

Université d'Ottawa · University of Ottawa

Faculté des sciences Mathématiques et de statistique Faculty of Science Mathematics and Statistics

Mathematical Reasoning and Proofs MAT1362 First Midterm Exam (α)

8 February 2024 Prof. Mateja Šajna

Instructions. You must sign below to confirm that you have read, understand, and will follow them.

- This is an 80-minute *closed-book* exam; no notes are allowed. Calculators are *not* permitted.
- The exam consists of 5 questions on 8 pages. Page 8 contains the Table of Logical Equivalences. *Please do not detach it.*
- Be sure to read carefully and follow the instructions for the individual problems. To receive full marks, your solution/proof must be correct, complete, and show all relevant details.
- For rough work or additional work space, you may use the back pages. Do not use scrap paper of your own.
- Use correct mathematical notation and terminology, as defined in class.
- You may ask for clarification.
- Unauthorized electronic devices (such as cellular phones) are not permitted during this exam. Such devices must be *turned off completely* and stored out of students' reach. Students found in possession of such a device during the exam will be asked to leave immediately and academic fraud allegations may be filed.

LAST NAME: SOUTIONS

First name:_____

Signature:_____

Write your student number on the next page.

Circle your DGD (this is where you will pick up your marked exam):

D01	D02
11:30	13:00
MRT 015	MRT 219

Student number:_____

Question	1	2	3	4	5	Total
Max	7	7	7	7	7	35
Marks						

[7pts] (1) Let P and Q be two logical propositions.

(a) Use a **truth table** to prove the Absorption Law: $P \lor (P \land Q) \equiv P$

(b) Use the **Table of Logical Equivalences** on p. 8 to prove the following equivalence:

$$\left((P \lor \neg Q) \Longrightarrow (Q \land \neg Q) \right) \equiv (\neg P \land Q)$$

Use exactly one equivalence per step, and name it, too.

 $(P \vee \neg Q) \Rightarrow (Q \wedge \neg Q)$ $\equiv (P \vee \neg Q) \Rightarrow F$ $\equiv \neg (P \vee \neg Q) \vee F$ $\equiv \neg (P \vee \neg Q) \vee F$ $\equiv \neg (P \vee \neg Q) \quad Jdentity Law$ $\equiv \neg P \wedge \neg (\neg Q)$ $\equiv \neg P \wedge Q$ Dettogan's Law Dettogan's Law

0

[7pts] (2) Use Mathematical Induction to prove the following:

$$(\forall n \in \mathbb{N}) \left(\sum_{j=1}^{n} (6j-2) = n(3n+1)\right).$$

Clearly state the proposition to be proved, Basis of Induction, Induction Step, and Induction Hypothesis. Indicate clearly where the Induction Hypothesis is used in your proof.

Let
$$P(n): \prod_{j=1}^{n} (6j\cdot 2) = n(3n+1)^{n}$$

Let neural prove $P(n)$ for all $n \in N$.
BJ: p prove $P(1): \prod_{j=1}^{n} (6j\cdot 2) = 1 \cdot (3\cdot 1+1)^{n}$
LHS: $\frac{1}{2} (6j\cdot 2) = 61 - 2 = 4$ RHS: $1 \cdot (5\cdot 1+1) = 4$
So LHS = RHS₁ i.e. $P(1)$ is T.
JS: To prove $P(n) = P(n+1)$ for all $n \ge 1$.
Fix $n \ge 1$. Assume $P(n): \prod_{j=1}^{n} (6j\cdot 2) = n(3n+1)^{n}$ (JH)
Show $P(n+1)$ follows:
LHS = $\sum_{j=1}^{n+1} (6j\cdot 2) = \sum_{j=1}^{n} (6j\cdot 2) + 6(n+1) - 2$
 $= 3n^{2} + n + 6n + 4 = 3n^{2} + 7n + 4$
RHS = $(n+1)(3(n+1)+1) = (n+1)(3n+4) = 3n^{2} + 7n + 4 - LHS$
Hence $P(n+1)$ follows.
Conduction: Give $P(1)$ is T for all $n \in N$.

[7pts] (3) (a) Consider the following proposition:

"If I am happy and I sing, then my brother gets annoyed." In words, write the **converse** and the **contrapositive** of this proposition.

Converse: If my brother gets annoyed, then I am happy and I sing.

Contrapositive: If my brother does not get annoyed, then I am not happy or I do not sing.

(b) In words, write the **negation** of the proposition

"I am happy only if I sing." Negation: Negation: Jan happy and Jdo not sing.

