

Université d'Ottawa · University of Ottawa

Faculté des sciences Mathématiques et de statistique Faculty of Science Mathematics and Statistics

Mathematical Reasoning and Proofs MAT1362 Final Exam

25 April 2024 Prof. Mateja Šajna

Instructions. You must sign below to confirm that you have read, understand, and will follow them.

- This is an 3-hour *closed-book* exam; no notes are allowed. Calculators are *not* permitted.
- The exam consists of 11 questions (each worth 10 marks) on 20 pages. Page 20 contains the Table of Logical Equivalences. *Please do not detach it.*
- Be sure to read carefully and follow the instructions for the individual problems. To receive full marks, your solution/proof must be correct, complete, and show all relevant details.
- For rough work or additional work space, you may use the back pages. Do not use scrap paper of your own.
- Use correct mathematical notation and terminology, as defined in class.
- You may ask for clarification.
- Unauthorized electronic devices (such as cellular phones and smart watches) are not permitted during this exam. Such devices must be *turned off completely* and stored out of students' reach. Students found in possession of such a device during the exam will be asked to leave immediately and academic fraud allegations may be filed.

LAST NAME:_____

First name:_____

Student number:_____

Signature:___

Question	1	2	3	4	5	6	7	8	9	10	11	Total
Max	10	10	10	10	10	10	10	10	10	10	10	110
Marks												

[10pts] (Q1) Let P, Q, R be propositional variables.

(a) Use a **truth table** to determine whether or not the compound propositions

 $(P \wedge Q) \Rightarrow R \quad \text{ and } \quad (P \Rightarrow R) \wedge (Q \Rightarrow R)$

are logically equivalent. Clearly state your conclusion, and justify it referring to the truth table.

7 Q R	PAQ	PAQ =>R	P=>R	Q=>R	(P=R) N (Q=)R)
ΤΤΤ	Т	Т	Т	Т	Т
TTF	Т	F	F	Ŧ	F
TFT	Ŧ	Ţ	Т	Т	I
TFF	Ŧ		F	Т	E
FTT	F	т	T	т	Ţ
FTF	Ŧ	T	T	F	E
FFT	Ŧ	Т	Т	Т	Т
FFF	F	Т	T	T	Т
★					

Conclusion: PAQ=>R and (P=>R)A(Q=>R) are not equivalent.

(b) Use the **Table of Logical Equivalences** on p. ?? to prove the following equivalence:

$$\left((P \Rightarrow R) \land (Q \Rightarrow R) \right) \equiv \left((P \lor Q) \Rightarrow R) \right)$$

Use exactly one equivalence per step, and name it, too.

 $(P \Rightarrow R) \land (Q \Rightarrow R) \equiv (PVR) \land (PVR) \land (PVR) = (RVP) \land (PVP) \land$

^[10pts] (Q2) (a) Let $A, B \subseteq \mathbb{R}$, and let P be the following proposition:

P: "If A is a subset of B and B is bounded above, then A is empty or $\sup(A)$ exists."

State (i) the contrapositive, (ii) the converse, and (iii) the negation of P. Use words, that is, write these propositions in the same style as P is written above.

- (i) the contrapositive of P: "If A is vonenply and mp(A) does not exist, then A is not a subset of PS or Ps is not beunded above."
- (ii) the converse of P:

"If A is empty as sup(A) exists, then A is a subset of B and B is bounded above."

- (iii) the negation of P: "A is a subschof B and B is bounded above, and A is nonempty, and sup(B) does not exect."
- (b) For each of the following propositions, determine whether it is true or false, and then state the negation.

You need not prove/disprove the proposition. For the negation, use quantifiers, but simplify the quantified statement so that no symbols \neg and $\not\exists$ remain.

(i) $(\exists N \in \mathbb{N} \text{ s.t.})(\forall n \in \mathbb{N})(n \le N)$ Circle: T (F)

Negation: (HNGN)(Inen s.t.)(N>N)

- (ii) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R} \text{ s.t.})(x + y = 0)$ Negation: $(\exists x \in \mathbb{R} \text{ s.t.})(\forall y \in \mathbb{R})(x + y \neq 5)$
- (iii) $(\forall x, y \in \mathbb{R})(\exists z \in \mathbb{R} \text{ s.t.})(x < y \Rightarrow x < z < y)$ Negation: $(\exists x, y \in \mathbb{R} \text{ s.t.})(\forall y \in \mathbb{R})(x < y \land (\forall y \in \mathbb{R})(x < y \land (\forall y \in \mathbb{R})))$
- (iv) $(\forall A \subseteq \mathbb{R})(\exists M \in \mathbb{R} \text{ s.t.})(\forall a \in A)(a \leq M)$ Negation: $(\exists A \subseteq \mathbb{R} \text{ s.t.})(\forall a \in A)(a \leq M)$ $(\forall M \in \mathbb{R})(\exists a \in A)(a > M)$

(Q3) Let $a \in \mathbb{Z}$. Using only the axioms of \mathbb{Z} , prove the following two propositions. Use one axiom per step, and name it, too.

