Q1. a) **[1 POINT]** Let *y* represent an integer. Use the Binomial Theorem to express the expansion of the following binomial as a finite series. Do not expand the expression; simply write it as a finite series, using appropriate summation notation. No justification is required for this part.

$$(y-1)^{42}=\ldots$$

Solution:

$$(y-1)^{42} = \sum_{m=0}^{42} \binom{42}{m} y^m (-1)^{42-m}$$

b)[2 POINTS] Evaluate the following finite series. Calculators are NOT permitted, nor are they needed.

$$\sum_{j \in \{1,3,5\}} \binom{j+4}{5-j}$$
 Show ALL your steps! The final answer should be a single integer.

Solution: We have

$$\sum_{j \in \{1,3,5\}} {\binom{j+4}{5-j}} = {\binom{1+4}{5-1}} + {\binom{3+4}{5-3}} + {\binom{5+4}{5-5}}$$
$$= {\binom{5}{4}} + {\binom{7}{2}} + {\binom{9}{0}}$$
$$= \frac{5!}{4!1!} + \frac{7!}{2!5!} + \frac{9!}{0!9!}$$
$$= \frac{5\cdot4!}{4!1!} + \frac{7\cdot6\cdot5!}{2!5!} + \frac{1}{0!}$$
$$= \frac{5}{1} + \frac{7\cdot6}{2\cdot1} + \frac{1}{1}$$
$$= 5+21+1$$
$$= 27$$

c) [2 POINTS] Let $I = \{S : S \subseteq \{1,3,5\}$ and $|S| = 2\}$. Using this index set, fully evaluate the following finite series:

$$\sum_{S \in I} \left(\prod_{a_i \in S} a_i \right)$$
 Show ALL your steps! The final answer should be a single integer.

Solution: First, $I = \left\{ S : S \subseteq \{1, 3, 5\} \text{ and } |S| = 2 \right\} = \left\{ \{1, 3\}, \{1, 5\}, \{3, 5\} \right\}$, so we have: $\sum_{S \in I} \left(\prod_{a_i \in S} a_i \right) = \prod_{a_i \in \{1, 3\}} a_i + \prod_{a_i \in \{1, 5\}} a_i + \prod_{a_i \in \{3, 5\}} a_i$ = (1)(3) + (1)(5) + (3)(5) = 23

Q2. a) **[1 POINT]** State the Well-Ordering Principle. Be precise!

Solution: Every nonempty subset of \mathbb{N} has a smallest element.

b) [2 POINTS] Let $S = \{k \in \mathbb{N} : \exists x, y \in \mathbb{Z} \text{ such that } k = 30x + 12y\}.$

Briefly and clearly justify why S has a smallest element. (you do NOT need to find min(S)).

Solution: By its definition, S is a subset of \mathbb{N} . S is nonempty since, for example, $30(1) + 12(1) \in S$. By the Well-ordering Principle, S must contain a smallest element.

Q3. [4 POINTS] Consider the following three sets:

$$\begin{split} W &= \{20k+7: k \in \mathbb{Z}\}, \quad A = \{10m+7: m \in \mathbb{Z}\} \quad S = \{5n+2: n \in \mathbb{Z}\}.\\ \text{Rigorously prove that} \quad (W \times A) \subseteq (A \times S). \end{split}$$

Be sure to use appropriate mathematical notation throughout and briefly justify each step of your proof. Solution:

Assume $(a, b) \in W \times A$. Then $a \in W$ and $b \in A$ by def. of \times $\implies a = 20k + 7$ and b = 10m + 7 for some $k, m \in \mathbb{Z}$, by def. of W and A $\implies a = 10(2k) + 7$ and b = 5(2m + 1) + 2 where $2k, 2m + 1 \in \mathbb{Z}$ since $1, 2, k, m \in \mathbb{Z}$. $\implies a \in A$ and $b \in S$ by def. of A and S, respectively $\implies (a, b) \in A \times S$ by def. of \times . This proves $(a, b) \in W \times A \implies (a, b) \in A \times S$. Therefore, $W \times A \subseteq A \times S$.

Q4. Let \sim be a relation on \mathbb{Z} , defined as follows:

$$\forall a, b \in \mathbb{Z}, \qquad a \sim b \quad \iff \quad 5 \mid (a + 4b)$$

a) [5 POINTS] Carefully prove that \sim is an equivalence relation on \mathbb{Z} .

Solution: We must prove that \sim is reflexive, symmetric and transitive.

[reflexivity] Let $a \in \mathbb{Z}$. Then a + 4a = 5a which is divisible by 5. Therefore, $a \sim a$. Since $\forall a \in \mathbb{Z}$, $a \sim a$, \sim is reflexive. [symmetry] Let $a, b \in \mathbb{Z}$. Assume $a \sim b$. Then $5 \mid (a + 4b)$ by def. of \sim $\Rightarrow \exists k \in \mathbb{Z}$ such that a + 4b = 5k by def. of divides $\Rightarrow b + 4a = b + 4(5k - 4b)$ = -15b + 5(4k) = 5(-3b + 4k) $\Rightarrow 5 \mid (b + 4a)$ since $-3b + 4k \in \mathbb{Z}$. $\Rightarrow b \sim a$ Thus, \sim is symmetric. [transitivity] Let $a, b, c \in \mathbb{Z}$. Assume $a \sim b$ and $b \sim c$.

