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Introduction

Categorification, a term introduced by Louis Crane and Igor Frenkel, is the process of re-
placing set-theoretic notions by their corresponding category-theoretic analogues. We replace
sets with categories, elements with objects, functions with functors, and equations with nat-
ural isomorphisms. The goal of categorification is to obtain extra structure on the original
object with which to study it. However, the opposite process, decategorification, wherein
isomorphic objects are identified as “equal”, is a more natural starting point of study as it
is easier to forget information than to create it.

Consider, for instance, a scenario' set somewhere around the dawn of civilization where
a horse tamer wishes to gift two of his patrons an equal number of horses. He picks out the
horses to give away, and divides them into two groups. He then tries to verify that he is indeed
being fair to his patrons, attempting to construct an isomorphism by lining up each horse
in one group to a horse in the other. This, however, turns out to be quite a time-consuming
and confusing process since the horses refuse to stay still and reins hadn’t yet been invented.
But then, he thinks of a solution! Instead of trying to find an explicit isomorphism between
these two finite sets, he uses some abstract “counting system” consisting of “17, “27  “3”7]
..., to “count” each group! No longer concerned with the fact that he is dealing with horses
at all, he has made the task easier by only remembering the necessary information. And
thus, by decategorifying the category of finite sets, we obtain the natural numbers N.

The first chapter of this paper provides the reader with the necessary background knowl-
edge in category theory — and of course, readers with prior knowledge of the subject may
wish to skip straight to Chapter 2. It is in Chapter 2 that we discuss one of the most nat-
ural ways to decategorify the information in a category — that of taking its corresponding
Grothendieck group®. Certain types of categories (additive, abelian and triangulated cate-
gories) lend themselves to the construction of Grothendieck groups in a natural way. We
discuss properties that these categories can have that give the Grothendieck groups nice
bases. Finally, in Chapter 3, we discuss categories with extra information (monoidal cate-
gories) whose Grothendieck groups (sometimes) have the structure of a ring, and conclude
by relating abelian categories to modules over a ring.

IThis scenario is purely hypothetical. The authors make no claim as to whether the invention of N can
actually be attributed to a horse tamer.

2The Grothendieck group is named for Alexander Grothendieck, author of the modern mathematical
masterpiece Eléments de Géométrie Algébrique.
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Chapter 1

Categories

In this chapter, we first develop the definition of a category and provide examples of familiar
algebraic structures viewed as categories. Then, we examine some special objects and mor-
phisms that often exist in categories. Finally, we consider categories themselves as entities
with morphisms from one to the other, in the form of functors and natural transformations.

1.1 The Notion of a Category

Before we can give the definition of a category, we require some set theory. We would like
to define a structure that contains all sets, which begins with the following observation:

Proposition 1.1.1. There is no set which contains every set.

Proof. Suppose, on the contrary, that there exists some set X such that X is the set of all
sets. We know that for any set, there exists a subset consisting of elements of that set that
satisfy any given property. So there is a subset A={z € X | x ¢ z} C X. Since A is a set,
it is a member of X. Now if A € A, then A ¢ A. Butif A ¢ A, then A € A. These two cases
are exhaustive and in both, we have A € A and A ¢ A. This is, of course, a load of nonsense.
Thus, no such set X exists. This well-known result is called Russell’s Paradozx. O

Therefore, we need to define a new structure that is “large enough” to contain all sets.
Definition 1.1.2 (Class). A class is a collection of objects for which the following are true:
All members of a class are sets.

a

(
(b

For any property P, there exists the class of all sets with property P.

)
)
(c) If C4, ..., C, are classes, then the n-tuple (Cy, ...,C,,) is a class.
(d) All sets are classes (and hence, all members of sets are sets).

)

(e) The largest class is called the universe, which we denote by U; it is precisely the class
of all sets.



In practice, the things we know about sets (subsets, unions, intersections, cartesian prod-
ucts, relations and functions) behave exactly the same way for classes. If a class is a set,
then we call it a small class. Otherwise, we say that the class is a proper class or large
class. Since a proper class is not a set, no proper class can be a member of a class. If we
now revisit Russell’s Paradox by considering U as the class of all sets, then the subclass
A={zelU | x ¢ x} CU does not cause any problems! The subclass A is simply the class
of all sets which are not members of themselves, and is a proper class.