(a)
$$a \cdot 0 = 0 \cdot a = 0$$
.

(b) If b + a = b for some $b \in \mathbb{Z}$, then a = 0.

(a)	0 = 0+0	(additive identity	>
=>	$a \cdot \mathcal{O} = a \cdot 10 + 0$	(replacement P	
	Q.0 = Q.0 + Q.0	(distributivity)	>
رت	$\mathbf{a} \cdot 0 + (-(\mathbf{a} \cdot 0)) = (\mathbf{a} \cdot 0)$		(replacement)
=>	$a \cdot O + (-(a \cdot o)) = a \cdot O +$	(ao + (-lao))	(associativity +)
=)	$D = a \cdot 0 + 0$		(add. inverse)
=)	$0 = \alpha \cdot 0$		(add. identity)
=)	$O = O \cdot A$		(commutativity.)

(b) Assume
$$b+a=b$$
 for some $b\in\mathbb{Z}$.
-> $(-b)+(b+a)=(-b)+b$ (replacement)
=> $((-b)+b)+a=(-b)+b$ (associativity +)
=> $(b+(-b))+a=b+(-b)$ (commutativity +)
=> $0+a=0$ (add. invose)
=> $a+0=0$ (commutativity +)
=> $a=0$ (add. identity)

[10pts] (Q4) Let $(f_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} defined recursively as follows:

$$f_1 = 0$$
, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 3$.

(a) Determine f_3 , f_4 , and f_5 .

$$f_3 = f_{2+}f_1 = 1$$
 $f_4 = f_3 + f_2 = 2$ $f_5 = f_{4+}f_3 = 3$

(b) Use Strong Induction to prove that for all integers $n \ge 2$,

$$f_{n+3} = 3f_n + 2f_{n-1}.$$

Clearly state the proposition to be proved, the Basis of Induction, the Induction Step, and the Induction Hypothesis. Indicate where the Induction Hypothesis is used in your proof.

Let
$$P(n)$$
: " $f_{n+3} = 3f_{n+2} f_{n-1}$ ". We need to prove $P(n)$ for all $n \ge 2$.
(b]: To prove $P(2)$: " $f_{n+2} = 3f_{2} + 2f_{1}$ "
LHS: $f_{n+3} = 3$
RHS: $3f_{2} + 2f_{1} = 3\cdot11 \cdot 2\cdot0 = 3$
So LHS = RHS, and $P(2)$ is T.
IS: To prove $P(2) \land P(3) \land ... \land P(n) \Rightarrow P(n+1)$ for all $n \ge 2$.
This any $n \ge 2$, and assume $P(2) \land ... \land P(n)$ is T_{1}
Heat $P(n+1)$: " $f_{k+3} = 3f_{k+2} f_{k+1}$ for all $2 \le k \le n$ " (JH).
Examine $P(n+1)$: " $f_{m+4} = 3f_{n+1} + 2f_{n}$ "
Case 1: $n \ge 3$
LHS: $f_{n+4} = f_{n+3} + f_{n+2}$ by (P)
 $= (3f_{n+2}f_{n-1}) + (3f_{n+1} + 2f_{n-2})$ by $IH(n \ge 3)$
 $= 3(f_{n+1}f_{n-1}) + 2(f_{n+1} + f_{n-2})$

=
$$3 f_{n+1} + 2 f_n$$
 by (*)
= RHS
So P(n+1) follows.
Case 2: n=2. It suffices to show P(3): " $f_6 = 3f_3 + 2f_2$ ".
LHS: $f_6 = f_5 + f_4$ by (*)
= $3 + 2 = 5$
RHS: $3f_3 + 2f_2 = 3 \cdot 1 + 2 \cdot 1 = 5$
So LHS = RHS and P(3) is T.
Yhus P(n+1) follows in both eases.
Conclusion: since P(2) is T, and P(2)... AP(n) => P(n+1)
is T for all $n \ge 2$.

