G0(FinVectK) for some m ∈ Z, so 0 = ν(y) = m(ν[K]) = m and so
y ∈ N0(FinVectK). Hence, ker(ν) = N0(FinVectK). It is clear that ν is surjective. Thus,
by the First Isomorphism Theorem, G0(FinVectK) = Giso(FinVectK)/N0(FinVectK) ∼= Z.

2.5 The Jordan-Hölder Theorem

Just as in the case of additive categories with the Krull-Schmidt property, certain abelian
categories whose Grothendieck groups admit a nice bases can be similarly described. We
will prove the category-theoretic version of the Jordan-Hölder Theorem, which leads to the
main result of this section. We begin by continuing where we left off in Section 1.4, with the
dual notion of a subobject.

Definition 2.5.1 (Quotient object). Let C be a category and let A ∈ C. A quotient object
of A is a class of equivalent epimorphisms with domain A. If e : A→ B is a representative of
a quotient object, we will often refer to the object B as a quotient object. If S is a subobject
of A, then for a short exact sequence 0→ S → A→ C → 0, C is a quotient object of A and
we write C = A/S.

Definition 2.5.2 (Filtration, composition series, composition factor). Let C be an abelian
category with A ∈ C. A filtration for A is a descending chain

A = A0 ⊇ A1 ⊇ . . . ⊇ An = 0

such that Ai+1 is a subobject of Ai for each i. If Ai/Ai+1 is a simple object for each i, then
the filtration is called a composition series , the objects Ai/Ai+1 are called the composition
factors of the series, and the nonnegative integer n is called the length of the composition
series.

Definition 2.5.3 (Equivalent composition series). Two composition series of an object are
equivalent if they have equal length and their composition factors are isomorphic up to
permutation.

Example 2.5.4. Consider Ab. Let G = Z12, H6 = {0̄, 2̄, 4̄, 6̄, 8̄, 1̄0}, H4 = {0̄, 3̄, 6̄, 9̄},
H3 = {0̄, 4̄, 8̄}, and H2 = {0̄, 6̄}. Then, G has three equivalent composition series, with the
corresponding composition factors in order, as follows:

Composition Series Composition Factors

Z12 ⊇ H6 ⊇ H3 ⊇ {0̄} Z2,Z2,Z3

Z12 ⊇ H6 ⊇ H2 ⊇ {0̄} Z2,Z3,Z2

Z12 ⊇ H4 ⊇ H2 ⊇ {0̄} Z3,Z2,Z2

51



Definition 2.5.5 (Artinian/noetherian category, finite length). An abelian category C is
artinian if for all A ∈ C, every descending chain of subobjects

A = A0 ⊇ A1 ⊇ A2 ⊇ · · ·

becomes stationary (that is, satisfies the property that, for some i ∈ N, Ai ∼= Aj for all
j ≥ i). Similarily, C is noetherian if for all A ∈ C, every ascending chain of subobjects

A0 ⊆ A1 ⊆ · · · ⊆ A

becomes stationary. A category which is both artinian and noetherian is said to have finite
length.

Lemma 2.5.6. Every nonzero object in a noetherian category has a maximal subobject.

Proof. Let C be a noetherian category. Suppose, on the contrary, that a nonzero object
A ∈ C has no maximal subobject. In particular, A must have a nontrivial subobject A0,
else 0 is a maximal subobject. We form a chain

0 ( A0 ( A.

Since A0 is not a maximal subobject of A, there exists an A1 ∈ C such that our chain can
be refined to

0 ( A0 ( A1 ( A.

We iterate this process and form an infinite ascending chain that does not become stationary,
contradicting the fact that C is noetherian. Hence, A must have a maximal subobject.

Proposition 2.5.7. Let A,B ∈ C. Then B is a maximal subobject of A if and only if the
quotient A/B is a simple object.

Proof. While the statement of this proposition is a generalization of the analogous statement
for modules, the details of the proof are quite involved. We will prove only the reverse
implication and refer the reader to references in the literature for justification of certain
steps of the argument.

Let m : B → A be a maximal subobject of A. By definition, m is not an isomorphism
and the existence of an object B′ together with monomorphisms m1,m2

B
m1 //

m

  
B′

m2 // A

sitting in a commutative diagram imply that either m1 or m2 is an isomorphism and that
the other is thus equivalent to m. We have, by definition, a short exact sequence

0→ B
m→ A

n→ A/B → 0

wherein n is the cokernel of m (and hence n is an epimorphism). Note that since m is not
an isomorphism, A/B 6= 0. Let s : T → A/B be a monomorphism. By [10, Lemma 2.1.5],
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pullbacks always exist in abelian categories, so there exists an object P with morphisms
s′ : P → A and n′ : P → T which gives us a pullback square

P

s′

��

n′ // T

s
��

A n
// A/B

Since s is a monomorphism in an abelian category, it is a kernel; so by Lemma 1.3.12, s′ is
a kernel and hence also a monomorphism. Since n is an epimorphism, then by [15, p. 203,
Proposition 2], our pullback square is also a pushout square and so n′ is an epimorphism.
By [23, Lemma 3.2], pullbacks preserve kernels, so there is a morphism m′ : B → P such
that m′ is the kernel of n′ and which gives us the commutative diagram:

P

s′

��

n′ // T

s
��

B

m′
??

m
// A n

// A/B

Since m : B → A is a maximal subobject, either s′ or m′ is an isomorphism.
If m′ is an isomorphism, then we have that s ◦n′ = n ◦ s′ = n ◦m ◦ (m′)−1 = 0P,A/B. This

gives us s ◦ n′ = 0P,A/B = 0T,A/B ◦ n′ and hence s = 0T,B/A since n′ is an epimorphism.
If, on the other hand, s′ is an isomorphism, then s′ is both a kernel and a cokernel; hence

s is both a kernel and a cokernel (as our square is both a pullback and a pushout), and so s is
a bimorphism. Since abelian categories are balanced, this gives us that s is an isomorphism.

Therefore, s is either a zero morphism or an isomorphism, so the quotient object A/B is
simple.

Lemma 2.5.8. Let C be an abelian category and let A,B,C ∈ C. If A,B are both subobjects
of C, then the follow hold:

(a) The following diagram is commutative, and every row and column is a short exact
sequence:

0

��

0

��

0

��
0 // A ∩B

��

// B

��

// B/(A ∩B)

��

// 0

0 // A

��

// A ∪B

��

// (A ∪B)/A

��

// 0

0 // A/(A ∩B)

��

// (A ∪B)/B

��

// 0

��

// 0

0 0 0

In particular, we have that (A ∪B)/B ∼= A/(A ∩B) and (A ∪B)/A ∼= B/(A ∩B).
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(b) If A and B are nonequivalent subobjects and C/A and C/B are simple, then C = A∪B.

(c) If A = A0 ⊇ A1 ⊇ . . . ⊇ An = 0 is a composition series for A and B is a subobject of
A such that A/B is simple, then A1 ∩B has a composition series.

Proof. We refer the reader to [20, pp. 172–175] for proof of these assertions.

Theorem 2.5.9 (Jordan-Hölder Theorem). Let C be an abelian category and A ∈ C. Then,
the following hold:

(a) If A has a composition series, then any other composition series for A is equivalent.

(b) If C is of finite length, then A has a composition series.

Proof. The proof is, using the categorical analogues of various module-theoretic definitions
and results that we have developed, a generalization of the proof of the Jordan-Hölder
Theorem for modules (see, for instance, [22, Theorems 8.15–8.18]). Throughout this proof,
we shall use ∼ to denote equivalence of composition series.

We prove (a) by induction on the length of composition series. If A has a composition
series of length 0 or 1, then A is the zero object or is simple respectively, and the result is
clear. Assume now that for some n ∈ N+, if an object has a composition series of length
≤ n− 1, then all other composition series for it are equivalent. Now let

S1 : A = B0 ⊇ B1 ⊇ . . . ⊇ Bn = 0

and
S2 : A = C0 ⊇ C1 ⊇ . . . ⊇ Cm = 0

be two composition series for A. If B1 and C1 are equivalent subobjects of A, then since
the theorem already holds for objects with series of length at most n− 1 (i.e. for S ′1 : B1 ⊇
. . . ⊇ Bn = 0), we have that S ′2 : C1 ⊇ . . . ⊇ Cm = 0 is equivalent to S ′1 and we are done.
Now suppose that B1 and C1 are not equivalent. By part (b) of Lemma 2.5.8, A = B1 ∪C1,
and so by part (a) of Lemma 2.5.8, A/B1

∼= C1/(B1 ∩ C1) and A/C1
∼= B1/(B1 ∩ C1). In

particular, C1/(B1 ∩C1) and B1/(B1 ∩C1) are simple. By part (c) of Lemma 2.5.8, B1 ∩C1

has some composition series L : B1 ∩ C1 ⊇ L0 ⊇ . . . ⊇ Ls = 0. Now consider the following
composition series for A:

T1 : A = B0 ⊇ B1 ⊇ B1 ∩ C1 ⊇ L0 ⊇ . . . ⊇ Ls = 0

and
T2 : A = B0 ⊇ C1 ⊇ B1 ∩ C1 ⊇ L0 ⊇ . . . ⊇ Ls = 0.