Remark 1.1.3. A set can be viewed as a class by identifying each element with the set
containing precisely that element.

Definition 1.1.4 (Category). A category consists of a class Ob of objects and a class Mor
of morphisms (also called arrows) together with four assignments called domain, codomain,
identity and composition:

(a) Domain (respectively, codomain) is an assignment of the form Mor — Ob that assigns
to every morphism f an object dom(f) (respectively, cod(f)). We write

fra—b or alsb

to mean that a morphism f satisfies dom(f) = a and cod(f) = b.

(b) Identity is an assignment of the form Ob — Mor that assigns to every object a a
morphism id, such that cod(id,) = a = dom(id,).

(c) We define the class K of composable morphisms to be a subclass of Mor x Mor that
consists of all pairs (g, f) such that dom(g) = cod(f). Composition is an assignment
of the form K — Mor that assigns to every pair (g, f) of composable morphisms a
new morphism g o f such that dom(g o f) = dom(f) and cod(g o f) = cod(g). The
morphism g o f is called the composite morphism of g and f.

In addition, the following axioms must be satisfied:

(CA1) Associativity: for any sequence of objects and morphisms of the form a Lpseh d,

we have ho (go f) = (hog)o f.
(CA2) Unit Law: for any morphism f: a — b, we have id,of = f = f oid,.

When working with one or more categories in a specific context, we will write Ob C and
Mor C to respectively mean the objects and morphisms of the category C. For brevity, we
will sometimes use a common abuse of notation and write ¢ € C for ¢ € Ob C.

Definition 1.1.5 (Small category, large category). We say a category C is a small category
if Ob C and Mor C are sets. Otherwise, C is a large category .



Definition 1.1.6 (Homomorphism class, locally small category). Let C be a category. We
define the homomorphism class from a to b to be

Home(a,b) := {f € Mor | dom(f) =a and cod(f) = b}.

We will often say hom-class for short and write Hom(a, b) if the category is understood. A
category whose hom-classes are, in fact, sets is called a locally small category.

Remark 1.1.7. The term hom-set appears in place of hom-class in some of the literature
(for instance, [15]), where different definitions of small and large categories are given. Since
for us, a hom-class is not necessarily a set, we will refrain from using the term hom-set.

Definition 1.1.8 (Subcategory, full subcategory). Let C and D be categories. Then, D is

a subcategory of C if the following hold:
ObD C ObC.

a

(a)

(b) MorD C {f € MorC | dom(f),cod(f) € ObD}.

(c) For all a € ObD, we have id, € Mor D.

(d) If f,g € MorD and dom(g) = cod(f), then g o f € MorD.

(e) Composition in D is given by composition in C.

Additionally, if Homp(a, b) = Homg(a, b) for all pairs (a, b) of objects in D, then D is a full
subcategory of C.

Examples 1.1.9. The following are examples of small categories:
(a) The empty category 0 has Ob = @ and Mor = @.
(b) The category 1 has Ob = {a} and Mor = {id,}.
(c) The category 2 has Ob = {a, b} and Mor = {id,, ids, a EN b}.

(d) The category 3 has Ob = {a, b, c} and the three identity morphisms along with three
non-identity morphisms arranged in a triangle as follows:

S

|/

(e) The category || has Ob = {a, b} and Mor = {id,, ids, a EN b,a 2 b}. We call f and g
parallel morphisms.



Examples 1.1.10. The following are examples of large categories:

(1)

Set is the category of sets, where the objects are all sets and the morphisms are all
functions between sets.

FinSet is the category of finite sets, a full subcategory of Set.

Grp is the category of groups, where the objects are all groups and the morphisms are
all group homomorphisms.

Ab is the category of abelian groups, a full subcategory of Grp.
ADb® is the category of finitely generated abelian groups, a full subcategory of Ab.
FinAb is the category of finite abelian groups, a full subcategory of Ab®.

Mon is the category of monoids, where the objects are all monoids and the morphisms
are all monoid homomorphisms.

Ring is the category of rings, where the objects are all rings and the morphisms are
all (unity-preserving) ring homomorphisms.

CRing is the category of commutative rings, a full subcategory of Ring.

Given a ring R, the category R-Mod has all left modules over R as its objects and all
module homomorphisms between them as its morphisms.