[10pts] (Q5) Let $A, B, C \subseteq \mathcal{U}$.

(a) Give the precise definition of sets $A \cap B$ and $A \cup B$, using the set-builder notation.

- (b) For each of the following statements, determine whether it is true or false (for all A, B, C). If you claim that it is true, give a rigorous proof using the definition of set operations; otherwise, give a concrete counterexample and demonstrate that this is a counterexample. (Do not use set identities.)
 - (i) If $A \cup C = B \cup C$, then A = B.
 - (ii) If $A \cap C = B \cap C$, then A = B.
 - (iii) If $A \cup C = B \cup C$ and $A \cap C = B \cap C$, then A = B.

(i) False. Counter example!

A= 1423 B= 31,2,31 r = 42,34 Then AUC = 3/12/33 = BUC but A = B. (ii) False. Courterexample: A= 31,23 $P_{2} = 41,33$ C - 313 then ADC = 313 = BOC bout A+B (iii) The. Proof: Assure AUC = BUC and ANC=BNC. Take any a cA => A E AUC

=> ae BUC

=> aeb

- => aeb v aec
- => aeb v aeànc
- => aeB V ae BnC

since acA

since Anc=BAC

Nence A = B. By symmetry, B = A. Hence A = B. [10pts] (Q6) A relation R on the set \mathbb{Z} is defined as follows:

$$xRy \iff 4|(x^2 - y^2).$$

- (a) Prove that R is an equivalence relation.
- (b) Describe [0] and [1], that is, the equivalence classes of 0 and 1, respectively. Use the set-builder notation, and be as explicit as possible.
- (c) Show that each $n \in \mathbb{Z}$ is either an element of [0] or an element of [1].

(a) R is reflexive: for all
$$x \in \mathbb{Z}$$
,
 $x^2 \times x^2 = 0 \implies 4|(x^2 \times x^2) \implies \times \mathbb{R} \times \mathbb{R}$
R is symmetric: for all $x_1 \cdot y \in \mathbb{Z}$,
 $x_1 \times y \implies 4|(x^2 \cdot y^2) \implies 4|(y^2 \times x^2) \implies \mathbb{R} \times \mathbb{R}$
R is transitive: for all $x_1 \cdot y_1 \div \mathbb{C} \times \mathbb{Z}$:
 $x_1 \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R} + |(x^2 \cdot y^2) \wedge 4|(y^2 \cdot z^2)$
 $\implies 4|(x^2 \cdot y^2 + y^2 \cdot z^2)$
 $\implies 4|(x^2 \cdot y^2 + y^2 \cdot z^2)$
 $\implies 4|(x^2 \cdot z^2) \implies \times \mathbb{R} \times \mathbb{R}$

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

(b)
$$[0] = \{y \in \mathbb{Z} : 4|(y^2 - \sigma^2)\} = \{y \in \mathbb{Z} : 4|y^2\}$$

 $[1] = \{y \in \mathbb{Z} : 4|(y^2 - \sigma^2)\} = \{y \in \mathbb{Z} : 4|(y^2 - 1)\}$

=)
$$n^{2} = 4k^{2}$$

=) $4|n^{2}$
=) $n \in [0]$ by (b)

Case 2: n is odd.
=>
$$n=2k+1$$
 for some ke Z
=> $n^2 = 4(k^2+k)+1$
=> $4|(n^2-1)$
=> $n \in [1]$.

- [10pts]
- (Q7) (a) Give the full statement for each of the five axioms that we used to define the set of real numbers, \mathbb{R} .
 - (b) Using only the five axioms from (a) and the replacement property, prove the multiplicative cancellation property for real numbers:

For all $x, y, z \in \mathbb{R}$ such that $x \neq 0$, if xy = xz, then y = z. Use one axiom per step, and name it, too.