We will denote the corresponding composition series for B1 and C1 by T ′1 and T ′2 the same
way as we did for S1 and S2. We form the diagram:

S1 : 0 = Bn
// Bn−1 // . . . // B2

// B1

&&
T1 & T2 : 0 = Ls // Ls−1 // . . . // B1 ∩ C1

;;

$$

B1 ∪ C1 = A

S2 : 0 = Cm // Cm−1 // . . . // C2
// C1

88
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Since the theorem already holds for B1, we have that S ′1 ∼ T ′1. But then, T ′2 also has length
n − 1 and so S ′2 ∼ T ′2 and we have n = m. It follows directly that S1 ∼ T1 and S2 ∼ T2.
We see that T1 and T2 differ only by the two rightmost factors in the above diagram, which
we have already noted are isomorphic, hence T1 ∼ T2. Thus, we have S1 ∼ T1 ∼ T2 ∼ S2,
so S1 and S2 are equivalent. Since A, S1, and S2 were arbitrary, the result holds for any
object with a composition series of length ≤ n, which completes the inductive step of the
argument.

We now prove (b). Let C be a category of finite length with A ∈ C. If A is the zero
object or is simple, then A has a composition series of length 0 or 1 respectively, and we are
done. Now assume that A is nonzero and not simple. Then, since C is noetherian, we have
by Lemma 2.5.6 that A has a maximal nonzero subobject A1, and by Proposition 2.5.7 that
A/A1 is a simple object. We form a chain

A ⊇ A1.

If A1 is simple, then we are done. Otherwise, A1 must have a maximal nonzero subobject
A2 whence A1/A2 is again simple, and our chain becomes

A ⊇ A1 ⊇ A2.

If A2 is simple, then we are done. We continue this way, and since C is also artinian, this
chain must become stationary – that is, for some i ∈ N+, we must have that Ai is simple (i.e.
the maximal subobject of Ai is 0). Thus, all objects in an abelian category of finite length
must have a composition series, which together with part (a) of the theorem, is unique up
to equivalence.

Theorem 2.5.10. Let C be an abelian category of finite length. Then,

S = {[Si] | Si is a simple object in C}

is a basis for G0(C).

Proof. The proof is a generalization of the case of categories of modules that satisfy the
Jordan-Hölder property (see Theorem 3.3.1). We will give a proof that S generates G0(C)
and refer readers interested in the linear independence of S to [22, Theorem 7.87] for details
in the case of categories of modules.

Let A be an arbitrary object in C. Let S : A = A0 ⊇ A1 ⊇ · · · ⊇ An = 0 be a composition
series for A, whose existence is guaranteed by and whose length is uniquely determined by
the Jordan-Hölder Theorem. If S has length 0, then A is the zero object and there is nothing
to prove.

Now assume S has length n ≥ 1 and write Hi = Ai/Ai+1 for all 0 ≤ i ≤ n− 1. We claim
that [An−i] = [Hn−i] + · · ·+ [Hn−1] for all 1 ≤ i ≤ n. We will prove this claim by induction
on i.

The case of i = 1 is clear; [An−1] = [An−1/0] = [An−1/An] = [Hn−1]. Suppose now that
the result holds for some 1 ≤ j ≤ n − 1. We have the canonical short exact sequence
0 → An−j → An−(j+1) → Hn−(j+1) → 0, and hence [An−(j+1)] = [Hn−(j+1)] + [An−j] =

[Hn−(j+1)]+[Hn−j]+· · ·+[Hn−1]. Thus, [A] = [A0] =
∑n−1

i=0 [Hi] and so S generatesG0(C).
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2.6 Triangulated Categories

In this section, we provide the definition and some immediate properties of a triangulated
category. Then, we study some properties of the corresponding Grothendieck group. We
also briefly give the reader a motivating example of the homotopy category of an additive
category.

Definition 2.6.1 (Triangle). Let A be an additive category and let T : A → A be an
additive automorphism (an automorphism is an isomorphism that is an endomorphism). A
triangle is a sequence of morphisms of the form

a→ b→ c→ T (a).

Definition 2.6.2 (Triangulated category). A triangulated category is a triple (A, T,D)
consisting of an additive category A, an additive automorphism of categories T : A → A,
and a class D consisting of certain triangles, which we call distinguished triangles , that satisfy
the following axioms:

(TC1) For all objects a ∈ A, the triangle a
ida−→ a → 0 → T (a) is a distinguished triangle,

called the trivial distinguished triangle of a.

(TC2) Any morphism f : a→ b can be completed to a distinguished triangle a
f−→ b

g−→ c
h−→

T (a).

(TC3) Distinguished triangles are closed under isomorphism. That is, if a
f−→ b

g−→ c
h−→ T (a)

is a distinguished triangle and k : a → a′, r : b → b′ and s : c → c′ are isomorphisms,
then

a′
r◦f◦k−1

−−−−−→ b′
s◦g◦r−1

−−−−→ c′
T (k)◦h◦s−1

−−−−−−→ T (a′)

is also a distinguished triangle.

(TC4) The triangle a
f−→ b

g−→ c
h−→ T (a) is a distinguished triangle if and only if b

g−→ c
h−→

T (a)
−T (f)−−−→ T (b) is a distinguished triangle. Obtaining a triangle of the latter form

from the former or one of the former from the latter is known as shifting to the right
or to the left, respectively.

(TC5) If a
f−→ b

g−→ c
h−→ T (a) and a′

f ′−→ b′
g′−→ c′

h′−→ T (a′) are distinguished triangles and
there are morphisms k : a → a′ and r : b → b′ such that r ◦ f = f ′ ◦ k, then there
exists a (not necessarily unique) morphism u : c→ c′ such that the following diagram
commutes:

a
f

//

k

��

b g
//

r

��

c
h

//

u

��

T (a)

T (k)

��
a′

f ′ // b′
g′ // c′ h′ // T (a′)
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(TC6) If a
f−→ b

g−→ c′
h−→ T (a), b

j−→ c
k−→ a′

m−→ T (b), and a
j◦f−−→ c

n−→ b′
q−→ T (a) are

distinguished triangles, then there exists a triangle triangle c′
u−→ b′

v−→ a′
w−→ T (c′) such

that the following diagram commutes:

b
j

//

g

��

c

k

��

n

��
c′

h

��

u
// b′

q

��

v
// a′

m

��

w

��
T (a)

T (f)
// T (b)

T (g)
// T (c′)

We will often drop T and D from our notation and denote a triangulated category by simply
A when this will not cause confusion.

Lemma 2.6.3. Let A be a triangulated category and let a
f−→ b

g−→ c
h−→ T (a) be a distinguished

triangle. Then the morphisms g ◦ f and h ◦ g are zero morphisms.

Proof. By (TC4), the triangle b
g−→ c

h−→ T (a)
−T (f)−−−→ T (b) is a distinguished triangle. By

(TC1), c
idc−→ c → 0 → T (c) is a distinguished triangle. By (TC5), there is a morphism u

such that the following diagram commutes:

b g
//

g

��

c
h

//

idc

��

T (a)
−T (f)

//

u

��

T (b)

T (g)

��
c

idc
// c // 0 // T (c)

Hence, 0 = T (g) ◦ (−T (f)) = −T (g ◦ f) and since T is an automorphism, g ◦ f = 0. The
fact that h ◦ g = 0 follows from (TC4) and the same argument as before.

Lemma 2.6.4. Let A be a triangulated category and let x ∈ A. If a
f−→ b

g−→ c
h−→ T (a) is a

distinguished triangle, then

Hom(x, a)
Hom(x,f)−−−−−→ Hom(x, b)

Hom(x,g)−−−−−→ Hom(x, c)
Hom(x,h)−−−−−→ Hom(x, T (a))

Hom(x,T (f))−−−−−−−→ Hom(x, T (b))

is an exact sequence.