Given a field K, the category Vecty has all vector spaces over K as its objects and all
K-linear transformations as its morphisms.

Given a field K, the category FinVecty is the full subcategory of Vectk consisting of
all finite-dimensional vector spaces over K.

Example 1.1.11. The category Rel has sets as its objects and binary relations as its
morphisms. If R and S are composable relations, then the composite relation is defined by

(a,c) € S o R if and only if there exists b such that (a,b) € R and (b,c) € S.

For any object A, the identity morphism is the relation id4 = {(a,a) | a € A}.

Example 1.1.12. A discrete category is category such that every morphism is an identity
morphism (e.g. 1 is the discrete category with a single object). Note that every discrete
category is uniquely determined by its class of objects and, furthermore, every class X
defines the object class of a discrete category with Mor = {id, | z € X}. A category C is
discrete if and only if every subcategory of C is a full subcategory.



Example 1.1.13. Consider a small category C where Ob = {a} but where there may be
any number of nonidentity morphisms. Since the only object is a, any pair of morphisms f, g
satisfy cod(f) = a = dom(g) and so are composable. By CA1, composition is associative
and by CA2, the identity morphism acts as a left and right identity for composition. Hence,
Mor C is a monoid under composition. Indeed, given any object x in any small category, the
set Hom(z, z) is a monoid under composition.

Example 1.1.14. Let V be a class (recall that X € V' = X is a set). Then, Ensy is a
category! where Ob = V and Hom(X,Y) = {f | f is a function X — Y} for each pair (X,Y)
of sets in V. The identity morphisms are simply the identity functions and composition of
functions is interpreted in the usual way.

Definition 1.1.15 (Opposite category). For any category C, we define its opposite category
C°P to be the category with Ob C? = Ob C and Homcer(A, B) = Home(B, A) for every
pair (A, B) of objects — that is, for every morphism f: A — B € MorC we have the
corresponding morphism f°P: B — A € Mor C°. Composition of morphisms in C°P is
given by f°P o ¢g°® = (g o f)°P and is defined precisely when g o f is defined in C.

Definition 1.1.16 (Product category). Given two categories C and D, we define the product
category C x D to be the category whose objects are pairs (¢,d) with ¢ € C and d € D,

and whose morphisms (¢, d)—(c,d’) are pairs (f, g) of morphisms ¢ ¢ and d % d'. The
identity morphism of (¢, d) is simply (id.,idy) and composition of two morphisms
(C, d) (fj) (Cl,d/) (fgl) (Cll,d”>
is given by
(f'.9) o (f.9)=(f"of.g'og).

Definition 1.1.17 (Morphism category). Let C be a category. The morphism category of
C, denoted C7, is the category given by the following data:

(a) ObC” = MorC

(b) Home-(f, ') = {(9.9') | g-9' € MorC and f'og = g' o f}
(c) For any morphism f: a — b,id; = (id,, idy).

(d) Composition is given by (g,¢’) o (h,h') = (go h,g o }').

In other words, for any objects f: a — b and f': @’ — b in C7, a morphism (g,¢'): f — f’
in C™ consists of a pair of morphisms ¢g: a — @’ and ¢’: b — ¢/ in C such that the following
diagram commutes:

a

|

a/

L This notation, which appears in [15], is likely to originate from ensemble, the French word for “set”.

_f

o
@

—_—
f/
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1.2 Objects & Morphisms

Now that we have plenty of categories to work with, we turn our attention to special objects
and morphisms that may exist in them. Many of these notions are similar to those in group
theory and ring theory, but there are sometimes subtle differences. One should be careful not
to simply gloss over a definition because it shares a name with a similar term in a different
context!

Definition 1.2.1 (Isomorphism, isomorphic objects). A morphism f: a — b is an isomor-
phism if there exists a morphism ¢: b — a such that go f = id, and f o g = id,. We say
that g is the inverse of f and write g = f~1.

For any pair of objects (a, b), if an isomorphism f: a — b exists, we say that a is isomorphic
to b and write a = b.

Proposition 1.2.2. In any category we have the following:
(a) The composition of two isomorphisms is an isomorphism.

(b) Being isomorphic is an equivalence relation on the objects.

