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1. Multiple choice. Use the following table to record your answers. Write
“A”, “B”, “C”, “D”, or “E” to indicate that you have chosen that response, or
write “X” to indicate blank (no response). A correct solution is worth 3 marks,
an incorrect or blank solution is worth 0 marks, and “X” (intentional blank) is
worth 1 mark.

Question part (i) (ii) (iii) (iv) (v) (vi) (vii)

Response

(i) Define f : R3 → R by f(x, y, z) := x+x2 +2xy+yez, and let ~u := (2
3 ,

1
3 ,−

2
3).

What is the directional derivative of f at (0, 0, 0) in the direction of ~u?

(A)
(
− 2

3
,
2

3
,−1

3

)
.

(B) 1.

(C)
7

3
.

(D)
(2

3
,
1

3
, 0
)
.

(E) (1, 1, 0).

(ii) Suppose that S is the level set of a C1 function f : R2 → R and that C ⊆ R2

is a curve parametrized by the C1 function p : [−1, 1]→ R2. Suppose also that
p(0) = (0, 0), f(0, 0) = 0, and p′(0) = ∇f(0, 0) 6= ~0. Which of the following is
true?

(A) (0, 0) ∈ C and (0, 0) 6∈ S.

(B) (0, 0) ∈ S and (0, 0) 6∈ C.

(C) (0, 0) ∈ S ∩ C and the tangent line to S at (0, 0) is orthogonal to the
tangent line to C at (0, 0).

(D) (0, 0) ∈ S∩C and the tangent line to S at (0, 0) is the same as the tangent
line to C at (0, 0).

(E) (0, 0) ∈ S ∩C but the tangent line to S and/or C at (0, 0) might not exist.
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(iii) Let A := {(x, y, z) : x2 + y2 ≤ z2, z ∈ [0, 1], x ≥ 0, y ≥ 0}. What is∫ ∫ ∫
A z(x2 + y2) dx dy dz?

(A)
π

12
.

(B)
4

3
.

(C)
4

9
.

(D)
π

6
.

(E)
π

4
.

(iv) Consider a wire that is parametrized by the path c : [0, 1]→ R3 given by

c(t) := (t, e2t, 2et),

and with density function given by δ(x, y, z) := 2
1+2y . What is the centre of

mass of this wire?

(A)
(1

2
,
e2

2
, e
)
.

(B)
(1

2
,
e2 − 1

2
, 2(e− 1)

)
.

(C)
(1

2
,
e2

2
,
e

2

)
.

(D)
( 1

e2
+

1

2
,
1 + e2

2
− 1

e2
,
2

e
+

4e

3
− 4

3e2

)
.

(E)
(
1 +

e2

2
,
e2 + e4

2
− 1, 2e+

4e3

3
− 5

3

)
.
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(v) For each R > 0, define TR : [0, π]× [0, 2π]→ R3 by

TR(φ, θ) := (R cos(θ) sin(φ), R sin(θ) sin(φ), R cos(φ)).

Note that TR parametrizes the sphere of radius R centred at the origin. Let
~F : R3 → R3 be a vector field and suppose that∫ ∫

TR

~F · d~S =
√
R.

Set A := {(x, y, z) : x2 + y2 + z2 ≤ 16}. What is∫ ∫ ∫
A

div ~F dx dy dz?

(A)
16

3
.

(B) 2.

(C)
1

4
.

(D) 4.

(E) There is not enough information to determine the answer.

(vi) Let ~F : R2 → R2 be the vector field defined by

~F (x, y) :=
(
y cos(xy)2 +

y

1 + ex
, x cos(xy)2 + x+ log(ex + 1)

)
.

Which of the following is true? Select the most complete answer.

(A) ~F = ∇f for some function f : R2 → R.

(B) ~F is a C1 function.

(C) If ~G : R3 → R3 is the vector field defined by ~G(x, y, z) := (~F (x, y), 0), then
curl ~G = (0, 0, 0).

(D) Both (ii) and (iii).

(E) All of the above.
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(vii) Which vector field is shown in the following sketch?

.

(A) ~F (x, y) =
(

1√
1+y2

, y√
1+y2

)
.

(B) ~F (x, y) = (1, x).

(C) ~F (x, y) = (1, y).

(D) ~F (x, y) =
(

1√
1+x2

, x√
1+x2

)
.

(E) None of the above.
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2. Define A := {(x, y) : x2 + y2 ≤ 1, y ≥ x} and define f : A→ R by

f(x, y) := xy3 − y3.

(i) Does f attain a maximum and a minimum on A? Explain why. 3

(ii) Find all local and global maxima and minima of f an A. 14
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3. Define the parametrized surface Φ : [0, 1]× [0, 1]→ R3 by

Φ(u, v) := (eu + e−v, eu + e−v, u+ v).

