University of Ottawa Department of Mathematics and Statistics

MAT 3543: Théorie des Anneaux Professor : Hadi Salmasian

Midterm Exam

Echrisony 28 2014

		rebrua	ary 20, 2014		
Surname		Fir	st Name		
Student #					
Instructions	:				
(a) You h	ave 80 minute	s to complete	this exam.		
(b) The n	umber of poin	ts available fo	r each question	n is indicated i	n square brackets.
The re in ord of the	everse side of pler to answer a	pages is for scr particular que cate this clear	rap work. If yo estion, you sho ly. Otherwise,	ou find that you ould continue	e space provided. u need extra space on the reverse side ten on the reverse
(d) Write	your student	number at the	top of each pa	age in the spac	ce provided.
(e) No no	otes, books, scr	ap paper, calc	ulators or othe	er electronic de	evices are allowed.
(f) You a	re strongly rec	commended to	write in pen ,	not pencil.	
(g) You n	nay use the las	st page of the e	exam as scrap	paper.	
					Good luck!
Please do no	ot write in the	table below.			
Question	1	2	3	4	Total
Maximum	6	7	4	5	22

Grade

1.

(a) [2 pt] Write down the definition of a principal ideal in a ring R.

(b) [1 pt] Write down the definition of a simple ring.

(c) [1 pt] Write down the definition of a division algebra.

(d) [1 pts] Give an example of a simple ring which is not a division algebra. (It is not necessary to prove that your example satisfies the above properties.)

- (e) [1 pts] True or false?
 - ullet Let R and S be two simple rings. Then $R \times S$ is a simple ring. You should justify your response.

2. (a) [3 pts] Determine the number of invertible elements of \mathbb{Z}_{88} . You should justify your response.

(b) [1 pt] Is the polynomial $x^4 - 15x + 10$ irreducible in $\mathbb{Q}[x]$? Justify your answer.

(c) [1 pt] Is the polynomial $x^4 - 15x + 10$ irreducible in $\mathbb{R}[x]$? Justify your answer.

(d) [2 pts] Find all of the rational roots of $x^4 + 7x - 2$, if they exist. You should justify your answer.

3. [4 pts] Determine all of the ideals of the ring $\mathbb{Z}_4 \times \mathbb{C}$ (direct product). Which of these ideals are prime? You should justify your answers.

М	ΔT	3543	Midter	m Exam
IVI	\neg	ンソナン	viiutei	ш схаш

Student #	

4. (a) [3 pts] Write down the proof of Gauss' Lemma:

Let $f(x) \in \mathbb{Z}[x]$. Suppose that f(x) = g(x)h(x) where $g(x), h(x) \in \mathbb{Z}[x]$. Let p be a prime number which divides all of the coefficients of f(x). Then, at least one of the following statements holds.

- p divides all of the coefficients of g(x).
- p divides all of the coefficients of h(x).
- (b) [2 pts] Write down the proof of the following theorem:
 - Let R be a commutative ring and I be an ideal of R such that R/I is an integral domain. Then, I is a prime ideal of R.

Student #	MAT 3543 Midterm Exam

This page is intentionally left blank. You may use it as scrap paper.