Proof. (a) Let f: a — band g: b — ¢ be isomorphisms. Then, we have (f~*og™!)o(go f) =
id, and (go f)o(ftog ) =id, so go f is an isomorphism.

(b) Reflexivity is obvious (for any object a, id, is an isomorphism), and symmetry follows
directly from the definition. Suppose now that @ = b and b = ¢. Then, there exist isomor-
phisms f: a — b and g: b — ¢. By (a), we have go f: a — ¢ is an isomorphism, so a = ¢,
proving transitivity . Therefore, the relation = is an equivalence relation on the objects. [

Remark 1.2.3. We say two morphisms f and g are isomorphic if they are isomorphic as
objects in the morphism category and write f = g. Equivalently, we have f =2 ¢ if and only
if there exist two isomorphisms h and A’ such that f = hogoh'.

In this paper, we will discuss several objects defined by a property that are unique up
to isomorphism. By this, we mean that all objects fulfilling the property are isomorphic.
Furthermore, all properties studied in this paper will be nvariant under isomorphism —
that is, if @ = b, then a has the property if and only if b has the property. Thus, any
object that is unique up to isomorphism will be characterized by all the objects contained
in precisely one isomorphism equivalence class.

Definition 1.2.4 (Skeleton subcategory, essentially small category). A category D is a
skeleton subcategory of C if it has the following properties:

(a) The category D is a full subcategory of C.
(b) Every object in C is isomorphic to some object in D.
(¢) No two distinct objects in D are isomorphic.

We will sometimes refer to a skeleton subcategory of C as simply a skeleton of C and denote
it by C. A category is essentially small if it has a small skeleton.



Remark 1.2.5. Essentially small categories are locally small.

Example 1.2.6. (a) The category FinVectc of finite-dimensional vector spaces over the
complex numbers has a skeleton subcategory with objects {C™ | n € N}.

(b) The category ADb'® of finitely generated abelian groups has a skeleton subcategory with
ObAb® ={Z¢F 0 Z, & - D Z,,, | niniy and k,m € N}.
See [19, p. 338] for the group theory details.

Definition 1.2.7 (Initial/terminal/zero object). Let C be a category. We say that a € C is
an initial object if for every object ¢ € C, there exists a unique morphism a — ¢. Conversely,
b € C is a terminal object if for every object ¢ € C, there exists a unique morphism ¢ — b.
A zero object is an object that is both initial and terminal.

Remark 1.2.8. Note that an initial object in C is a terminal object in the opposite category
C°P  and vice versa. Hence, we say that initial and terminal objects are dual notions to
each other. When a certain type of object or morphism is dual to another, the details of
proofs involving them are often similar — one simply reverses the direction of the morphisms
involved. For this reason, we sometimes prove only one of the dual cases and remark that
the details of the other are analogous.

Lemma 1.2.9. The initial, terminal, and zero objects of a category, if they exist, are unique
up to isomorphism.

Proof. Suppose a and a' are initial objects of a category C. Then there exists a unique
morphism f: a — ' and a unique morphism ¢: ¢’ — a. Then, we have the composite
morphisms go f: a — a and fog: a’ — a’'. But then, since there is exactly one morphism
a — a and exactly one morphism a’ — a’, these composites must be the identity morphisms
of a and o’ respectively. Hence, a = a’. The proof for terminal objects is analogous, and the
result for zero objects follows directly. O]

Examples 1.2.10. (a) A discrete category with more than one object has neither an
initial object nor a terminal object.

(b) In Set, the initial object is & since for any set X, there is exactly one function @ — X.
The terminal object is {*}, a set containing one element, since for any set X there is
exactly one function X — {x}.

(c) In Grp and Ab, the zero object is the trivial group {e}.

(d) In Rel, the zero object is @ since any relation that has & as its domain or codomain
must be the empty relation.



Definition 1.2.11 (Constant/coconstant/zero morphism). A morphism f: a — b is called
a constant morphism if for any object ¢ and morphisms ¢: ¢ — a and h: ¢ — a we have
fog= foh. A morphism f:a — b is called a coconstant morphism if for any object ¢
and morphisms ¢g: b — ¢ and h: b — ¢ we have go f = ho f. A morphism that is both
constant and coconstant is called a zero morphism. We say a category has zero morphisms
if for every pair of objects (a,b), there exists a zero morphism, denoted 045: a — b.

