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1. (10 pts) For each of the following statements, determine whether it is true or false, and circle the
correct answer. No justification is necessary.

(a) If A ⊆ R has an infimum, then A has a minimum. False

(b) The set {(1, 1), (1, 3), (3, 1), (3, 3), (2, 4), (4, 2), (2, 2), (4, 4)} is an equivalence
relation on {1, 2, 3, 4}. True

(c) Let a, b, c ∈ N. Then, if c divides neither a nor b, then c does not divide ab. False

(d) The function f : R → R defined as f(x) = x2 is bijective. False

(e) The function f : R⩾0 → R⩾0 defined by f(x) = x2 is bijective. True

(f) Let x be an integer. Then x4 ≡ 1 mod 5 if and only if 5 does not divide x. True

(g) Let f : X → Y be an injective function. Then, f has a unique left inverse. False

(h) A bounded sequence cannot diverge. False

(i) If (an)
∞
n=1 and (bn)

∞
n=1 are divergent sequences, then (an + bn)

∞
n=1 also diverges. False

(j) If (an)
∞
n=1 is a convergent sequence and (bn)

∞
n=1 is a divergent sequence,

then (an + bn)
∞
n=1 diverges. True
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2. (6 pts) Consider the following proposition P :

∀x ∈ A, ∃y ∈ A such that (x < y ∧ ∀z ∈ A, (x < z =⇒ y ≤ z))

(a) (2 pts) Write the negation of P . Simplify your answer so it does not contain the negation
symbol ”¬”.

∃x ∈ A.∀y ∈ A.(x ≥ y ∨ ∃z ∈ A.(x < z ∧ y > z))

(b) (2 pts) Is P true when A = Z? Justify your answer.

This is true when A = Z. Let x ∈ Z and take y = x+ 1. Then x < y is true, since x < x+ 1 is
true. Also, for all z ∈ Z, if x < z, then z is at least x+ 1, hence y ≤ z.

(c) (2 pts) Is P true when A = R? Justify your answer.

This is false when A = R. We prove the negation is true. Take x = 0 and consider y ∈ R. Now,
if y /∈ R>0, then ”x ≥ y” is true, hence ¬P is true. Otherwise, if y ∈ R>0, we must find z ∈ R
such that x < z < y. Such a z exists because R is dense. Hence ¬P is true.
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3. (6 pts) Show that for all n ≥ 1,

n∑
i=1

i(i+ 1) =
n(n+ 1)(n+ 2)

3

We use induction on n. For all n ≥ 1. Let P (n) be the statement ”
∑n

i=1 i(i+ 1) = n(n+1)(n+2)
3

”.

Base case: P (1) says ”
∑1

i=1 i(i+ 1) = 1(1+1)(1+2)
3

” which simplifies to ”2 = 2”. So P (1) is true.

Induction step: suppose P (n) is true for some n ≥ 1. That is, suppose
∑n

i=1 i(i+1) = n(n+1)(n+2)
3

for

some n ≥ 1. We want to prove P (n+ 1) is true, that is prove
∑n+1

i=1 i(i+ 1) = (n+1)(n+2)(n+3)
3

. Now

n+1∑
i=1

i(i+ 1) =
n∑

i=1

i(i+ 1) + (n+ 1)(n+ 2) =
n(n+ 1)(n+ 2)

3
+ (n+ 1)(n+ 2)

= (n+ 1)(n+ 2)(
n

3
+ 1) =

(n+ 1)(n+ 2)(n+ 3)

3

This proves P (n+ 1) is true. By the principle of induction, we conclude P (n) is true for all n ≥ 1.
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4. (6 pts) Consider the following subsets of Z:

A = {x ∈ Z | x2 + 2x > 0}, B = {x ∈ Z | |x+ 1| > 1}

Show that A = B.

Let x ∈ A. Then x2 + 2x > 0. This implies x(x + 2) > 0. This further implies either x > 0 and
x + 2 > 0, or x < 0 and x + 2 < 0. The first case simplifies to x > 0. The second case simplifies to
x < −2.

In the first case, x > 0 implies x + 1 > 1, which implies |x + 1| > 1. Hence x ∈ B. In the second
case, x < −2 implies x+ 1 < −1, which implies |x+ 1| > 1. Hence x ∈ B.