Proof. By (TC4), it suffices to prove that the sequence is exact at Hom(x, b). Let k : x→ b
and suppose Hom(x, g)(k) = 0x,c. By definition, this means g ◦ k = 0x,c. By (TC1) and
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(TC4), the rows of the following diagram are distinguished triangles and, by (TC5), there
exists a morphism r : x→ a that make the diagram commute:

x //

k

��

0 //

��

T (x)
−T (idx)

//

T (r)

��

T (x)

T (k)

��
b g

// c
h

// T (a)
−T (f)

// T (b)

In particular, f ◦ r = k and thus, Hom(x, f)(r) = k. For all k : x → b, we have shown
that if we have Hom(x, g)(k) = 0, then Hom(x, f)(r) = k for some r : x → a. For the
converse, let k : x → b and suppose that Hom(x, f)(r) = k for some r : x → a. Then,
Hom(x, g)(k) = (Hom(x, g) ◦ Hom(x, f))(r) = Hom(x, g ◦ f)(r) and by Lemma 2.6.3, we
have Hom(x, g ◦ f) = Hom(x, 0a,c)(r) = 0x,c. Thus,

k ∈ ker(Hom(x, g)) ⇐⇒ Hom(x, g)(k) = 0 ⇐⇒ Hom(x, f)(r) = k for some r

⇐⇒ k ∈ im(Hom(x, f))

We recall Remark 2.4.5 to conclude that ker(Hom(x, g)) = Hom(x, f).

The binary biproduct of two triangles a
f−→ b

g−→ c
h−→ T (a) and a′

f ′−→ b′
g′−→ c′

h′−→ T (a′) is

defined to be the triangle a⊕ b f⊕f ′−−−→ b⊕ b′ g⊕g
′

−−→ c⊕ c′ h⊕h
′

−−−→ T (a⊕ a′).

Proposition 2.6.5. Two triangles are distinguished triangles if and only if their biproduct
is a distinguished triangle.

Proof. Let A be a triangulated category. Suppose a
f−→ b

g−→ c
h−→ T (a) and a′

f ′−→ b′
g′−→ c′

h′−→
T (a′) are distinguished triangles. By (TC2), there is a distinguished triangle a ⊕ a′

f⊕f ′−−−→
b ⊕ b′

k−→ d
r−→ T (a ⊕ a′). Since T is additive, T (a ⊕ a′) ∼= T (a) ⊕ T (a′) and, hence, we

have a biproduct (T (a⊕ a′), pT (a), pT (a′), iT (a), iT (a′)) of T (a) and T (a′). By (TC5), there is a
morphism uc and a morphism uc′ making the following diagram commute:

a′
f ′

// b′
g′

// c′
h′

// T (a′)

a⊕ a′
f⊕f ′

//

pa

��

pa′

OO

b⊕ b′
k

//

pb

��

pb′

OO

d r
//

uc

��

uc′

OO

T (a⊕ a′)

pT (a)

��

pT (a′)

OO

a
f

// b g
// c

h
// T (a)
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The following diagram also commutes:

a⊕ a′
f⊕f ′

//

ida⊕a′

��

b⊕ b′
k

//

idb⊕b′

��

d r
//

ic◦uc+ic′◦uc′

��

T (a⊕ a′)
T (f⊕f ′)

//

idT (a⊕a′)

��

T (b⊕ b′)

idT (b⊕b′)

��
a⊕ a′

f⊕f ′
// b⊕ b′

g⊕g′
// c⊕ c′

h⊕h′
// T (a⊕ a′)

T (f⊕f ′)
// T (b⊕ b′)

(2.6.1)

The image of the first row of (2.6.1) under Hom(c ⊕ c′,−) is an exact sequence by Lemma
2.6.4. Since the functor Hom(c ⊕ c′,−) is additive, the image of the second row under it
consists of two biproduct summands that are exact by Lemma 2.6.4. Hence, the row is
an exact sequence since the biproduct of two exact sequences is an exact sequence. Let
u = ic ◦ uc + ic′ ◦ uc′ . By the Five Lemma [15, p. 205], Hom(c ⊕ c′, u), is an isomorphism.
Therefore,

u ◦ Hom(c⊕ c′, u)−1(idc⊕c′) = (Hom(c⊕ c′, u) ◦ Hom(c⊕ c′, u)−1)(idc⊕c′)

= idHom(c⊕c′,c⊕c′)(idc⊕c′) = idc⊕c′ .

Hence, u is a split epimorphism. A similar argument with the functor Hom(−, d) shows that
u is a split monomorphism. Therefore, u is an isomorphism by Lemma 1.2.23. So by (TC3),
the forward implication holds. Details of the reverse implication, which are similar, can be
found in [18, p. 33–42].

Definition 2.6.6 (Category of chain complexes). Let A be an additive category. We define
the category of chain complexes of A to be the category where:

(a) Objects, which are called chain complexes , are sequences of morphisms a• = (dai )i∈Z of
the form

· · ·
da−2−−→ a−1

da−1−−→ a0
da0−→ a1

da1−→ · · ·

such that dai+1 ◦ dai = 0 for all i ∈ Z.

(b) Morphisms f• : a• → b• in the category of chain complexes are sequences of morphisms
(fi)i∈Z such that the following diagram commutes:

· · ·
da−2

// a−1 da−1

//

f−1

��

a0 da0

//

f0

��

a1 da1

//

f1

��

· · ·

· · ·
db−2

// b−1
db−1

// b0
db0

// b1
db1

// · · ·
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Definition 2.6.7 (Homotopic). Two chain complex morphisms f• : a• → b• and g• : a• → b•
are homotopic if there is a sequence of morphisms (hi)i∈Z such that dom(hi) = ai, cod(hi) =
bi−1, and fi − gi = dbi−1 ◦ hi + hi+1 ◦ dai for all i ∈ Z. The morphisms are summarized in the
following diagram:

· · ·
da−2

// a−1 da−1

//

f−1−g−1

��

a0

h0

��

dA0

//

f0−g0

��

a1

h1

��

da1

//

f1−g1

��

· · ·

· · ·
db−2

// b−1
db−1

// b0
db0

// b1
db1

// · · ·

This diagram is not necessarily commutative. This relation on the morphisms forms an
equivalence relation.

Definition 2.6.8 (Homotopy category). Let A be an additive category. We define the
homotopy category K(A) to be the category where:

(a) The objects are precisely chain complexes.

(b) The morphisms are the homotopy equivalence classes of the category of chain com-
plexes.

This category is additive. When working in the homotopy category, we typically omit the
equivalence class notation.

Example 2.6.9. The category K(A) is a triangulated category with T being the functor
(dai )i∈Z 7→ (dai+1)i∈Z and (fi)i∈Z 7→ (−fi+1)i∈Z, whose distinguished triangles are sequences
isomorphic to sequences of the form:

a• → b•
ib•−→ T (a•)⊕ b•

pT (a•)−−−→ T (a•)

More details can be found in [6, Definition 3.4] for the interested reader.

When the A is an abelian category, we can pass from K(A) to the derived category by
“localizing quasi-isomorphisms”. The resulting category is also triangulated. If the reader
possesses further interest in triangulated categories, we recommend that he or she takes a
look into the derived category of an abelian category.

Definition 2.6.10 (Grothendieck group of a triangulated category). Let A be an essentially
small triangulated category. Define N0(A) E Giso(A) to be the (normal) subgroup generated
by {[b]− [a]− [c] | a→ b→ c→ T (a) is a distinguished triangle}. The Grothendieck group
G0(A) of A is the quotient group Giso(A)/N0(A). By a common abuse of terminology, we
will write [a] to mean the image of the isomorphism class of [a] in G0(A) when this will not
cause confusion. It follows that for every distinguished triangle a→ b→ c→ T (a), we have
the relation [b]− [a]− [c] = 0 (or equivalently, [b] = [a] + [c]) in G0(A).
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Lemma 2.6.11. Let A be a triangulated category. For all objects a, b ∈ A, there is a
distinguished triangle a→ a⊕ b→ b→ T (a).

Proof. Since a
ida−→ a → 0 → T (a) and 0 → b

idb−→ b → T (0) are distinguished triangles, we
have a distinguished triangle a⊕ 0→ a⊕ b→ 0⊕ b→ T (a)⊕T (0) by Proposition 2.6.5. By
(TC3), the statement holds.