Examples 1.2.12. (a) Constant morphisms in Set are precisely constant functions. Fur-
thermore, constant functions in any subcategory of Set are constant morphisms, but
there may be nonconstant functions that are also constant morphisms. For instance,
in the discrete subcategory of Set, all identity morphisms are constant.

(b) In Set, the only coconstant morphisms are the empty functions fy: @ — X for any
set X. Hence, for any set A # @ and any set B, a zero morphism 04 p does not exist.
Thus, the category Set does not have zero morphisms.

(c¢) For any G, H € Grp, the trivial homomorphism ¢: G — H which sends all elements
of G to the identity element of H is the zero morphism Og z. Thus, the category Grp
has zero morphisms.

Proposition 1.2.13. If a category has zero morphisms, then we have the following:
(a) For every pair of objects (a,b), the morphism 0, is unique.
(b) For any morphisms f: a — b and g: b — ¢, we have Op.0 f = 04 = g 0 04p.

Proof.  (a) Suppose 0, ,: a — b is also a zero morphism. Then, we have 0] , = 0, , oid, =
;’b o Oa,a = Oa,b o Oa,a = Oa,b o ida = Oa,b-

(b) By definition, 0. 0 f = 0p. 0 0,5. We leave to the reader the verification that
the composition of two zero morphisms is again a zero morphism. By the uniqueness of
zero morphisms, we have 0p. 0 0yp = 04 and so Op. o f = 04, as desired. Analogously,
go Oa,b = 0a,c~ O

Lemma 1.2.14. If a category C has a zero object 0, then it has zero morphisms.

Proof. Let a,b € C. By the definition of the zero object, there exist morphisms f: a — 0
and g: 0 — b. We claim that go f: a — b is a zero morphism.

Suppose we have morphisms h: ¢ — a and k: ¢ — a. Since 0 is terminal, we have
foh= fokand hence, (go f)oh = (go f)ok. Thus, go f is constant.

The proof that g o f is coconstant uses the fact that 0 is initial and is similar. Therefore,
g o f is a zero morphism and thus, C has zero morphisms. m

Definition 1.2.15 (Monomorphism, epimorphism, bimorphism, balanced category).
A monomorphism is a morphism m: b — ¢ such that for any two morphisms f: a — b and
g: a — b we have

mo f=mog = f=g.



An epimorphism is a morphism e: a — b such that for any two morphisms f: b — ¢ and
g: b — c we have
foe=goe — f=g.

We also say that a morphism is monic if it is a monomorphism or epic if it as an epimorphism.
A morphism which is both monic and epic is called a bimorphism . A category where all
bimorphisms are isomorphisms is called balanced.

Remark 1.2.16. The notions of monomorphisms and epimorphisms are dual to each other.
Every monomorphism in C is an epimorphism in C°P; and vice versa.

Remark 1.2.17. Categories can have morphisms that are not functions so in general, it
does not make sense to ask if a morphism is injective or surjective. If our morphisms are
functions with the usual composition, then any injective morphism is a monomorphism and
any surjective morphism is an epimorphism. The converse of these statements are not true.
Consider the following functions:

fo{L2} = {1} g: {1} = {1,2}
1—1 1—1
2—1

With the usual identity functions and the usual composition, it is easily verified that C and
D are categories wherein ObC = ObD = {{1},{1,2}}, MorC = {id,idg 2, f}, and
MorD = {idf},idf1 9}, 9}. Indeed, f is a monomorphism in C (but not injective) and g is a
epimorphism in D (but not surjective).

Example 1.2.18. Set, Rel, and Grp are balanced categories. The category Ring is not

balanced. For example, we shall show that the inclusion function i: Z — Q given by i(z) = §

is a bimorphism that is not an isomorphism. Since ¢ is injective, it is a monomorphism by
Remark 1.2.17.

Suppose now that for some ring R, there exist ring homomorphisms ¢g: Q — R and
h: Q — R such that goi = hoi. Then, g({) = h(7) for all z € Z. Furthermore, for
any integer x and nonzero integer y we have the following, recalling that the multiplicative
inverse commutes with ring homomorphisms:

) =o5) =0 (45) =5 (e (3) -+ (s 5)
()4 () ;) = v-s

Hence, ¢ is an epimorphism and, thus, a bimorphism. It is not an isomorphism because
Hompging(Q,Z) = @ (suppose there is a ring homomorphism k: Q — Z; then 2]4:(%) =1,
which is a contradiction).