(a) Axian 7.1 For any xiy, tell: (i) x+y= y+k (ii) (x+y)+3 = x+(y+3)(iii) $x(y+3) = xy + x_3$ (iv) xy = yx $(v) \times (y_{t}) = (X_{y})_{t}$ AXIOM 7.2 There exists OER st. XIO=X for all XER. Axion 7.3 Thre exists IER st. 1=0 and X.I-x for all XER. Axiom 7.4 For all XEIR thre arists yEIR sit. X+y=0. Axiom 7.5 For all x E IR-103 there actes yEIR s.t. Xy=1. (b) Assume Axioms 7.1-7.5. Let Xiy, 3 E IR be such that Xy = X & and X + O. By Axiom 7.5, thre exists X' E IR St. XX' = 1. Xy = X૨ Then: (replacement) (5x1 'x = (yx) 'x <= (Axiom 7.1(v)) => (x'x)y = (x'x) 3 (Axion 7.1 (iv)) => (x x-1)y = (x x-1)z => 1.4 = 1.8 (Axiom 7.5) => y·1 - 2·1 (Axiom 7.1 (iv)) (Axtom 7.3) y = & ->

[10pts] (Q8) Let $f : A \longrightarrow B$ be a function.

(a) Give a precise definition that explains what is meant by "f is *injective*".

(b) Give a precise definition that explains what is meant by "f is surjective". f is surjective if for all ber $\exists a \in A \leq .+$. $f|a\rangle = b$.

- (c) Let $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ be defined by f(n) = 3n 2.
 - (i) Prove that f is injective.
 - (ii) Prove that f is not surjective.
 - (iii) Find a left inverse g of f. Be sure to verify that your g is indeed a left inverse of f.

(i) Take any a1, a2 ∈ ¥.
\$\foralle{1} = \foralle{1} = 3 & 3a_1 - 2 = 3 & a_2 - 2 => 3a_1 = 3 & a_2 => a_1 = a_2 Hence f is injective.
(ii) Counterexample: let b = 2 ∈ ¥. Suppose flat ¥ s.t. f(a) = b => 3a - 2 = 2 => 3a = 4 1 a contradiction.

Additional work space. Please do not detach.

=>
$$g(b) = \frac{1}{3}(b+2)$$
 if $b=3a-2$.
Define $g: \mathbb{Z} \to \mathbb{Z}$ as follows:
 $g(b) = \int \frac{1}{3}(b+2)$ if $3|(b+2)$
 $g(b) = \int \frac{1}{3}(b+2)$ oftentialse

then for all
$$a \in \mathcal{X}_1$$

 $(g \circ f)(a) = g(f(a)) = g(3a-2) = a$
so $g \circ f = id \mathbb{Z}$ and g is a left inverse of f .

[10pts] (Q9) Let A be a subset of \mathbb{R} defined as

$$A = \left\{ 5 - \frac{2}{n} : n \in \mathbb{N} \right\}.$$

Fully justify all your answers below. In this question, you may use the arithmetic of \mathbb{R} without referring to axioms or propositions.

- (a) Find the minimum of A, or else prove that it does not exist.
- (b) Find the infimum of A, or else prove that it does not exist.
- (c) Find the supremum of A, or else prove that it does not exist.

(a) Claim: min(A) = 3
Proof For all nells,

$$n \ge 1$$

 $= 3 + 1 \le 1$
 $= 3 - \frac{2}{n} \ge -2$
 $= 3 - \frac{2}{n} \ge 5 - 2 = 3$
Hence $a \ge 3$ for all $a \in A$, so 3 is a lower bound.
 $A \ge 5 - \frac{2}{1} = 3 \in A$, we have $\min(A) = 3$.
(b) Since $\min(A) = 3$, we know $\inf[A] = 3$ as well.
(c) Claim: $\sup[A] = 5$
Proof. * For all nells,
 $n > 0$
 $\Rightarrow -\frac{2}{n} < 0$
 $\Rightarrow -\frac{2}{n} < 0$

Additional work space. Please do not detach.

Hence
$$a < 5$$
 for all $a \in A_1$ so 5 is an upper bound.
* Suppose b is an upper bound for A and $b < 5$.
Gince IN is not bounded above, $\exists n \in N$ s.t. $n > \frac{2}{5-b}$.
 $\Rightarrow 5-b > \frac{2}{n}$ (as $5-b>0$)
 $\Rightarrow b < 5-\frac{2}{n}$
 $\Rightarrow \exists a \in A \text{ s.t. } a > b$, a contradiction.
Hence $5= \sup(A)$.

[10pts] (Q10) (a) Let $(a_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R} , and $L \in \mathbb{R}$. Give a precise definition that explains what is meant by "the sequence $(a_k)_{k=1}^{\infty}$ converges to L".

The segnance
$$(a_k)_{k=1}^{\infty}$$
 converges to L if
(YEZO)(JNEINS.T.)(YKZN)(Iak-LI

(b) Determine $\lim_{k\to\infty} \frac{2k-1}{k+3}$.