Corollary 2.6.12. The Grothendieck group of a triangulated category is a quotient of the
split Grothendieck group of the underlying additive category.

Lemma 2.6.13. Let A be a triangulated category. Then, the following hold:

(a) The class of the zero object, [0], is the zero element of G0(A).

(b) For all A,B ∈ A, [A⊕B] = [A] + [B].

(c) For all A ∈ A, [T (A)] = −[A] in G0(A).

(d) Every element of G0(A) is of the form [A] for some A ∈ A.

Proof. Parts (a) and (b) are immediate consequences of Corollary 2.6.12. Part (c) follows
directly from (TC1) and (TC4) – that is, for every object A, we have that A→ 0→ T (A)→
T (A) is a distinguished triangle.

For (d), let x be an arbitrary element of G0(A). Then, without loss of generality, x is of
the form

a1[A1] + · · ·+ an[An]− b1[B1]− · · · − bm[Bm],

where a1, . . . , an, b1, . . . , bm are nonnegative integers and A1, . . . , An, B1, . . . , Bm ∈ A. De-
noting A⊕ · · · ⊕ A︸ ︷︷ ︸

k times

by Ak, we have by (b) that

[x] = [A1
a1 ⊕ · · · ⊕ Anan ⊕ T (B1)

b1 ⊕ · · · ⊕ T (Bm)bm ].

Proposition 2.6.14. Let A be a triangulated category and let ϕ : Giso(A) → G0(A) be the
natural quotient group homomorphism. The Grothendieck group of A satisfies the universal
property that for any abelian group G and any group homomorphism ψ : Giso(A)→ G satisfy-
ing the property that for every distinguished triangle a→ b→ c→ T (a), ψ([b]− [a]− [c]) = 0,
there exists a unique homomorphism θ : G0(A) → G such that θ ◦ ϕ = ψ. This statement
can be summarized by the following commutative diagram:

Giso(A)

ϕ

��

ψ // G

G0(A)

θ

<<

Proof. The proof, which follows immediately from the definitions and is similar to that of
the universal property of the Grothendieck group of abelian categories (Proposition 2.4.14),
is left to the reader.
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Proposition 2.6.15. Let A be a triangulated category. We define a relation on the objects
of A as follows: A ∼ B if and only if there exist objects C1, C2, C3 such that

A⊕ C1
f1→ C2

f2→ C3
f3→ T (A⊕ C1)

and
B ⊕ C1

g1→ C2
g2→ C3

g3→ T (B ⊕ C1)

are distinguished triangles. Then, the following hold:

(a) The relation ∼ is an equivalence relation.

(b) The set E of equivalence classes 〈A〉 of objects in A is an abelian group with 〈A〉+〈B〉 =
〈A⊕B〉.

(c) The groups E and G0(A) are isomorphic.

Proof. (a) Reflexivity and symmetry are immediately obvious. For transitivity, suppose
X, Y, Z ∈ A, X ∼ Y and Y ∼ Z. Then, there exist objects C1, C2, C3, D1, D2, D3 giving us
the following distinguished triangles:

X ⊕ C1
f1→ C2

f2→ C3
f3→ T (X ⊕ C1), (2.6.2)

Y ⊕ C1
g1→ C2

g2→ C3
g3→ T (Y ⊕ C1), (2.6.3)

Y ⊕D1
h1→ D2

h2→ D3
h3→ T (Y ⊕ C1), (2.6.4)

Z ⊕D1
j1→ D2

j2→ D3
j3→ T (Z ⊕ C1). (2.6.5)

By Lemma 2.6.5, we take the direct sum of the first and the third triangle above, and that
of the second and the fourth triangle above, giving us the distinguished triangles:

(X ⊕ C1)⊕ (Y ⊕D1)→ C2 ⊕D2 → C3 ⊕D3 → T ((X ⊕ C1)⊕ (Y ⊕D1)), (2.6.6)

(Y ⊕ C1)⊕ (Z ⊕D1)→ C2 ⊕D2 → C3 ⊕D3 → T ((Y ⊕ C1)⊕ (Z ⊕D1)). (2.6.7)

Then, since distinguished triangles are closed under isomorphism, we have that

X ⊕ (Y ⊕ C1 ⊕D1)→ C2 ⊕D2 → C3 ⊕D3 → T (X ⊕ (Y ⊕ C1 ⊕D1)), (2.6.8)

Z ⊕ (Y ⊕ C1 ⊕D1)→ C2 ⊕D2 → C3 ⊕D3 → T (Z ⊕ (Y ⊕ C1 ⊕D1)). (2.6.9)

are also distinguished triangles and thus, X ∼ Z.
(b) It is easily verified that the operation 〈A〉+〈B〉 = 〈A⊕B〉 is associative, commutative,

well-defined, and has 〈0〉 as identity. It remains to show that all elements are invertible. For
any element A ∈ A, we have the trivial distinguished triangle of T(A),

T (A)→ T (A)→ 0→ T 2(A). (2.6.10)

Applying (TC4) and shifting to the left gives us a distinguished triangle

0→ T (A)→ T (A)→ 0. (2.6.11)
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Shifting to the left once more yields

A→ 0→ T (A)→ T (A). (2.6.12)

Taking the direct sum of (2.6.10) and (2.6.12) gives us another distinguished triangle

A⊕ T (A)→ T (A)→ T (A)→ T (A)⊕ T 2(A). (2.6.13)

From (2.6.11) and (2.6.13) we see that 0 ∼ A⊕T (A), hence 〈0〉 = 〈A⊕T (A)〉 = 〈A〉+〈T (A)〉
and so 〈A〉 = −〈T (A)〉 for all A ∈ A.

(c) Define a map

δ : G0(A)→ E,

[A] 7→ 〈A〉.

Suppose that A→ B → C → T (A) is a distinguished triangle. Then, taking the direct sum
of this triangle with the trivial distinguished triangle for C yields

A⊕ C → B ⊕ C → C → T (A⊕ C),

and taking the direct sum of the trivial distinguished triangle for B with the left-shifted
trivial distinguished triangle for C yields

B → B ⊕ C → C → T (B),

from which we see that A⊕ C ∼ B and hence 〈A〉+ 〈C〉 = 〈B〉. Therefore, the relations in
G0(A) hold in E and so δ is well-defined.

We leave the straightforward verification that δ is a surjective group homomorphism to
the reader. Now suppose that δ([A]) = 0. Then, A ∼ 0 so we have objects C1, C2, C3 giving
us the distinguished triangles

A⊕ C1 → C2 → C3 → T (A⊕ C1),

C1 → C2 → C3 → T (C1).

This in turn gives us the relations

[C2]− [C1]− [C3] = 0,

[C2]− ([A] + [C1])− [C3] = 0.

Subtracting the second equation from the first yields [A] = 0. Therefore, δ is injective and
hence an isomorphism.

Corollary 2.6.16. Let A be a triangulated category. Then, for any objects A,B ∈ A, the
following are equivalent:

(a) [A] = [B] in G0(A).
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(b) There exist objects C1, C2, C3 such that

A⊕ C1
f1→ C2

f2→ C3
f3→ T (A⊕ C1)

and
B ⊕ C1

g1→ C2
g2→ C3

g3→ T (B ⊕ C1)

are distinguished triangles.

Remark 2.6.17. The notion of a triangulated category can be generalized to that of an
n-angulated category for any n ≥ 3 (the case n = 3 corresponds to triangulated categories),
where a distinguished n-angle is defined a natural way. The Grothendieck group of an n-
angulated category for any odd n, as well as all results in this section, can also be generalized
in a natural way. However, for even n, some of the definitions and results differ. The
interested reader is encouraged to consult [4] for details.
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Chapter 3

The Grothendieck Ring

In this chapter, we outline certain categories which are equipped with bifunctors and nat-
ural isomorphisms that give ring structures to the group constructions found in Chapter 2.
Then, we generalize some familiar notions from module theory to concrete categories and
apply them to monoidal categories. In the final section, we will also show that abelian cat-
egories are, in fact, equivalent to a full subcategory of modules over some (not necessarily
commutative) ring.

3.1 Monoidal Categories

Monoidal categories generalize the familiar concept of tensor products of modules over a
commutative ring. In this section, we show that the data of certain monoidal categories
naturally give rise to a ring structure on the various Grothendieck groups found in Chapter
2.