(c) Symbolically, write the **negation** of the proposition

$$(\forall x \in \mathbb{Z})(\exists y, z \in \mathbb{Z} \text{ s.t.}) (x \ge 2y + 3z)$$

Negation:

 $\neg (\forall x \in \mathbb{Z}) (\exists y_1 \in \mathbb{Z} \leq .1.) (x > 2y_1 > 2$

[7pts] (4) Prove the following propositions using only the Integer Axioms.

- (a) **Proposition**: Let $a \in \mathbb{Z}$. If ba = b for all $b \in \mathbb{Z}$, then a = 1.
- (b) **Proposition**: Let $a \in \mathbb{Z}$. Then -(-a) = a.

Careful: your proof must consist of a series of steps that logically follow from previous steps. Each step must be justified by a single Integer Axiom (from the list presented in class), or by a property of the relation "=". Name each axiom being used (e.g. "commutativity of addition").

(a)	Let ac Z. Assume ba=b	for all be Z.	
	By the multiplicative ident	ity axlow, IEZ.	
	Hence $ \cdot \alpha = $ => $\alpha \cdot = $ => $\alpha = $	(commutativity of multiplication) (multiplicative identity) []	
(ط)	Let ac Z. Then		
	a+(a)=0	(additive inverse axiom)	
=>	(-a)+a = 0	(commutativity of addition)	
=>	$(a) + \alpha = (-\alpha) + (-(-\alpha))$	(additive in use axiom)	
=>	a+((-a)+a)=a+((-a)+a)	(-(-a)) (replacement prop.)	
=)	(a+fa))+a = (a+fa))+f	(-a) (associativity of addition)	
->	0+a=0+(-(-a))	ladditive inverse axion	
=>	a+0 = (-(-a))+0	(commutativity of addition)	
<>	$\alpha = -(\alpha)$	(additive inverse axiom)	

(5) Use an appropriate type of proof to prove the following.

Proposition: Let $a, b \in \mathbb{Z}$. Then $a < -b \iff a > b$. You may use only the axioms of \mathbb{N} , the definition of the relation "<", the definition of subtraction, and any propositions already proved on this exam. Careful: do not use any propositions proved in class!

We need to prove P <>Q. King a proof of equivalence, we need to show P=>Q and Q=>P. To show P=>Q: Assume -a <-b. then (-b)-(-a) EIN (defn. of "<") (alp. of subtraction) Now (-b)-(-a) = (-b) + (-(-a))(by Q46) =(-b)+a (commutativity of add.) = a+(b) (defn. of subtraction) - a-b Hence a b E N. by defn. of <, we conclude a>b. To show Q=>P: (augn. of ">"). Assume a>b. Then a-b EN (defn of subtraction) a-b = a+(-b)NOW (commutativity of addition) = (-b)+a (by Q46) - (-b)+ (-l-a)) (defn. of subtraction) = (-b) - (-a)Hence (-b)-l-a) E IN. by defn. of "<", we conclude -a <-b.

	Equivalence		Name	
(1)	$P \Rightarrow Q$	≡	$\neg P \lor Q$	Implication Law
(2)	$P \Leftrightarrow Q$	Ξ	$(P \land Q) \lor (\neg P \land \neg Q)$	Biconditional Laws
(3)	$P \Leftrightarrow Q$	Ξ	$(P \Rightarrow Q) \land (Q \Rightarrow P)$	
(4)	$P \lor \neg P$	≡	Т	Negation Laws
(5)	$P \wedge \neg P$	\equiv	F	
(6)	$P \lor \mathbf{F}$	Ξ	Р	Identity Laws
(7)	$P \wedge \mathbf{T}$	\equiv	Р	
(8)	$P \lor \mathbf{T}$	Ξ	Т	Domination Laws
(9)	$P \wedge \mathbf{F}$	\equiv	\mathbf{F}	
(10)	$P \lor P$	\equiv	Р	Idempotent Laws
(11)	$P \wedge P$	\equiv	Р	
(12)	$\neg \neg P$	Ξ	Р	Double negation
(13)	$P \lor Q$	\equiv	$Q \lor P$	Commutative Laws
(14)	$P \wedge Q$	\equiv	$Q \wedge P$	
(15)	$(P \lor Q) \lor R$	\equiv	$P \lor (Q \lor R)$	Associative Laws
(16)	$(P \land Q) \land R$	\equiv	$P \land (Q \land R)$	
(17)	$P \lor (Q \land R)$	\equiv	$(P \lor Q) \land (P \lor R)$	Distributive Laws
(18)	$P \land (Q \lor R)$	Ξ	$(P \land Q) \lor (P \land R)$	
(19)	$\neg (P \land \overline{Q})$	=	$\neg P \lor \neg Q$	De Morgan's Laws
(20)	$\neg (P \lor Q)$	\equiv	$\neg P \land \neg Q$	

Table of Logical Equivalences