You must prove that your answer is correct using the definition of a limit of a sequence from (a), and using no other results on limits.

Proof. * Take any \$\mathbf{e}_{0}\$. We wand NETWS. I. Item -21 < 8. * Calculation: $\left|\frac{2k+1}{k+3}-2\right| = \left|\frac{2k+1-2(k+3)}{k+3}\right| = \left|\frac{-5}{k+3}\right| = \frac{5}{k+3} < \frac{5}{k}$ For $\left|\frac{2k+1}{k+3}-2\right| < 8$, it suffices that $\frac{5}{k} < 8$, i.e. $k > \frac{5}{8}$ * Choose N: Since IN is not bounded above, $\exists NETN s. N > \frac{5}{8}$. * Verify this N: for all $k \ge N_1$ $\left|\frac{2k+1}{k+3}-2\right| = \frac{5}{k+3} < \frac{5}{k} < \frac{5}{N} < 8$. Hence $\lim_{k\to\infty} \frac{2k+1}{k+3} = 2$. [10pts](Q11) Let $(x_{\mathbf{h}})_{\mathbf{h}=1}^{\infty}$ be a sequence in \mathbb{R} defined recursively as follows:

$$x_1 = 1$$
, and $x_n = \frac{1}{3}(x_{n-1} + 6)$ for all $n \ge 2$.

(a) Using induction, prove that this sequence is bounded above by 3 and bounded below by 0; that is, prove that for all $n \in \mathbb{N}$,

$$0 \le x_n \le 3.$$

- (b) Prove that this sequence is increasing.
- (c) (Bonus) Is this sequence convergent? Justify your answer.

(a) Let
$$P(n): "0 \le x_n \le 3"$$

 $P(1): "0 \le x_n \le 3"$
 $P(1): "0 \le x_n \le 3"$
 $P(1): To prove $P(1): "0 \le x_n \le 3"$
 $P(1): To prove $P(n) = P(n+1)$ for all $n \ge 1$.
 $P(1): To prove $P(n) = P(n+1)$ for all $n \ge 1$.
 $P(1): P(1): "0 \le x_n \le 3"$
 $P(1): P(1): T = 2 = 2$
 $P(1): P(1): P($$$$

(b) For all NEN: $X_{n+1}-X_n = \frac{1}{3}(X_n+6)-X_n = -\frac{2}{3}X_n+2 \gg -\frac{2}{3}.3+2 = 0$ since $X_n \le 3$ by (a). Additional work space. Please do not detach.

Hence $X_n = X_{n+1}$ for all $n \in \mathbb{N}$, and $(X_n)_{n=1}^{\infty}$ is increasing.

(C) By (a), the segnence is bounded, and by (b), it is monotonic. Since every monotonic bounded segnence converses, (xn), conveges.

]	Equivalence	Name
(1)	$P \Rightarrow Q$	$\equiv \neg P \lor Q$	Implication Law
(2)	$P \Leftrightarrow Q$	$\equiv (P \land Q) \lor (\neg P \land \neg Q)$	Biconditional Laws
(3)	$P \Leftrightarrow Q$	$\equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$	
$\boxed{(4)}$	$P \lor \neg P$	\equiv T	Negation Laws
(5)	$P \land \neg P$	\equiv F	
(6)	$P \lor \mathbf{F}$	$\equiv P$	Identity Laws
(7)	$P \wedge \mathbf{T}$		
(8)	$P \lor \mathbf{T}$	\equiv T	Domination Laws
(9)	$P \wedge \mathbf{F}$		
(10)	$P \lor P$		Idempotent Laws
(11)	$P \wedge P$		
(12)	$\neg \neg P$		Double negation
(13)	•	$\equiv Q \lor P$	Commutative Laws
(14)	-	$\equiv Q \wedge P$	
(15)	/	$\equiv P \lor (Q \lor R)$	Associative Laws
(16)	· · · ·	$\equiv P \land (Q \land R)$	
(17)	,	$\equiv (P \lor Q) \land (P \lor R)$	Distributive Laws
(18)		$\equiv (P \land Q) \lor (P \land R)$	
(19)		$\equiv \neg P \lor \neg Q$	De Morgan's Laws
(20)	$ \neg (P \lor Q)$	$\equiv \neg P \land \neg Q$	

Table of Logical Equivalences