Definition 3.1.1 (Monoidal category). A monoidal category is a hextuple (C,⊗, e, α, λ, %)
consisting of a category C equipped with a bifunctor ⊗ : C × C → C (called the tensor
product), a distinguished object e, and three natural isomorphisms α, λ, and %. For any

objects A,B,C, we have αA,B,C : A⊗ (B ⊗ C)
∼=→ (A⊗ B)⊗ C. For any object A, we have

λA : e⊗ A
∼=→ A and %A : A⊗ e

∼=→ A. These natural isomorphisms also satisfy the pentagon
axiom and the triangle axiom:

(a) For any objects A,B,C,D, the following pentagon commutes:

(A⊗B)⊗ (C ⊗D)
αA⊗B,C,D

**
A⊗ (B ⊗ (C ⊗D))

αA,B,C⊗D

44

idA⊗αB,C,D

��

((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)
αA,B⊗C,D // (A⊗ (B ⊗ C))⊗D

αA,B,C⊗idD

OO
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(b) For any objects A,B, the following triangle commutes:

A⊗ (e⊗B)
αA,e,B //

idA⊗λB ''

(A⊗ e)⊗B

%A⊗idBww
A⊗B

The coherence diagrams above, as stated in [15, p. 165], allow us to unambiguously write
expressions of the form “A1 ⊗ A2 ⊗ . . . ⊗ An” without parentheses, asserting that any two
expressions obtained from inserting parentheses in any order and inserting instances of “. . .⊗
e . . .” or “. . . e⊗ . . .” are equivalent up to natural isomorphism. A monoidal category, thus,
has the structure of a monoid where equality is replaced by natural isomorphism, ⊗ is the
binary operation, e is the identity element (given by λ and %), and associativity is given by
α.

Example 3.1.2. The category of sets with (Set,×, {∗}, α, λ, %) where × is the usual carte-
sian product and {∗} is a singleton is a monoidal category. For any sets A,B,C, α is the
obvious isomorphism A × (B × C) ∼= (A × B) × C whilst for any set A, λ and % are the
obvious isomorphisms {∗} × A ∼= A and A× {∗} ∼= A respectively.

Remark 3.1.3. When e, α, λ and/or % are understood from the context, we will often omit
them to simplify our notation. Hence, we will often refer to a monoidal category as (C,⊗, e)
or (C,⊗).

Examples 3.1.4. Let R be a commutative ring. Then, (R-Mod,⊗R, R) is a monoidal
category. In particular:

(a) When R = Z, we have the monoidal category (Ab,⊗Z,Z).

(b) When R is a field K, we have the monoidal category (VectK,⊗K,K).

Definition 3.1.5 (Braided monoidal category). A monoidal category (C,⊗, e) is braided if
it is equipped with an additional natural isomorphism γ where for any two objects A,B, we

have γA,B : A ⊗ B
∼=→ B ⊗ A. Furthermore, γ satisfies the hexagon axiom – that is, for any

objects A,B,C, the following hexagons commute:

(a)

A⊗ (B ⊗ C)
idA⊗γB,C

vv

αA,B,C

((
A⊗ (C ⊗B)

αA,C,B

��

(A⊗B)⊗ C
γA⊗B,C

��
(A⊗ C)⊗B

γA,C⊗idB ((

C ⊗ (A⊗B)

αC,A,Bvv
(C ⊗ A)⊗B
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(b)

A⊗ (B ⊗ C)
idA⊗γ−1

C,B

vv

αA,B,C

((
A⊗ (C ⊗B)

αA,C,B

��

(A⊗B)⊗ C
γ−1
C,A⊗B
��

(A⊗ C)⊗B

γ−1
C,A⊗idB ((

C ⊗ (A⊗B)

αC,A,Bvv
(C ⊗ A)⊗B

The collection of maps γ = {γA,B | A,B ∈ Ob C} is called a braiding . It follows that the
braiding is compatible with λ and %. That is, the following triangles commute for any object
A:

e⊗ A
γe,A //

λA ""

A⊗ e

%A
||

e⊗ A

λA ""

A⊗ e
γA,eoo

%A
||

A A

Definition 3.1.6 (Symmetric monoidal category). A braided monoidal category is symmet-
ric if for all A,B ∈ Ob C, we have γB,A ◦ γA,B = idA⊗B.

Example 3.1.7. Any category with finite products is symmetric monoidal with A ⊗ B =
A
∏
B and any category with finite coproducts is symmetric monoidal with A⊗B = A

∐
B.

Example 3.1.8. The categories discussed in Example 3.1.2 and Examples 3.1.4 can all be
given the structure of a symmetric monoidal category.

Example 3.1.9. The category of representations of a quantum group with the usual tensor
product has the structure of a braided monoidal category but not that of a symmetric
monoidal category. A detailed discussion of this example is beyond the scope of this paper,
but interested readers are encouraged to consult [12].

Definition 3.1.10 (Ring structure on Giso(C)). Let (C,⊗, e) be a monoidal category. Define
a multiplication on Giso(C), where A,B ∈ Ob C, as follows:

[A] · [B] = [A⊗B],

which we extend by linearity (e.g. [A] · ([B] + [C]) = [A⊗B] + [A⊗C].) This multiplication
makes (Giso(C), ·) a monoid with identity element [e] and with associativity given by α (that
is, since A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C, we have that [A] · ([B] · [C]) = [A ⊗ (B ⊗ C)] =
[(A⊗B)⊗C] = ([A] · [B]) · [C].) It is easily verified that the distributivity axioms of a ring
are also satisfied. Hence, Giso(C) is a ring.
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Definition 3.1.11 (Biadditive bifunctor). Let C, D and E be preadditive categories. We
say that a bifunctor ⊗ : C×D→ E is biadditive if for every C ∈ C the functor

C ⊗− : D→ E,

D 7→ ⊗(C ×D),

is additive, and for every D ∈ D the functor

−⊗D : C→ E,

C 7→ ⊗(C ×D).

is additive.

Example 3.1.12. By Lemma 2.2.20, we have that additive functors between additive cat-
egories preserve biproducts – thus, if (C,⊗, e) is a monoidal category wherein C is an
additive category and ⊗ is a biadditive bifunctor, then for any objects A, B, C, we have
A⊗ (B ⊕ C) ∼= (A⊗B)⊕ (A⊗ C) and (A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C).

Proposition 3.1.13. If (C,⊗, e) is a monoidal category wherein C is an additive category
and ⊗ is a biadditive bifunctor, then N⊕(C) is an ideal and hence G0(C,⊕) inherits the
structure of a ring.

Proof. Consider Giso(C) with the ring structure defined in Definition 3.1.10. Since we already
know that N⊕(C) is an additive subgroup, it remains to show that N⊕(C) is invariant under
left and right multiplication by elements of Giso(C).

Let r ∈ Giso(C) and x ∈ N⊕(C). Then, r is of the form
∑n

i=1 ai[Ai] and x is of the form∑m
j=1 bj([Bj ⊕ Cj] − [Bj] − [Cj]) where the ai, bj are integers and the Ai, Bj, Cj are objects

in C. It follows from Example 3.1.12 that:

rx =
n∑
i=1

ai[Ai] ·
m∑
j=1

bj([Bj ⊕ Cj]− [Bj]− [Cj])

=
n∑
i=1

m∑
j=1

aibj([Ai ⊗ (Bj ⊕ Cj)]− [Ai ⊗Bj]− [Ai ⊗ Cj])

=
n∑
i=1

m∑
j=1

aibj([(Ai ⊗Bj)⊕ (Ai ⊗ Cj)]− [Ai ⊗Bj]− [Ai ⊗ Cj]).

Hence, rx ∈ N⊕(C). Similarly, one can show that xr ∈ N⊕(C). Thus, N⊕(C) is an ideal of
Giso(C), so G0(C,⊕) is a quotient ring of Giso(C).

Example 3.1.14. Consider (FinVectK,⊕, 0) where ⊕ is the usual direct sum and 0 is the
zero vector space over K. It is clear that ⊕ does not preserve biproducts (it is the biproduct)
– that is, for arbitrary K-vector spaces V1, V2, V3, V1 ⊕ (V2 ⊕ V3) � (V1 ⊕ V2) ⊕ (V1 ⊕ V3).
Therefore, with ⊕ as the tensor product, G0(FinVectK,⊕) does not inherit a ring structure.
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Definition 3.1.15 (Left/right short exact sequence). Let C be an abelian category. Then,
a left short exact sequence is an exact sequence

0→ A→ B → C,

and a right short exact sequence is an exact sequence

A→ B → C → 0.