In all cases, x ∈ A implies x ∈ B, so A ⊆ B.

Let x ∈ B. Then |x + 1| > 1, which implies x + 1 > 1 or x + 1 < −1. The first case simplifies to
x > 0. The second case simplifies to x < −2.

In the first case x2 + 2x > 0 + 2 · 0 = 0, so x ∈ A. In the second case, since x < −2, we have that x
and x+ 2 are negative, hence x2 + 2x = x(x+ 2) > 0, so x ∈ A.

In all cases, x ∈ B implies x ∈ A, so B ⊆ A.

Since A ⊆ B and B ⊆ A, we have A = B.
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5. (6 pts)

(a) (1 pt) Give the definition of an equivalence relation on a set X. If you use words like “transi-
tive”, briefly define them.

A relation ∼ on X is an equivalence relation if it is reflexive, symmetric and transitive.

The relation ∼ is reflexive if ∀x ∈ X, x ∼ x.

The relation ∼ is symmetric if ∀x, y ∈ X.x ∼ y → y ∼ x

The relation ∼ is transitive if ∀x, y, z ∈ X.(x ∼ y ∧ y ∼ z) → x ∼ z

(b) (3 pts) Show that the relation on R defined by

x ∼ y ⇐⇒ ∃q ∈ Z such that y = x+ q

is an equivalence relation.

The relation is reflexive: let x ∈ R. Then consider q = 0. In that case, x = x+ q, so x ∼ x.

The relation is symmetric: let x, y ∈ R such that x ∼ y. There exists q ∈ Z such that y = x+ q.
This equation turns into x = y − q. Since −q ∈ Z, we can conclude y ∼ x.

The relation is transitive: let x, y, z ∈ R such that x ∼ y and y ∼ z. There exists q, q′ ∈ Z
such that y = x + q and z = y + q′. Combining the two equation gives z = x + q + q′. Since
q + q′ ∈ Z, we can conclude x ∼ z.

Since the relation is reflexive, symmetric and transitive, it is an equivalence relation.
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(c) (2 pts) Show that for any x ∈ R, there exists a real number y ∈ [0, 1) such that [x]∼ = [y]∼,
where ∼ is the relation from (b).

Let x ∈ R. Consider ⌊x⌋, the greatest integer less than or equal to x. Take y = x− ⌊x⌋. Since
the difference between consecutive integers is 1, we conclude that 0 ≤ y < 1, hence y ∈ [0, 1).
Furthermore, take q = −⌊x⌋. So q ∈ Z. Then y = x+ q, so x ∼ y. This shows [x]∼ = [y]∼.
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6. (6 pts)

(a) (3 pts) What are the solutions x ∈ Z of the equation

x2 + x+ 1 ≡ 2 mod 5?

Hint: you can express the set of solutions in terms of the possible remainders of x upon division
by 5.

We plug in all possible values of x mod 5.

If x ≡ 0 mod 5, then x2 + x + 1 ≡ 1 ̸≡ 2 mod 5. If x ≡ 1 mod 5, then x2 + x + 1 ≡ 3 ̸≡ 2
mod 5. If x ≡ 2 mod 5, then x2 + x+ 1 ≡ 2 mod 5. If x ≡ 3 mod 5, then x2 + x+ 1 ≡ 3 ̸≡ 2
mod 5. If x ≡ 4 mod 5, then x2 + x+ 1 ≡ 1 ̸≡ 2 mod 5.

So the solutions are all the integers x ∈ Z such that x ≡ 2 mod 5. That is x = ...−8,−3, 2, 7, ....

(b) (3 pts) What is the last digit of 333? That is, calculate the remainder upon division by 10.

We notice that 34 = 81 ≡ 1 mod 10. So 333 = 332 · 3 = (34)8 · 3 ≡ 18 · 3 ≡ 3 mod 10.
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7. (5 pts) Consider the subset S of R given as follows:

S :=

{
2 +

1

3x
| x ∈ R and x ≥ 2

}
.

(a) (2 pts) Find the maximum of S, with justification, or prove that it does not exist.

We have that max(S) = 13
6
. Indeed, 13

6
∈ S (take x = 2). Further more, we have

x ≥ 2 → 3x ≥ 6 → 1

3x
≤ 1

6
→ 2 +

1

3x
≤ 2 +

1

6
=

13

6

hence every element of S is less than or equal to 13
6
. This proves max(S) = 13

6
.

