

Université d'Ottawa · University of Ottawa

Faculté des sciences Mathématiques et de statistique Faculty of Science Mathematics and Statistics

Mathematical Reasoning and Proofs MAT1362 First Midterm Exam (α)

8 February 2024 Prof. Mateja Šajna

Instructions. You must sign below to confirm that you have read, understand, and will follow them.

- This is an 80-minute *closed-book* exam; no notes are allowed. Calculators are *not* permitted.
- The exam consists of 5 questions on 8 pages. Page 8 contains the Table of Logical Equivalences. *Please do not detach it.*
- Be sure to read carefully and follow the instructions for the individual problems. To receive full marks, your solution/proof must be correct, complete, and show all relevant details.
- For rough work or additional work space, you may use the back pages. Do not use scrap paper of your own.
- Use correct mathematical notation and terminology, as defined in class.
- You may ask for clarification.
- Unauthorized electronic devices (such as cellular phones) are not permitted during this exam. Such devices must be *turned off completely* and stored out of students' reach. Students found in possession of such a device during the exam will be asked to leave immediately and academic fraud allegations may be filed.

LAST NAME:_____

First name:_____

Signature:_____

Write your student number on the next page.

Circle your DGD (this is where you will pick up your marked exam):

D01	$\mathbf{D02}$
11:30	13:00
MRT 015	MRT 219

Student number:_____

Question	1	2	3	4	5	Total
Max	7	7	7	7	7	35
Marks						

[7pts] (1) Let P and Q be two logical propositions.

(a) Use a **truth table** to prove the Absorption Law: $P \lor (P \land Q) \equiv P$

(b) Use the **Table of Logical Equivalences** on p. 8 to prove the following equivalence:

$$\left((P \vee \neg Q) \Longrightarrow (Q \wedge \neg Q)\right) \equiv (\neg P \wedge Q)$$

Use exactly one equivalence per step, and name it, too.

[7pts] (2) Use Mathematical Induction to prove the following:

$$(\forall n \in \mathbb{N}) \left(\sum_{j=1}^{n} (6j-2) = n(3n+1)\right).$$

Clearly state the proposition to be proved, Basis of Induction, Induction Step, and Induction Hypothesis. Indicate clearly where the Induction Hypothesis is used in your proof. [7pts] (3) (a) Consider the following proposition:

"If I am happy and I sing, then my brother gets annoyed." In words, write the **converse** and the **contrapositive** of this proposition.

Converse:

Contrapositive:

(b) In words, write the **negation** of the proposition "I am happy only if I sing."

Negation:

(c) Symbolically, write the **negation** of the proposition

 $(\forall x \in \mathbb{Z}) (\exists y, z \in \mathbb{Z} \text{ s.t.}) (x \ge 2y + 3z)$

Simplify your negation as much as possible, in particular, so that no negation signs remain.

Negation:

[7pts] (4) Prove the following propositions using only the Integer Axioms.

- (a) **Proposition**: Let $a \in \mathbb{Z}$. If ba = b for all $b \in \mathbb{Z}$, then a = 1.
- (b) **Proposition**: Let $a \in \mathbb{Z}$. Then -(-a) = a.

Careful: your proof must consist of a series of steps that logically follow from previous steps. Each step must be justified by a single Integer Axiom (from the list presented in class), or by a property of the relation "=". Name each axiom being used (e.g. "associativity of multiplication"). (5) Use an appropriate type of proof to prove the following.

Proposition: Let $a, b \in \mathbb{Z}$. Then $-a < -b \iff a > b$.

You may use only the axioms of \mathbb{N} (including axioms of \mathbb{Z}), the definition of the relation "<", the definition of subtraction, and any propositions already proved on this exam. Careful: do not use any propositions proved in class!

	Equivalence		Name	
(1)	$P \Rightarrow Q \equiv$	$\neg P \lor Q$	Implication Law	
(2)	$P \Leftrightarrow Q \equiv$	$(P \land Q) \lor (\neg P \land \neg Q)$	Biconditional Laws	
(3)	$P \Leftrightarrow Q \equiv$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$		
$\boxed{(4)}$	$P \lor \neg P \equiv$	Т	Negation Laws	
(5)	$P \land \neg P \equiv$	\mathbf{F}		
(6)	$P \lor \mathbf{F} \equiv$	Р	Identity Laws	
(7)	$P \wedge \mathbf{T} \equiv$			
(8)	$P \lor \mathbf{T} \equiv$		Domination Laws	
(9)	$P \wedge \mathbf{F} \equiv$			
(10)	$P \lor P \equiv$		Idempotent Laws	
(11)	$P \land P \equiv$			
(12)	$\neg \neg P \equiv$		Double negation	
(13)	$P \lor Q \equiv$	•	Commutative Laws	
(14)	$P \land Q \equiv$			
(15)	$(P \lor Q) \lor R \equiv$		Associative Laws	
(16)	$(P \land Q) \land R \equiv$	· · · · · · · · · · · · · · · · · · ·		
$\left \begin{array}{c} (17) \end{array} \right $		$(P \lor Q) \land (P \lor R)$	Distributive Laws	
(18)		$(P \land Q) \lor (P \land R)$		
(19)	$\neg (P \land Q) \equiv$	-	De Morgan's Laws	
(20)	$ \neg (P \lor Q) \equiv $	$\neg P \land \neg Q$		

Table of Logical Equivalences