Definition 3.1.16 (Left/right exact functor). A functor F between abelian categories is left
exact if for every left short exact sequence 0 → A → B → C, the sequence 0 → F (A) →
F (B)→ F (C) is exact. We define right exact functors analogously.

Definition 3.1.17 (Exact functor). A functor F between abelian categories is exact if it
preserves short exact sequences. That is, for every short exact sequence 0 → A → B →
C → 0, the sequence 0 → F (A) → F (B) → F (C) → 0 is exact. It is easy to see that a
functor is exact if and only if it is both left exact and right exact.

Definition 3.1.18 (Biexact bifunctor). Let ⊗ : C × D → E be a bifunctor. Then, ⊗ is
biexact if for every C ∈ C and D ∈ D the functors C ⊗ − and − ⊗ D (as defined in
Definition 3.1.11) are exact.

Example 3.1.19. If (C,⊗) is a monoidal category and ⊗ is biexact, then for any short
exact sequence 0→ A→ B → C → 0 and any X ∈ C, the sequences

0→ A⊗X → B ⊗X → C ⊗X → 0

and
0→ X ⊗ A→ X ⊗B → X ⊗ C → 0

are exact.

Proposition 3.1.20. If (C,⊗, e) is a monoidal category wherein C is an abelian category
and ⊗ is a biexact bifunctor, then N0(C) is an ideal and hence G0(C) inherits the structure
of a ring.

Proof. Consider Giso(C) with the ring structure defined in Definition 3.1.10. Since we already
know that N0(C) is an additive subgroup, it remains to show that N0(C) is invariant under
left and right multiplication by elements of Giso(C).

Let r ∈ Giso(C) and x ∈ N0(C). Then, r is of the form
∑n

i=1 ai[Ri] and x is of the form∑m
j=1 bj([Bj]− [Aj]− [Cj]) where the ai, bj are integers and the Ri, Aj, Bj, Cj are objects in

C and where 0→ Aj → Bj → Cj → 0 is a short exact sequence for all 1 ≤ j ≤ m. We have
that:

rx =
n∑
i=1

ai[Ri] ·
m∑
j=1

bj([Bj]− [Aj]− [Cj])

=
n∑
i=1

m∑
j=1

aibj([Ri ⊗Bj]− [Ri ⊗ Aj]− [Ri ⊗ Cj])
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Hence, rx ∈ N0(C). Similarly, one can show that xr ∈ N0(C). Thus, N0(C) is an ideal of
Giso(C), so G0(C) is a quotient ring of Giso(C).

Definition 3.1.21 (Grothendieck ring). When the conditions of Proposition 3.1.20 are sat-
isfied, we call the resulting ring a Grothendieck ring .

Example 3.1.22. A priori, for some arbitrary commutative ring R, the tensor product ⊗R
is not necessarily biexact, so G0(R-Mod) does not necessarily inherit a ring structure in the
natural way that we have just discussed. On the other hand, it is known that the tensor
product of modules distributes over the direct sum (up to isomorphism), so G0(R-Mod,⊕)
does always inherit a ring structure.

Lemma 3.1.23. If (C,⊗, e) is a braided monoidal category, then the Giso(C) is a commuta-
tive ring. Similarly, if C is an additive category and ⊗ is a biadditive bifunctor (respectively,
if C is an abelian category and ⊗ is a biexact bifunctor), then G0(C,⊕) (respectively, G0(C))
is a commutative ring.

Proof. The proof, which follows directly from the definitions and previous propositions, is
left to the reader.

Remark 3.1.24. If (C,⊗, e) is a symmetric monoidal category, then the Giso(C) (respec-
tively, G0(C,⊕) if C is additive and G0(C) if C is abelian) has the additional structure of a
λ-ring , which is a commutative ring equipped with a sequence of maps that behave like the
exterior products of a vector space. The precise definition of a λ-ring is quite technical and
beyond the scope of this paper, but interested readers are encouraged to consult [24].

Definition 3.1.25 (Triangulated functor). Let (C, T,D) and (D, T ′, D′) be triangulated

categories. A functor F : C → D is triangulated if for every distinguished triangle A
f→

B
g→ C

h→ T (A) in D, F (A)
F (f)−−→ F (B)

F (g)−−→ F (C)
F (h)−−→ F (T (A)) is a distinguished

triangle in D′.

Definition 3.1.26 (Monoidal triangulated category). Let (C, T,D) be a triangulated cat-
egory. Then C is monoidal triangulated if C also admits a symmetric monoidal structure
(C,⊗, e, α, λ, %, γ) satisfying the following conditions:

(a) There exist natural isomorphisms ` : (− ⊗ T (−))
∼=→ T (− ⊗ −) and r : (T (−) ⊗ −)

∼=→
T (−⊗−).

(b) For every A ∈ C, the functors (A ⊗ −) and (− ⊗ A) are triangulated functors, with
the corresponding natural isomorphisms ` and r, respectively.

(c) For every A ∈ C, the following triangles commute:

e⊗ T (A)
λT (A) //

`e,A &&

T (A) T (A)⊗ e

rA,e &&

ρT (A) // T (A)

T (e⊗ A)
T (λA)

99

T (A⊗ e)
T (%A)

99
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(d) For every A,B ∈ C, the following square anticommutes:

T (A)⊗ T (B)

`A,B

��

rA,B // T (A⊗ T (B))

T (`A,B)
��

T (T (A)⊗B)
T (rA,B)

// T 2(A⊗B)

That is, T (`A,B) ◦ rA,B = −T (rA,B) ◦ `A,B.

Proposition 3.1.27. Let C be a monoidal triangulated category wherein ⊗ is biadditive.
Then the Grothendieck group G0(C) (here we are considering the Grothendieck group of
(C, T,D) as a triangulated category, not that of the category C which may be abelian) inherits
the structure of a commutative ring.

Proof. We define the multiplication on Giso(C) by [A]·[B] = [A⊗B] as in the case of additive
and abelian categories with a monoidal structure. We verify directly that the multiplication
in G0(C) is well-defined.

Let A,B,C ∈ C and suppose that [B] = [C] in G0(C). By Corollary 2.6.16, we have
objects D1, D2, D3 giving us the following distinguished triangles:

B ⊕D1 → D2 → D3 → T (B ⊕D1),

C ⊕D1 → D2 → D3 → T (C ⊕D1).

Hence, tensoring these sequences with A on the left yields two new distinguished triangles

A⊗ (B ⊕D1)→ A⊗D2 → A⊗D3 → T (A⊗ (B ⊕D1)),

A⊗ (C ⊕D1)→ A⊗D2 → A⊗D3 → T (A⊗ (C ⊕D1)).

Since ⊗ is biadditive and the class of distinguished triangles is closed under isomorphism,
we have that

(A⊗B)⊕ (A⊗D1)→ A⊗D2 → A⊗D3 → T ((A⊗B)⊕ (A⊗D1)),

(A⊗ C)⊕ (A⊗D1)→ A⊗D2 → A⊗D3 → T ((A⊗ C)⊕ (A⊗D1)),

are distinguished triangles, from which Corollary 2.6.16 gives us that [A ⊗ B] = [A ⊗ C].
Thus, we have [A] · [B] = [A] · [C]. The proof that left-multiplication is well-defined is
analogous.

Remark 3.1.28. Naturally, if we drop γ and do not require the monoidal structure on C
to be symmetric/braided, G0(C) will be a (not necessarily commutative) ring. However, we
have chosen to be consistent with how “monoidal triangulated category” is defined in the
literature.
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3.2 Concrete Categories

In this section, we discuss common properties and objects between some concrete categories
with which we are already familiar, concluding with a result about the Grothendieck ring of
the category of vector spaces.

Definition 3.2.1 (Concrete category). A concrete category is a pair (C, U) where C is a
category and U : C → Set is a faithful functor. We call U the forgetful (or underlying)
functor. When U is clear from context, we may simply write C for a concrete category
(C, U). We also write |C| for the underlying object U(C) of an object C ∈ C.

Example 3.2.2. The categories in Examples 1.1.10 are concrete categories.

Remark 3.2.3. It is possible to consider concrete categories over some arbitrary category
X which is not necessarily Set. For instance, we can consider the category of topological
vector spaces as a concrete category over the category of vector spaces or the category
of topological spaces. In this situation, concrete categories over Set are called constructs
to distinguish them from arbitrary concrete categories, but we will continue to simply say
“concrete category” to mean concrete categories over Set. We refer the interested reader to
[1, Section 5] for more details.