Then $5 \mid (a + 4b)$ and $5 \mid (b + 4c)$ by def. of \sim $\implies \exists k, l \in \mathbb{Z}$ such that a + 4b = 5k and b + 4c = 5lby def. of divides $\implies (a + 4b) + (b + 4c) = 5k + 5l$ $\implies a + 5b + 4c = 5k + 5l$ $\implies a + 5b + 4c = 5k + 5l$ $\implies a + 4c = 5(k + l - b)$ $\implies 5 \mid (a + 4c)$ since $k + l - b \in \mathbb{Z}$ $\implies a \sim c$ Thus, \sim is transitive.

b) [2 POINTS] Find 2 distinct elements that belong to the equivalence class $|-1|_{\sim}$.

Briefly justify each of your answers.

Solution:

$$[-1]_{\sim} = \{x \in \mathbb{Z} : x \sim -1\} \\ = \{x \in \mathbb{Z} : 5 \mid (x+4(-1))\} \\ = \{x \in \mathbb{Z} : 5 \mid (x-4)\} \\ = \{x \in \mathbb{Z} : x-4 = 5k \text{ for some } k \in \mathbb{Z}\} \\ = \{x \in \mathbb{Z} : x = 5k+4 \text{ for some } k \in \mathbb{Z}\}$$

Thus, all integers x of the form x = 5k + 4, for some $k \in \mathbb{Z}$ are elements of $[-1]_{\sim}$ For example, $-1 \in [-1]_{\sim}$, $4 \in [-1]_{\sim}$ (there are many other possible answers)

Q5.(a) [2 POINTS] Use modular arithmetic to evaluate the following expression in \mathbb{Z}_6 .

Give your answer in terms of one of the canonical representatives $[0], \ldots, [5]$ and show your steps:

$$([-2] \oplus [41]) \odot ([14] \odot [17])$$

Solution: In \mathbb{Z}_6 , we have

$$([41] \oplus [-2]) \odot ([17] \odot [14]) = ([5] \oplus [4]) \odot ([5] \oplus [2]) = [5 + 4] \odot [(5)(2)] = [9] \odot [10] = [3] \odot [4] = [(3)(4)] = [12] = [0]$$

(b) [2 POINTS] Does $[4] \in \mathbb{Z}_9$ have a multiplicative inverse in \mathbb{Z}_9 ?

If so, give $[4]^{-1}$ in terms of its canonical representative $[0], [1], \ldots, [8]$ and briefly justify your answer. If not, briefly justify.

Solution: Yes, [4] has a multiplicative inverse in \mathbb{Z}_9 since $[4] \odot [7] = [28] = [1]$. Thus, [7] is a multiplicative inverse of [4] in \mathbb{Z}_9 .

(c) [2 POINTS] Does $[6] \in \mathbb{Z}_9$ have an additive inverse in \mathbb{Z}_9 ?

If so, give -[6] in terms of its canonical representative $[0], [1], \ldots, [8]$ and briefly justify your answer. If not, briefly justify.

Solution: Yes, [4] has an additive inverse in \mathbb{Z}_9 since $[6] \oplus [3] = [9] = [0]$. Thus, [3] is an additive inverse of [6] in \mathbb{Z}_9 .

Q6. [5 POINTS] Prove the following statement:

If
$$c, a, y \in \mathbb{R}$$
 and $y+1
eq 0$, then $\displaystyle \frac{(c+a)y}{y+1} + \displaystyle \frac{a+c}{1+y} = c+a.$

Do NOT use any propositions stated in class or DGDs.

Each step should be clearly justified with a single axiom of \mathbb{R} or the definition of division.

Be specific when you justify each step: <u>name</u> the axiom or definition that is being applied. Solution: Assume $c, a, y \in \mathbb{R}$ and $y + 1 \neq 0$.

Then $(y + 1)^{-1}$ exists by the Multiplicative Inverse Axiom, and we have:

$$\frac{(c+a)y}{y+1} + \frac{a+c}{y+1} = ((c+a)y)(y+1)^{-1} + (a+c)(y+1)^{-1}$$
 by def. of division (twice)

$$= (y+1)^{-1}((c+a)y) + (y+1)^{-1}(a+c)$$
 Commut. of Mult. (twice)

$$= (y+1)^{-1}((c+a)y + (a+c) \cdot 1)$$
 Distributivity

$$= (y+1)^{-1}((c+a)y + (c+a) \cdot 1)$$
 Mult. Identity Ax.

$$= (y+1)^{-1}((c+a)(y+1))$$
 Distrib.

$$= ((c+a)(y+1))(y+1)^{-1}$$
 Commut. of Mult.

$$= (c+a)((y+1)(y+1)^{-1})$$
 Assoc. of Mult.

$$= (c+a) \cdot 1$$
 Mult. Inverse Ax.

$$= c+a$$
 Mult. Identity Ax.