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(Q1) Let P;Q;R be propositional variables.[10pts]

(a) Use a truth table to determine whether or not the compound propositions

(P ^Q)) R and (P ) R) ^ (Q) R)

are logically equivalent. Clearly state your conclusion, and justify it referring to the

truth table.
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(b) Use the Table of Logical Equivalences on p. ?? to prove the following equivalence:

�
(P ) R) ^ (Q) R)

�
�
�
(P _Q)) R)

�

Use exactly one equivalence per step, and name it, too.
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[10pts]
(Q2) (a) Let A;B � R, and let P be the following proposition:

P : \If A is a subset of B and B is bounded above, then A is empty or sup(A) exists."

State (i) the contrapositive, (ii) the converse, and (iii) the negation of P . Use words,

that is, write these propositions in the same style as P is written above.

(i) the contrapositive of P :

(ii) the converse of P :

(iii) the negation of P :

(b) For each of the following propositions, determine whether it is true or false, and then
state the negation.

You need not prove/disprove the proposition. For the negation, use quanti�ers, but
simplify the quanti�ed statement so that no symbols : and 6 9 remain.

(i) (9N 2 N s:t:)(8n 2 N)(n � N) Circle: T F

Negation:

(ii) (8x 2 R)(9y 2 R s:t:)(x+ y = 0) Circle: T F

Negation:

(iii) (8x; y 2 R)(9z 2 R s:t:)(x < y ) x < z < y) Circle: T F

Negation:

(iv) (8A � R)(9M 2 R s:t:)(8a 2 A)(a �M) Circle: T F

Negation:
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(Q3) Let a 2 Z. Using only the axioms of Z, prove the following two propositions. Use one

axiom per step, and name it, too.[10pts]

(a) a � 0 = 0 � a = 0.

(b) If b+ a = b for some b 2 Z, then a = 0.



MAT 1362 Final Exam 6

(Q4) Let (fj)
1

j=1 be a sequence in Z de�ned recursively as follows:[10pts]

f1 = 0; f2 = 1; and fn = fn�1 + fn�2 for all n � 3:

(a) Determine f3, f4, and f5.

(b) Use Strong Induction to prove that for all integers n � 2,

fn+3 = 3fn + 2fn�1:

Clearly state the proposition to be proved, the Basis of Induction, the Induction Step,
and the Induction Hypothesis. Indicate where the Induction Hypothesis is used in
your proof.
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(Q5) Let A;B;C � U .[10pts]

(a) Give the precise de�nition of sets A \ B and A [ B, using the set-builder notation.

(b) For each of the following statements, determine whether it is true or false (for all
A;B;C). If you claim that it is true, give a rigorous proof using the de�nition of set
operations; otherwise, give a concrete counterexample and demonstrate that this is
a counterexample. (Do not use set identities.)

(i) If A [ C = B [ C, then A = B.

(ii) If A \ C = B \ C, then A = B.

(iii) If A [ C = B [ C and A \ C = B \ C, then A = B.
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(Q6) A relation R on the set Z is de�ned as follows:[10pts]

xRy () 4j(x2 � y2):

(a) Prove that R is an equivalence relation.

(b) Describe [0] and [1], that is, the equivalence classes of 0 and 1, respectively. Use the
set-builder notation, and be as explicit as possible.

(c) Show that each n 2 Z is either an element of [0] or an element of [1].
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[10pts]
(Q7) (a) Give the full statement for each of the �ve axioms that we used to de�ne the set of

real numbers, R.

(b) Using only the �ve axioms from (a) and the replacement property, prove the multi-

plicative cancellation property for real numbers:

For all x; y; z 2 R such that x 6= 0, if xy = xz, then y = z.

Use one axiom per step, and name it, too.
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(Q8) Let f : A �! B be a function.[10pts]

(a) Give a precise de�nition that explains what is meant by \f is injective".

(b) Give a precise de�nition that explains what is meant by \f is surjective".

(c) Let f : Z �! Z be de�ned by f(n) = 3n� 2.

(i) Prove that f is injective.

(ii) Prove that f is not surjective.

(iii) Find a left inverse g of f .
Be sure to verify that your g is indeed a left inverse of f .
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Additional work space. Please do not detach.
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(Q9) Let A be a subset of R de�ned as[10pts]

A =

�
5�

2

n
: n 2 N

�
:

Fully justify all your answers below. In this question, you may use the arithmetic of R

without referring to axioms or propositions.

(a) Find the minimum of A, or else prove that it does not exist.

(b) Find the in�mum of A, or else prove that it does not exist.

(c) Find the supremum of A, or else prove that it does not exist.
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Additional work space. Please do not detach.
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[10pts]
(Q10) (a) Let (ak)

1

k=1 be a sequence in R, and L 2 R. Give a precise de�nition that explains
what is meant by \the sequence (ak)

1

k=1 converges to L".

(b) Determine limk!1
2k�1
k+3

.

You must prove that your answer is correct using the de�nition of a limit of a sequence

from (a), and using no other results on limits.
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(Q11) Let (xj)
1

j=1 be a sequence in R de�ned recursively as follows:[10pts]

x1 = 1; and xn =
1

3
(xn�1 + 6) for all n � 2:

(a) Using induction, prove that this sequence is bounded above by 3 and bounded below
by 0; that is, prove that for all n 2 N,

0 � xn � 3:

(b) Prove that this sequence is increasing.

(c) (Bonus) Is this sequence convergent? Justify your answer.
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Additional work space. Please do not detach.
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Table of Logical Equivalences

Equivalence Name

(1) P ) Q � :P _Q Implication Law
(2) P , Q � (P ^Q) _ (:P ^ :Q) Biconditional Laws
(3) P , Q � (P ) Q) ^ (Q) P )

(4) P _ :P � T Negation Laws
(5) P ^ :P � F
(6) P _ F � P Identity Laws
(7) P ^T � P

(8) P _T � T Domination Laws
(9) P ^ F � F
(10) P _ P � P Idempotent Laws
(11) P ^ P � P

(12) ::P � P Double negation
(13) P _Q � Q _ P Commutative Laws
(14) P ^Q � Q ^ P
(15) (P _Q) _ R � P _ (Q _ R) Associative Laws
(16) (P ^Q) ^ R � P ^ (Q ^ R)
(17) P _ (Q ^ R) � (P _Q) ^ (P _ R) Distributive Laws
(18) P ^ (Q _ R) � (P ^Q) _ (P ^ R)
(19) :(P ^Q) � :P _ :Q De Morgan's Laws
(20) :(P _Q) � :P ^ :Q


