MAT1362 Mathematical Reasoning & Proofs Final Exam Wednesday, April 20, 2022

Q1. [5 points] Carefully prove the following proposition using only the axioms of Z, the properties of =, and the definition of subtraction.

Proposition. Let $r, s, t, u \in \mathbb{Z}$. If $r \neq 0$ and r(s - (tu)) = t(rs), then s = t(s + u).

Clearly indicate your assumptions and make sure to justify each step of your proof by naming <u>one</u> axiom of \mathbb{Z} or by citing "replacement" or "definition of subtraction". Do NOT use any propositions we proved in class.

Solution: **Proof.** Let $r, s, t, u \in \mathbb{Z}$. Assume $r \neq 0$ and r(s - tu) = t(rs). Then

	r(s-tu) = t(rs)
[Commut. of Mult.]	$\implies r(s-tu) = (rs)t$
[Assoc. of Mult.]	$\implies r(s-tu) = r(st)$
[Cancellation $(r \neq 0)$]	$\implies (s - tu) = st$
[Def. of Subtraction]	$\implies s + (-tu) = st$
[Replacement]	$\implies (s + (-tu)) + tu = st + tu$
[Assoc. of Add.]	$\implies s + ((-tu) + tu) = st + tu$
[Commut. of Add.]	$\implies s + (tu + (-tu)) = st + tu$
[Add. Inv. Ax.]	$\implies s+0 = st+tu$
[Add. Id. Ax.]	$\implies s = st + tu$
[Commut. of Mult.]	$\implies s = ts + tu$
[Distrib.]	$\implies s = t(s+u)$

- Q2. [4 points] Write the negation of each of the following statements. Do not simply write "not" or \neg in front of the statement, i.e. simplify each statement's negation appropriately.
 - (a) $(\exists b \in \mathbb{Q} \text{ such that })(\forall m, n \in \mathbb{Z}) \left[\frac{m}{n} = b \text{ and } m < n\right].$

Solution: $(\forall b \in \mathbb{Q})(\exists m, n \in \mathbb{Z} \text{ such that }) \left[\frac{m}{n} \neq b \text{ or } m \geq n\right].$

(b) There exist real numbers x, y such that $x^2 > y$ or y + 1 = x.

Solution: For all real numbers $x, y, x^2 \leq y$ and $y + 1 \neq x$.

(c) If Moon is barking, then Moon is getting attention.

Solution: Moon is barking and Moon is not getting attention.

(d) $x = 0 \iff (\exists y \in \mathbb{N} \text{ such that}) y > x$

Solution: $[x = 0 \text{ and } (\forall y \in \mathbb{N}) \ y \le x]$ or $[x \ne 0 \text{ and } (\exists y \in \mathbb{N}) \ y > x]$

Alternatively: $x \neq 0 \iff (\exists y \in \mathbb{N} \text{ such that }) \ y > x$

or $x = 0 \iff (\forall y \in \mathbb{N}) \ y \le x$

Q3. [5 points] Let $a, b \in \mathbb{Z}$ and consider the following implication P: P: If $5 \mid a$ and $12 \mid (2b+6)$, then $15 \mid ab$. (a) Is P true for all $a, b \in \mathbb{Z}$? Fully justify your answer with a proof or counterexample and explanation.

Solution: P is true:

Let $a, b \in \mathbb{Z}$. Assume $5 \mid a$ and $12 \mid (2b+6)$. Then $\exists k, l \in \mathbb{Z}$ such that a = 5k and 2b+6 = 12l. Therefore, 2b = 12l - 6, hence b = 6l - 3.

It now follows that ab = (5k)(6l - 3) = (5k)(3)(2l - 1) = 15(k(2l - 1)).

Since $k, l, 2 \in \mathbb{Z}$, it follows that $k(2l-1) \in \mathbb{Z}$. Therefore, $15 \mid ab$.

(b) State the **contrapositive** of *P*. Is the contrapositive of *P* true for all $a, b \in \mathbb{Z}$? Fully justify your answer.

Solution: Contrapositive of P:

If $15 \nmid ab$, then $5 \nmid a$ or $12 \nmid (2b+6)$.

The contrapositive of P is equivalent to P. Since we proved that P is true, the contrapositive must also be true for all $a, b \in \mathbb{Z}$.

(c) State the **converse** of *P*. Is the converse of *P* true for all $a, b \in \mathbb{Z}$? Fully justify your answer.

Solution: Converse of P: If $15 \mid ab$, then $5 \mid a$ and $12 \mid (2b+6)$.

The converse of P can be false:

Let a = 3 and b = 5. Then ab = 15 so $15 \mid ab$ but $5 \nmid 3$ and $12 \nmid (2(5) + 6)$

Q4. [5 points] Consider the infinite integer sequence $(x_n)_{n=0}^{\infty}$ defined recursively, as follows:

$$x_0 = 1$$

for all $n \in \mathbb{N}$, $x_n = x_{n-1} + (2n+1)^2$

Use a **proof by induction** to show that $x_n = \frac{(n+1)(2n+1)(2n+3)}{3}$ for all $n \in \mathbb{N}$.

Your proof must be well-organized and each step must be appropriately justified. Clearly state your induction hypothesis and indicate "by IH" when it is used in your induction step.

Solution: For each $n \in \mathbb{N}$, let P(n) be the statement $x_n = \frac{(n+1)(2n+1)(2n+3)}{3}$

base cases For n = 1, we have

$$x_1 = x_0 + (2(1) + 1)^2 = 1 + 3^2 = 10$$

and

$$\frac{(n+1)(2n+1)(2n+3)}{3} = \frac{(1+1)(2(1)+1)(2(1)+3)}{3} = \frac{2(3)(5)}{3} = 10$$

Thus, P(1) holds.