Definition 3.2.4 (Structural/universal arrow, free object). Let (C, U) be a concrete cate-
gory and let X ∈ Set. A structural arrow with domain X is a pair (f, C) consisting of an
object C ∈ C and a morphism f : X → |C| ∈ Mor Set.

A universal arrow over X is a structural arrow (u,A), u : X → |A| for some A ∈ C which
satisfies the universal property that for each B ∈ C and every structural arrow f : X → |B|,
there exists a unique C-morphism θ : A → B such that f = u ◦ U(θ). This statement is
summarized by the following commutative diagram:

X

u

��

f // |B|

|A|
U(θ)

>>

An object C ∈ C is free over X if there exists a universal arrow (u,C), u : X → |C|.

Examples 3.2.5. (a) In any concrete category, an object A is free over ∅ if and only if
A is an initial object.

(b) In R-Mod, free objects correspond to the usual notion of free modules; that is, an
object A is free over any set which is a basis for A.

(c) In Mon, an object X∗ is free over a set X if and only if X∗ is the free monoid over
X (i.e. the elements of X∗ are finite sequences of members of X, including the empty
sequence, and the monoid operation is concatenation).
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(d) In CRing, the polynomial ring Z[M ] over a set M of indeterminates is a free object
over M .

Lemma 3.2.6. Let (C, U) be a concrete category and let X ∈ Set, A ∈ C. Suppose that
(u,A), u : X → |A| is a universal arrow. Then, for any B ∈ Ob C, if f : A → B and
g : A→ B satisfy that U(f) ◦ u = U(g) ◦ u, then U(f) = U(g).

Proof. Consider the commutative diagrams:

X

u

��

U(f)◦u// |B| X

u

��

U(g)◦u// |B|

|A|
U(f)

>>

|A|
U(g)

>>

Suppose that U(f) 6= U(g). Then, f 6= g. Since the morphisms f, g which make these
diagrams commute are unique and depend on the chosen structural arrow X → |B|, this
means that n 6= m and so U(f) ◦ u 6= U(g) ◦ u. Thus, by contrapositive, U(f) ◦ u =
U(g) ◦ u =⇒ U(f) = U(g).

Remark 3.2.7. The preceding lemma does not assert that u is an epimorphism in Set. The
cancellative property applies only to morphisms and objects in Set that are the image of
some morphisms and objects in C under U !

Definition 3.2.8 (Projective object). Let C be a category. An object P ∈ C is projective
if for all objects A,B ∈ C, all epimorphisms e : A→ B and all morphisms f : P → B, there
exists a morphism θ : P → A such that f = e◦θ. Note that we do not require θ to be unique.
This statement is summarized by the following commutative diagram:

P

θ
��

f // B

A

e

?? ??

We say that f lifts across e.

Lemma 3.2.9. In Set, a morphism is epic if and only if it is a surjective function.

Proof. We have the forward implication by Remark 1.2.17 and now prove the reverse im-
plication. Let A,B ∈ Set and let e : A → B ∈ Mor Set be an epimorphism. Define a
map:

g : B → {0, 1},
b 7→ 1,

and a map h : B → {0, 1} by:

h(b) =

{
0 if b /∈ im(e),

1 if b ∈ im(e).

Then, we have g ◦ e = h ◦ e and since e is epic, g = h whence all elements of B are in
im(e).
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Proposition 3.2.10. Let (C, U) be a concrete category wherein U preserves epimorphisms,
X ∈ Set, and let FX ∈ C be a free object over X. Then, FX is projective.

Proof. Let A,B ∈ C, f : FX → B and e : A → B be morphisms wherein e is epic. Let
u : X → |FX | be a universal arrow. Since U preserves epimorphisms, U(e) is a surjective
function by Lemma 3.2.9. For every b ∈ (U(f) ◦ u)(X) ⊆ |B|, we choose some a ∈ |A| such
that U(e)(a) = b. Define a map:

g : (U(f) ◦ u)(X)→ |A|,
b 7→ a.

This gives us a map g ◦ U(f) ◦ u : X → |A| such that the following diagram commutes:

X
u //

g◦U(f)◦u
��

|FX |
U(f) // |B|

|A|

U(e)

??

By the universal property of the universal arrow, there is a morphism ` : FX → A such that
U(`) ◦ u = g ◦ U(f) ◦ u. Thus, U(e) ◦ U(`) ◦ u = U(e ◦ `) ◦ u = U(f) ◦ u and since u can
be cancelled by Lemma 3.2.6, we have U(f) = U(e ◦ `). Since U is faithful, it is injective on
HomC(FX , B) and therefore we have f = e ◦ `, as desired.

Example 3.2.11. With U as the usual forgetful functor, the condition that U preserves
epimorphisms holds in many familiar concrete categories, including Set, Rel, Grp, Ab,
R-Mod, and VectK. A concrete category where U does not preserve epimorphisms is Mon.
The monoid homomorphism i : N → Z whose underlying function is the inclusion map is
clearly not surjective, but is epic. To see this, suppose that g1 and g2 are monoid homomor-
phisms Z→M for some monoid M such that g1 6= g2. Then, for some x ∈ Z, g1(x) 6= g2(x)
and so g1(−x) 6= g2(−x). Since either x or −x must be in N, g1 ◦ i 6= g2 ◦ i. Therefore, by
contrapositive, we have g1 ◦ i = g2 ◦ i =⇒ g1 = g2.

Definition 3.2.12 (Flat object). Let (C,⊗, e) be a monoidal category. A flat object of
(C,⊗, e) is an object X ∈ C such that X ⊗− and −⊗X are exact functors.

Example 3.2.13. In R-Mod, projective and flat objects correspond respectively to projec-
tive and flat modules.

The following example shows that the converse of Proposition 3.2.10 is false.

Example 3.2.14. Let R = Z6 and consider Z2, Z3, and Z6 as Z6-modules in the natural
way (i.e. consider Z2 = {0̄, 3̄} and Z3 = {0̄, 2̄, 4̄} as submodules of Z6). Then, in Z6-Mod,
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Z2 and Z3 are projective but not free. The map

φ : Z6 → Z2 ⊕ Z3

0̄ 7→ (0̄, 0̄)

1̄ 7→ (3̄, 2̄)

2̄ 7→ (0̄, 4̄)

3̄ 7→ (3̄, 0̄)

4̄ 7→ (0̄, 2̄)

5̄ 7→ (3̄, 4̄)

is a Z6-module isomorphism and it is clear that Z6 is a free Z6-module. The fact that Z2

and Z3 are not free follows from the fact that any free Z6-module admits a basis and so must
either be infinite or contain 6x elements for some nonnegative integer x.

Proposition 3.2.15. In (R-Mod,⊗R, R), projective objects are flat. That is, projective
modules are flat modules (and hence, free modules are flat modules).

Proof. We refer the reader to [11, Section 5.4] for the details.

Remark 3.2.16. In general, projective objects need not be flat. One such example is the
category MG of Mackey functors for some group G. A detailed discussion is beyond the
scope of this paper, but interested readers are encouraged to consult [14].

Example 3.2.17. Since for any field K, every K-vector space is a free K-module, it follows
that every object in (VectK,⊗K,K) is flat. Thus, ⊗K is biexact and G0(VectK) inherits a
ring structure.

3.3 Modules & Algebras over a Ring

In this final section, we will discuss how modules relate to abelian categories in a general way
and introduce the advanced reader to some ideas that are natural points of further study.
While many results and even definitions are abridged for brevity, full details can be found by
following references. We begin with a theorem that asserts that, while quite abstractly and
seemingly arbitrarily defined, abelian categories are, in fact, equivalent to concrete categories
of modules over some ring. The precise statement is as follows:

Theorem 3.3.1 (Freyd-Mitchell Theorem). Let C be an essentially small abelian category.
There exists a ring R (with unity, not necessarily commutative) and a fully faithful ex-
act functor F : C → R-Mod. (Thus far in the paper, we have always assumed R to be
commutative, so it is important to note here that R-Mod denotes the category of all left
R-modules.)

Proof. A full proof of this theorem can be found in [8, Section 7.3] (note that Freyd’s
terminology differs somewhat from the modern terminology – what he calls a “fully abelian”
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category is simply an abelian category with a fully faithful exact functor to the category of
R-modules). We will give a sketch of the proof.