Lemma 1.2.19. Let C be a category that has zero morphisms. If g: b — ¢ is a monomor-
phism and for some f: a — b we have go f =04, then f = 044.

9



Proof. Since go f =04 = go04p, we have f = 0. ]
Lemma 1.2.20. Let C be a category that has a zero object 0. Then 0, , = id, if and only if
a=0.
Proof. The verification is left to the reader. n
Proposition 1.2.21. Let C be a category and let f: a — b and g: b — c.

(a) If go f is a monomorphism, then f is a monomorphism.

(b) If go f is an epimorphism, then g is an epimorphism.

(c) If g and f are monomorphisms, then g o f is a monomorphism.

(d) If g and f are epimorphisms, then g o f is an epimorphism.

(e) If g and f are bimorphisms, then g o f is a bimorphism.

Proof.  (a) Suppose go f is a monomorphism and let k: d — a and j: d — a be arbitrary
morphisms. We see that fok = foj = gofok=go foj = k=j and, hence, f is
monomorphism.

(b) Suppose g o f is an epimorphism and let k': ¢ — d, and j': ¢ — d be arbitrary
morphisms. We see that £’ og=j0g9g = k' ogof=j0gof = k' =7 and, hence, g
is an epimorphism.

(c¢) Let f and g be monomorphisms and suppose there exist morphisms h: d — a and
h': d — a such that (go f)oh = (go f)oh'. Then, by associativity of composition, we have
the following:

go(foh)=go(foh) = foh=foh' = h="N

(d) The proof is similar to part (c).
(e) The statement is a direct consequence of parts (c¢) and (d). O

Definition 1.2.22 (Split monomorphism/epimorphism). A morphism f: a — b is a split
monomorphism if there exists a morphism ¢g: b — a such that g o f = id,. A morphism
f:a— bis a split epimorphism if there exists a morphism g: b — a such that f o g = id,.

Lemma 1.2.23. A morphism f: a — b is an isomorphism if and only if it is both a split
monomorphism and a split epimorphism.

Proof. The forward implication is clear. For the reverse implication, let g: b — a and
h: b — a be the morphisms satisfying g o f = id, and f o A = id,. Then, we have g =
goid, = go foh =id, oh = h. We conclude that f is an isomorphism with g =h = f~1. O

Lemma 1.2.24. Split monomorphisms are monomorphisms and split epimorphisms are epi-
morphisms.
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Proof. Suppose f: b — cis a split monomorphism and that there exist morphisms g: a — b
and h: a — b satisfying f o g = f o h. Then, by definition, there exists a morphism j: ¢ — b
such that j o f = id, giving us the following:

g=idyog=jofog=jo foh=id,oh = h.

Hence, f is a monomorphism. The proof that split epimorphisms are epimorphisms is similar.
O

Definition 1.2.25 (Kernel). Let C be a category that has zero morphisms. A kernel of
a morphism f: a — b, denoted ker(f), is a morphism k: ¢ — a that satisfies the following
conditions:

(a) fok=0cp.

(b) For any morphism £’: d — a such that f ok’ = 04, there exists a unique morphism
g: d— csuch that kog=Fk'.

This statement can be summarized by the following commutative diagram:

Lemma 1.2.26. Let C be a category that has zero morphisms. If the kernel of a morphism
exists, then the kernel is a monomorphism.

Proof. Let f: a — b be a morphism that has a kernel k: ¢ — a. Suppose that there exist
morphisms g: d — ¢ and h: d — ¢ such that kog =koh. Then, fokog=0.,09 = 04p
and hence, there exists a unique morphism n: d — ¢ such that ko g = kon. By uniqueness,
we have g =n = h. O

Lemma 1.2.27. The kernel of a morphism is unique up to isomorphism.

Proof. Let f be some morphism and suppose ker(f) and ker(f)" are kernels of f. By defini-
tion, there exists a unique morphism g such that ker(f)og = ker(f)" and a unique morphism
¢ such that ker(f) o ¢’ = ker(f). We have

ker(f)o(gog’) =ker(f) and ker(f) o (g'og) = ker(f)".

