Q1. a) **[1 POINT]** Let *y* represent an integer. Use the Binomial Theorem to express the expansion of the following binomial as a finite series. Do not expand the expression; simply write it as a finite series, using appropriate summation notation. No justification is required for this part.

$$(y-1)^{42}=\ldots$$

b)[2 POINTS] Evaluate the following finite series. Calculators are NOT permitted, nor are they needed.

$$\sum_{j \in \{1,3,5\}} \binom{j+4}{5-j}$$

Show ALL your steps! The final answer should be a single integer.

c) [2 POINTS] Let $I = \{S : S \subseteq \{1, 3, 5\}$ and $|S| = 2\}$. Using this index set, fully evaluate the following finite series:

$$\sum_{S \in I} \left(\prod_{a_i \in S} a_i \right)$$

Show ALL your steps! The final answer should be a single integer.

Q2. a) **[1 POINT]** State the Well-Ordering Principle. Be precise!

b) [2 POINTS] Let $S = \{k \in \mathbb{N} : \exists x, y \in \mathbb{Z} \text{ such that } k = 30x + 12y\}.$

Briefly and clearly justify why S has a smallest element. (you do NOT need to find min(S)).

Q3. [4 POINTS] Consider the following three sets: $W = \{20k + 7 : k \in \mathbb{Z}\}, \quad A = \{10m + 7 : m \in \mathbb{Z}\} \quad S = \{5n + 2 : n \in \mathbb{Z}\}.$ Rigorously prove that $(W \times A) \subseteq (A \times S).$ Be sure to use appropriate mathematical notation throughout and briefly justify each step of your proof.

Q4. Let \sim be a relation on \mathbb{Z} , defined as follows:

$$\forall a, b \in \mathbb{Z}, \qquad a \sim b \quad \iff \quad 5 \mid (a + 4b)$$

- a) **[5 POINTS]** Carefully prove that \sim is an **equivalence relation** on \mathbb{Z} .
- b) [2 POINTS] Find 2 distinct elements that belong to the equivalence class $[-1]_{\sim}$. Briefly justify each of your answers.

Q5.(a) [2 POINTS] Use modular arithmetic to evaluate the following expression in \mathbb{Z}_6 .

Give your answer in terms of one of the canonical representatives $[0], \ldots, [5]$ and show your steps:

$$([-2] \oplus [41]) \odot ([14] \odot [17])$$

(b) [2 POINTS] Does $[4] \in \mathbb{Z}_9$ have a multiplicative inverse in \mathbb{Z}_9 ?

If so, give $[4]^{-1}$ in terms of its canonical representative $[0], [1], \ldots, [8]$ and briefly justify your answer. If not, briefly justify.

(c) [2 POINTS] Does $[6] \in \mathbb{Z}_9$ have an additive inverse in \mathbb{Z}_9 ?

If so, give -[6] in terms of its canonical representative $[0], [1], \ldots, [8]$ and briefly justify your answer. If not, briefly justify.

Q6. [5 POINTS] Prove the following statement:

If
$$c, a, y \in \mathbb{R}$$
 and $y + 1 \neq 0$, then $\frac{(c+a)y}{y+1} + \frac{a+c}{1+y} = c+a$.

Do NOT use any propositions stated in class or DGDs.

Each step should be clearly justified with a single axiom of \mathbb{R} or the definition of division.

Be specific when you justify each step: <u>name</u> the axiom or definition that is being applied.