(b) (1 pt) Find the supremum of S, with justification, or prove that it does not exist.

Since the maximum of S exists, so does the supremum of S, and sup(S) = max(S) = 13
6
.
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(c) (2 pts) Find the infimum of S, with justification, or prove that it does not exist.

We show that inf(A) = 2. We first show 2 is a lower bound of S. We have

x ≥ 2 → x > 0 → 3x > 0 → 1

3x
> 0 → 2 +

1

3x
> 2

hence every element of S is greater than 2. So 2 is a lower bound for S. We now show 2 is the
greatest lower bound for S. Suppose b > 2 is a lower bound for S. We have

x ≥ 2 → 2 +
1

3x
> b → 1

3x
> b− 2 → 3x <

1

b− 2

the last implication is possible because b− 2 is positive. Then we get x < 1
3(b−2)

, for all x ≥ 2.

So 1
3(b−2)

is a real number greater than any x ≥ 2. This is a contradiction, hence b is not a lower

bound of S. We must conclude inf(A) = 2.
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8. (6 pts) Consider the function f : R>0 → R given by

f(x) =
1

2x
− 1.

Justify your answers to the following questions.

(a) (2 pts) Is f injective?

Yes. Suppose that x, y ∈ R>0 are such that f(x) = f(y). Then

f(x) = f(y) ⇒ 1

2x
− 1 =

1

2y
− 1

⇒ 1

2x
=

1

2y
(add 1 to both sides)

⇒ 2x = 2y (invert both sides)

⇒ x = y (cancellation)

(b) (2 pts) What is the image of f? Use interval notation in your final answer.

The image is f(R>0) = { 1
2x

− 1 | x ∈ R>0}. Note that

x > 0 ⇐⇒ 2x > 0

⇐⇒ 1

2x
> 0

⇐⇒ 1

2x
− 1 > −1

Thus x > 0 if and only if f(x) > −1, i.e., f(R>0) = (−1,∞). No f is not surjective, since
f(R>0) ̸= R.

(c) (1 pt) Is f bijective?

No, f is not surjective, therefore it is not bijective.

(d) (1 pt) Does f have a left or right inverse?

Since f is injective, it has a left inverse. Since f is not surjective, it does not have a right
inverse.
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9. (7 pts)

(a) (1 pt) State what it means for a sequence (xn)
∞
n=1 of real numbers to converge to L ∈ R.

The sequence (xn)
∞
n=1 converges to L ∈ R if

∀ε > 0,∃N ∈ N.∀n ≥ N, |xn − L| < ε).

(b) (3 pts) Prove, using the definition of a limit, that

lim
n→∞

(
13 +

2

4 + n2

)
= 13.

Let ϵ > 0. Take N > 2
ϵ
. Such a natural number N exists since N is not bounded above. Then,

for all n ≥ N :

∣∣∣∣13 + 2

4 + n2
− 13

∣∣∣∣ = ∣∣∣∣ 2

4 + n2

∣∣∣∣
=

2

4 + n2
(Numerator and denominator are positive)

≤ 2

n2
(since 4 + n2 ≥ n2)

≤ 2

n
(since n ≥ 1)

≤ 2

N
(since n ≥ N)

<
2
2
ϵ

(since N >
ϵ

2
)

= ϵ

This N fulfills the definition of a limit, therefore the limit is 13.
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(c) (3 pts) Consider the sequence (xn)
∞
n=1 defined recursively by x1 = 3 and, for n ≥ 1,

xn+1 =

{
xn + 1 if n is even

xn − 1 if n is odd

Does the sequence (xn)
∞
n=1 converge or diverge? Justify your answer.

The sequence diverges. Using a proof by contradiction, assume limk→∞ xk = L for some L ∈ R.
Then, for ϵ = 1

3
, there exists N ∈ N such that for all n ≥ N , |xn−L| < ϵ. Consider n ≥ N such

that n is even. Then

1 = |xn + 1− xn| = |xn+1 − xn| ≤ |xn+1 − L|+ |xn − L| ≤ 1

3
+

1

3
=

2

3

We thus have 1 < 2
3
, which is a contradiction. We must conclude that the sequence diverges.
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