By Lemma 1.2.26, we note that g o ¢’ and ¢’ o g are identity morphism since a kernel is
a monomorphism. In particular, g is an isomorphism and, thus, ker(f) = ker(f)" since

idcod(ker(f)) © ker(f) ©g= ker(f)/‘ N
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The kernel is an example of an object with a universal property. Objects with universal
properties are always unique up to isomorphism. Henceforth, when an object has a uni-
versal property, we will take for granted that it is unique up to isomorphism, and that the
justification would be similar to that of the previous proof.

Example 1.2.28. Consider the morphism f: Z x Z — Z in Ab given by f(z,w) = z. We
have ker(f) = k where k: Z — Z x Z is given by k(z) = (0,z). Uniqueness in the second
condition of Definition 1.2.25 is important. The morphism h: Z x Z — Z x Z given by
h(z,w) = (0, z) satisfies the first condition of Definition 1.2.25 but fails the second because
there is more than one morphism ¢: Z x {0} — Z x Z satisfying ho g = k (for instance, both
91(2,0) = (2,0) and g¢2(z,0) = (2, 2) suffice).

Proposition 1.2.29. The kernel of a homomorphism in Grp coincides with the traditional
group theory kernel.

Proof. Let f: A — B be a group homomorphism. Let C' = {a € A | f(a) = 0}, which is
the traditional kernel and hence a normal subgroup of A. We claim that ker(f) = ¢ where
i: €= Ais the inclusion map. Obviously, f oi = O¢p. Suppose there is some k: D — A
such that f ok = 0p . Then, k(D) C C. Hence, i o k = k where k: D — C is defined by
k(z) = k(z). The uniqueness of k follows from the fact that i is injective and thus monic.
Henceforth, when working in Grp (or any other category with an algebraic notion of
“kernel” | such as Ab, Vectk and R-Mod), if ker(f) denotes an object, then we are implicitly
referring to the object C' defined above and assuming the inclusion map. O]

Example 1.2.30. If C has a zero object 0, then for any a € C, ker(id,) = 0 4.

Definition 1.2.31 (Cokernel). Let C be a category that has zero morphisms. The cokernel
of a morphism f: a — b is a morphism k: b — ¢, denoted coker(f), such that

(a) ko f =04

(b) For any morphism £': b — d such that &' o f = 0,4, there exists a unique morphism
g: ¢ — dsuch that go k = k'.

This statement can be summarized by the following commutative diagram:
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1.3 (Co)products, Pullbacks & Pushouts

In this section, we present the general notion of products and coproducts that may exist
in an arbitrary category. The reader is likely to be already familiar with some specific
cases. Understanding these objects will be important in the study of Grothendieck groups,
particularly the split Grothendieck group of an additive category.

Definition 1.3.1 (Binary product). Let a and b be objects in a category. An object is a
binary product of a and b, which we denote by a1b, if there exist morphisms p,: a[1b — a
and py: a[1b — b satisfying the property that for every object ¢ and every pair of morphisms
fa: c— aand f,: ¢ — b, there exists a unique morphism f: ¢ — a[1b such that the following

diagram commutes:
¢
Pa v Py

a aflb b

We will sometimes denote a binary product of a and b as a triple (a[]b, ps, p») to emphasize
the morphisms p, and py.

Lemma 1.3.2. The binary product is unique up to isomorphism.
Proof. This follows directly from the universal property. m

Lemma 1.3.3. In a category with zero morphisms, if (aI1b, pa, py) is a product of a and b,
then the morphisms p, and py are split epimorphisms.

Proof. There exists a unique morphism f that makes the following diagram commute:

a
idg Oa,b
a Pa CLHb Py b

Hence, p, o f = id, and so p, is a split epimorphism. Similarly, one can show that p, is a
split epimorphism. O

Lemma 1.3.4. If an object c is terminal, then a = allc for all objects a.