Find the average value of f(x, y) := 1
y over Φ([0, 1]× [0, 1]). 15
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4. Let D := [0, 1]× [0, 1], let Φ : D → R3 be the parametrized surface given by

Φ(u, v) := (u, v, u(u− 1)v(v − 1)),

and define the vector field ~F : R3 → R3 by

~F (x, y, z) = (2xyey
2

, xyez − ey2,−xez).

(i) Determine the boundary of Φ(D) in the sense of a surface, that is, the set
∂(Φ(D)) as in Stokes’ Theorem. 5

(ii) Determine Φu × Φv. 5

Continued on next page
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(iii) Write out
∫ ∫

Φ
~F · d~S as a double-integral over D. That is, write it as∫ ∫

D f(u, v) du dv for a function f . You should fully expand the function f

(i.e., terms like Φ and ~F should not appear in your final answer). Do not
evaluate this integral. 5

(iv) Define the vector field ~G : R3 → R3 by ~G(x, y, z) := (xyez, 0, xey
2

). Show
that curl ~G = ~F . 5

Continued on next page
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(v) Evaluate
∫ ∫

Φ
~F · d~S by using Stokes’ Theorem. 10
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5. Let ~F = (F1, F2) : R2 → R2 be a C1 vector field and let Φ = (Φ1,Φ2) : R2 →
R2 be a C1 function. Define ~G : R2 → R2 by

~G := (~F ◦ Φ) · Φv,−(~F ◦ Φ) · Φu)

= ((F1 ◦ Φ)
∂Φ1

∂v
+ (F2 ◦ Φ)

∂Φ2

∂v
,−(F1 ◦ Φ)

∂Φ1

∂u
− (F2 ◦ Φ)

∂Φ2

∂u
).

Here is a calculation of div(~G).

div(~G)=
∂

∂u

(
(F1 ◦ Φ)

∂Φ1

∂v
+ (F2 ◦ Φ)

∂Φ2

∂v

)
+

∂

∂v

(
− (F1 ◦ Φ)

∂Φ1

∂u
− (F2 ◦ Φ)

∂Φ2

∂u
)
)

(1)

=
∂(F1 ◦ Φ)

∂u

∂Φ1

∂v
+ (F1 ◦ Φ)

∂2Φ1

∂u∂v
+
∂(F2 ◦ Φ)

∂u

∂Φ2

∂v
+ (F2 ◦ Φ)

∂2Φ2

∂u∂v

− ∂(F1 ◦ Φ)

∂v

∂Φ1

∂u
− (F1 ◦ Φ)

∂2Φ1

∂v∂u
− ∂(F2 ◦ Φ)

∂v

∂Φ2

∂u
− (F2 ◦ Φ)

∂2Φ2

∂v∂u
(2)

=
∂(F1 ◦ Φ)

∂u

∂Φ1

∂v
+
∂(F2 ◦ Φ)

∂u

∂Φ2

∂v
− ∂(F1 ◦ Φ)

∂v

∂Φ1

∂u
− ∂(F2 ◦ Φ)

∂v

∂Φ2

∂u
(3)

=
(∂F1

∂x
◦ Φ
)∂Φ1

∂u

∂Φ1

∂v
+
(∂F1

∂y
◦ Φ
)∂Φ2

∂u

∂Φ1

∂v

+
(∂F2

∂x
◦ Φ
)∂Φ1

∂u

∂Φ2

∂v
+
(∂F2

∂y
◦ Φ
)∂Φ2

∂u

∂Φ2

∂v

−
(∂F1

∂x
◦ Φ
)∂Φ1

∂v

∂Φ1

∂u
−
(∂F1

∂y
◦ Φ
)∂Φ2

∂v

∂Φ1

∂u

−
(∂F2

∂x
◦ Φ
)∂Φ1

∂v

∂Φ2

∂u
−
(∂F2

∂y
◦ Φ
)∂Φ2

∂v

∂Φ2

∂u
(4)

=
(∂F1

∂y
◦ Φ− ∂F2

∂x
◦ Φ
)(∂Φ2

∂u

∂Φ1

∂v
− ∂Φ1

∂u

∂Φ2

∂v

)
. (5)

In the above proof, which of the following are used and where? Write the
line number ((1)–(5)) beside each one that is used, and leave the rest blank. 17

Chain Rule Lagrange Multiplier Theorem
The Change-of-Variable Theorem Green’s Theorem
Equality of mixed second Mean Value Theorem

order partial derivatives The Product Rule
Fubini’s Theorem for differentiation
Gauss’ Divergence Theorem Stokes’ Theorem
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