Let LX be the category of left exact functors from C to Ab. We construct a contravariant
embeddingH : C→ LX which sends every C ∈ C to the covariant hom-functor HomC(C,−).
By the Yoneda Lemma ([15, p. 61]), H is fully faithful and by [8, Theorem 7.33], H is exact.
By [8, Theorems 7.31-7.32], LX is abelian and has an object

I =
∏
C∈C

HomC(C,−)

called its injective cogenerator.
Let R = HomLX(I, I). Now define G : LX → R-Mod to be another contravariant, fully

faithful exact functor which sends each left exact functor B : C→ Ab to HomLX(B, I). The
composite G ◦H : C→ R-Mod is the functor F in the statement of the theorem.

Definition 3.3.2 (Split short exact sequence). Let C be an abelian category. A short exact
sequence

0→ a
f→ b

g→ c→ 0

is said to split if there exists f ′ : b→ a and g′ : c→ b such that f ′ ◦ f = ida and g′ ◦ g = idb.

Proposition 3.3.3. Let C be an abelian category. The following are equivalent:

(a) The exact sequence 0→ a
f→ b

g→ c→ 0 is split.

(b) b ∼= a⊕ c

Proof. By the Freyd-Mitchell Theorem, we employ the splitting lemma for modules (see [2,
Theorem 3.9]).

We will henceforth only consider left modules for convenience, though all proofs can be
analogously applied to right modules. For every ring R, the category R-Modfg of finitely
generated left R-modules is an abelian category. The subcategory R-pModfg of finitely
generated left projective R-modules is also an abelian category. Biproducts are simply direct
sum. For each ring, there are two Grothendieck groups of particular interest to the area of
K-Theory:

Definition 3.3.4. Let R be a ring. We define the following two Grothendieck groups:

G0(R) := G0(R-Modfg) K0(R) := G0(R-pModfg)

Lemma 3.3.5. Let R be a ring. The Grothendieck group of R-pModfg is equal to the split
Grothendieck group of R-pModfg. That is, we have K0(R) = G0(R-pModfg,⊕).

Proof. Any sequence of projective modules splits (see [2, Theorem 5.1]). By Proposition
3.3.3, the equality holds.

If R is a principle ideal domain, all projective modules are free (see [2, Corollary 6.3]).
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Example 3.3.6. Detailed definitions of the italicized terms in this example can be found in
[17, pp. 1–7] for the reader not already familiar with them.

An associative algebra is a structure which is simultaneously a ring and a module over a
(possibly different) ring in such a way that the ring multiplication is bilinear with respect
to the module multiplication. A coalgebra is the categorical dual of an associative algebra,
and a bialgebra is a structure which is simultaneously an associative algebra and a coalgebra
that satisfies some additional compatibility axioms.

The category of modules over a bialgebra has the structure of a monoidal category, and
a certain class of bialgebras, called Hopf algebras , have the structure of a rigid monoidal
category (monoidal categories where all objects are dualizable, a generalization of the dual
space of a vector space in VectK—see [3, Example 2.1.4] for details).

By [3, Proposition 2.1.8], the tensor product in a rigid monoidal category is biexact,
hence the category of modules over a Hopf algebra is another example of a category with a
well-defined Grothendieck ring.

For readers who would like to know more, the following lemma is Exercise 9 in [16, Section
6D].

Lemma 3.3.7. For any ring R and nilpotent ideal I, we have K0(R) ∼= K0(R/I).

If R is commutative, then its nilradical — the collection of all nilpotent elements — is a
nilpotent ideal and, thus, the quotient ring is an integral domain. This is nice because one
can now restrict the study of K0 of commutative rings, to K0 of integral domains.
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�, 3
λ-ring, 70
0a,b, 8

0, 3
1, 3
2, 3
3, 3

Ab, 4
Abfg, 4
abelian category, 44
additive category, 32
additive completion, 39
additive functor, 37
arrow, 2
artinian category, 52
associative algebra, 77

balanced category, 9
biadditive bifunctor, 68
bialgebra, 77
biexact bifunctor, 69
bifunctor

biadditive, 68
biexact, 69

binary operation on a category, 26
biproduct, 33
biproduct morphism, 35
braided monoidal category, 66
braiding, 67

C→, 5
Cat, 20
category, 2

abelian, 44
additive, 32

artinian, 52
balanced, 9
braided monoidal, 66
discrete, 4
essentially small, 6
finite length, 52
has zero morphisms, 8
large, 2
locally small, 3
monoidal, 65
noetherian, 52
opposite, 5
preadditive, 32
product category, 5
skeleton subcategory, 6
small, 2
symmetric monoidal, 67

category of chain complexes, 59
chain complex, 59
class, 1

large, 2
proper, 2
small, 2

coalgebra, 77
codiagonal morphism, 35
codomain, 2
coherence diagrams, 66
cokernel, 12
composable morphisms, 2
composition factors, 51
composition series, 51

equivalent, 51
length, 51

concrete category, 72
constructs, 72
contravariant hom-functor, 23
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Cop, 5
coproduct category, 43
covariant hom-functor, 23
CRing, 4
C, 6

decategorification, 29
diagonal morphism, 35
distinguished triangles, 56
domain, 2
double dual functor, 24
dual functor, 22
duality, 7
duality of categories, 25
dualizable, 77
dually equivalent, 25

endomorphism, 43
epic, 9
equivalences of categories, 25
equivalent categories, 25
equivalent composition series, 51
essentially surjective, 25
exact functor, 69

left, 69
right, 69

exact sequence, 44
split short, 76

filtration, 51
FinAb, 4
finite length, 52
FinSet, 4
FinVectK, 4
flat object, 74
free object, 72
Freyd-Mitchell Theorem, 75
functor, 19

additive, 37
bifunctor, 22
composite, 20
contravariant, 22
covariant, 22
exact, 69

faithful, 21
forgetful, 21
full, 21
fully faithful, 21
power set, 20
triangulated, 70

Giso(C), 29
Grothendieck group

of a triangulated category, 60
of an abelian category, 46
split, 37
with respect to a binary operation, 29

Grothendieck ring, 70
Grp, 4

hexagon axiom, 66
hom-functor

contravariant, 23
covariant, 23

homomorphism class, 3
homotopic, 60
homotopy category, 60
Hopf algebras, 77

IBN category, 43
idempotent, 43
indecomposable object, 41
invariant basis number, 43
isomorphism

between categories, 21
between objects, 6
natural, 23

isomorphism reflecting, 25

join, 19
Jordan-Hölder Theorem, 54

kernel, 11
cokernel, 12

Krull-Schmidt property, 42

left exact functor, 69
left short exact sequence, 69
length of a composition series, 51
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lifts across, 73
locally small category, 3

maximal subobject, 18
meet, 19
minimal subobject, 18
Mon, 4
monic, 9
monoidal category, 65

braided, 66
symmetric, 67
triangulated, 70

monoidal triangulated category, 70
morphism, 2

bimorphism, 9
biproduct, 35
coconstant, 8
codiagonal, 35
constant, 8
diagonal, 35
endomorphism, 43
epic, 9
epimorphism, 9
monic, 9
of functors, 23
split epimorphism, 10
split monomorphism, 10
zero, 8

morphism category, 5

natural isomorphism, 23
natural transformation, 23
noetherian category, 52

object, 2
flat, 74
free, 72
indecomposable, 41
initial, 7
projective, 73
simple, 19
subobject, 17
terminal, 7
zero, 7

objects, 2

pentagon axiom, 65
power class, 18
power sets, 18
product, 13

coproduct, 15
projective object, 73
pullback, 16

square, 15
pushout, 16

square, 16

quotient object, 51

rank, 46
Rank-Nullity Theorem, 45
Rel, 4
right exact functor, 69
right short exact sequence, 69
Ring, 4
R-Mod, 4
Russell’s Paradox, 1

Set, 4
shifting, 56
short exact sequence, 44
simple object, 19
Siso, 28
skeleton, 6
split Grothendieck group, 37
split short exact sequence, 76
structural arrow, 72
subcategory, 3

full, 3
subobject, 17

intersection, 19
maximal, 18
minimal, 18
union, 19

symmetric monoidal category, 67

tensor product, 65
triangle, 56
triangle axiom, 65
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triangulated category, 56
monoidal, 70

triangulated functor, 70
trivial distinguished triangle, 56

U , 2
universal arrow, 72
universal property, 12

VectK, 4

zero object, 7
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