Proof. Suppose c is terminal. Let a and b be an arbitrary objects and let f,: b — a and
fe: b — ¢ be arbitrary morphisms. For every object d, denote the unique morphism from
d — ¢ by ¢q. Note that f, makes the following diagram commute (since ¢, o f, = ¢, = f.):

b
ide YV cq
a<—a—>¢C

Suppose some morphism ¢: b — a also makes this diagram commute. Then g = id, og = f,.
Hence, a is a product of a and ¢ and, thus, a = ajc. O
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Remark 1.3.5. The converse of the preceding lemma need not be true. For example, take
the full subcategory of Set where the only objects are countably infinite sets; there is no
terminal object and yet a[]Z =2 Z for any object a.

Lemma 1.3.6. Let C be a category and a,b,c € C. Then, we have the following:
(a) Product is commutative up to isomorphism. That is, if aT1b ezists, then a[1b = bl]a.

(b) Product is associative up to isomorphism. That is, if a[1b, bI1c, and (aI1b)IIc ezist,
then (a11b)11c = a1(b11c).

Proof. (a) This follows immediately from the symmetry in the definition of product.

(b) Fix products (a11b, pa,ps), (bI1C, P}, D), and ((aT1b) 1€, Papyes PL.). Since products are
unique up to isomorphism, it suffices to show that (a[1b)[1c is a product of a and by]c.
For any h,: d — a and hyr.: d — bIJc there are unique morphisms g: (a11b)I1¢c — bIIc,
f:d—ariband r: d — (ar1b)11c such that the following diagrams commute:

(a11b)T1C

d
DbOPq [1b Pl /f WC / \<}Lbl_[c
g9 i
p;) Y Pc Pa Y Py PaTlb
c a arrb b

b blic allb<=——: Hb)Hc—>C

We note that

O(gor):pbopaHbOT:pbof:péOhbnc
and

o(gor)=p.or=pcohype.

Hence, hy[1. = g o r and the following diagram commutes:

Pa®Pq H b

Hb Hc—>bHC
Furthermore, if some r': d — (a[1b)[1c satisfies (p, 0 papp) 07’ = he and gor’ = hyge. Then,
pao(panbor/):ha:paof and pbo(panbor'):p;ogorlngohbnczpbof.

Hence, f = parypo7’. Then, since we also have p,or" = p.ogor’ = p.ohy[y., the uniqueness
in the product diagram for (a1b)[1c yields r = r’. Therefore, (a1b)11¢ = aT1(bI1C). O

14



Definition 1.3.7 (Binary coproduct). Let a and b be objects in a category. An object is
the binary coproduct of a and b, and is denoted a[1b, if there exist morphisms 7,: a — a[1b
and 7,: b — a]1b satisfying the property that for every object ¢ and every pair of morphisms
fa:a— cand f,: b — ¢, there exists a unique morphism f: a[1b — ¢ such that the following

diagram commutes:
io oy b

a allb b

As with the product, we will sometimes denote a binary coproduct as a triple (a11b, 44, 1)
to emphasize the morphisms i, and 7.

Remark 1.3.8. The dual notions of the preceding results for the product hold for the
coproduct. Coproduct is also unique up to isomorphism, as well as associative and com-
mutative up to isomorphism. In a category with zero morphisms, the morphisms i, and 7,
in Definition 1.3.7 are split monomorphisms. If ¢ is an initial object, then ajjc = a for all
objects a.

Example 1.3.9. Let A, B € Set. Then the product of A and B is the cartesian product
A x B and the coproduct is the disjoint union AUB = {(a,0) | a € A} U{(b,1) | b € B}.
Define m;: Ax B — A and my: A x B to be the usual projection maps. Define ¢;: A — AUB
and tp: B — AUB to be the usual inclusion maps. For any set X and any functions

fo: X = Aand f,: X — B, define:
f: X —=>AxB,
z = (fa(2), fo(z)).
For any functions ¢g,: A — X and g,: B — X, define g: AUB — X by:
(x) = ga(z) if z is of the form (a,0), a € A,
"~ \g(z) if 2 is of the form (b,1), b € B.

This gives us the following commutative diagrams:

R /\

A<= AxB=2-=B —% AUB<—
We leave the verification that f and g are unique to the reader.

Definition 1.3.10 (Pullback square, pullback). Let f: X — Z and g: Y — Z be morphisms
with a common codomain. A pullback square is a commutative square consisting of an object
P and morphisms p;: P — X and py: P — Y

P2y

o
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such that for any commutative square of the form

Q q2 Y

Jq ]