Ind. Hyp. Assume P(n) holds for some $n \in \mathbb{N}$, i.e. assume $x_n = \frac{(n+1)(2n+1)(2n+3)}{3}$. Then

$$\begin{aligned} x_{n+1} &= x_n + (2(n+1)+1)^2 & \text{by recursive def. of } x_{n+1} \\ &= \frac{(n+1)(2n+1)(2n+3)}{3} + (2(n+1)+1)^2 & \text{by IH} \\ &= \frac{(n+1)(2n+1)(2n+3) + 3(2(n+1)+1)^2}{3} \\ &= \frac{(n+1)(2n+1)(2n+3) + 3(2n+3)^2}{3} \\ &= \frac{(2n+3)}{3} [(n+1)(2n+1) + 3(2n+3)] \\ &= \frac{(2n+3)}{3} [2n^2 + 3n + 1 + 6n + 9] \\ &= \frac{(2n+3)}{3} [2n^2 + 9n + 10] \\ &= \frac{(2n+3)}{3} [(2n+5)(n+2)] \\ &= \frac{(n+1+1)(2(n+1)+1)(2(n+1)+3)}{3} \end{aligned}$$

Thus, P(n+1) holds, which completes the proof of the induction step.

Q5. [4 points] Determine whether each of the following statements is true for arbitrary sets A, B. If the statement is true, give an indirect proof. If the statement is false, give a counterexample and explanation. For your counterexample, give concrete sets A and B, (subsets of $\{1, 2, 3\}$ will suffice) and clearly explain how they show the statement can be false.

(a) If $A \times B = \emptyset$, then $A = \emptyset$ or $B = \emptyset$.

Solution: This statement is true.

Assume $A \neq \emptyset$ and $B \neq \emptyset$. Then $\exists a \in A$ and $\exists b \in B$. Therefore, $(a, b) \in A \times B$, hence $A \times B \neq \emptyset$.

(b) If $A - B = \emptyset$, then $B \subseteq A$.

Solution: This can be false. Counterexample: Let $A = \{1\}$ and $B = \{1, 2\}$. Then $A - B = \emptyset$ and $B \nsubseteq A$.

Q6. [3 points] Let S, T, W be arbitrary sets.

Give a rigorous proof to show that $(T \cup W) - S = (T - S) \cup (W - S)$.

Clearly justify each step! Be sure to use appropriate mathematical notation throughout.

 $x \in (T \cup W) - S \iff x \in T \cup W \text{ and } x \notin S \qquad \text{by def. of } \iff (x \in T \text{ or } x \in W) \text{ and } x \notin S \qquad \text{by def. of } \cup$ $\iff (x \in T \text{ and } x \notin S) \text{ or } (x \in W \text{ and } x \notin S) \text{ since } (P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$ $\iff (x \in T - S) \text{ or } (x \in W - S) \qquad \text{by def of } \iff x \in (T - S) \cup (W - S) \qquad \text{by def of } \cup$

Therefore, $(T \cup W) - S = (T - S) \cup (W - S)$.

Q7. [6 points] Let \sim be a relation on $\mathbb{Z}\times\mathbb{Z}$ defined by the following rule:

 $\forall (a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}, \quad (a,b) \sim (c,d) \iff a < c \text{ and } b < d.$

For this question, you must use the formal definition of < and the axiom related to \mathbb{N} to justify your answers. You may also use the following proposition, seen in class:

Prop. If $a \in \mathbb{Z}$, then exactly one (one and only one) of the following statements is true:

 $a \in \mathbb{N}$ or a = 0 or $-a \in \mathbb{N}$.

You do not need to show all steps related to the first five axioms of Z. For example, you can simplify (a - b) + b = a without citing any axioms.

- a) Is \sim reflexive? If so, prove it; otherwise, give a counterexample and explanation.
- Solution: ~ is not reflexive. Counterexample: Take $(1,2) \in \mathbb{Z} \times \mathbb{Z}$. Then $1-1 = 0 \notin \mathbb{N}$, so $1 \not< 1$. Therefore, $(1,2) \nsim (1,2)$.
 - (b) Is \sim symmetric? If so, prove it; otherwise, give a counterexample and explanation.
- Solution: No, ~ is not symmetric. Counterexample: $(0,0), (1,1) \in \mathbb{Z} \times \mathbb{Z}$ since 0 < 1 and 0 < 1. But $(1,1) \nsim (0,0)$ since $0-1 = -1 \notin \mathbb{N}$.

(c) Is \sim transitive? If so, prove it; otherwise, give a counterexample and explanation.

Solution: Yes, ~ is transitive. Proof: Let $(a, b), (c, d), (e, f) \in \mathbb{Z} \times \mathbb{Z}$.

Assume $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$.

Then a < c and b < d and c < e and d < f.

$\implies c-a, d-b, e-c, f-d \in \mathbb{N}$	by def. of $<$
$\implies (c-a) + (e-c) \in \mathbb{N} \text{ and } (d-b) + (f-d) \in \mathbb{N}$	since \mathbb{N} is closed under +
$\implies e - a \in \mathbb{N} \text{ and } f - b \in \mathbb{N}$	\mathbbm{Z} arithmetic
$\implies a < e \text{ and } b < f$	def. of $<$
$\implies (a,b) \sim (e,f)$	def. of \sim .

Therefore, \sim is transitive.

Q8. [5 points]

(a) How many elements are there in \mathbb{Z}_7 ? List them all.

Solution: There are 7 elements given by [0], [1], [2], [3], [4], [5], [6]. Of course [0] = [7] so [1], [2], [3], [4], [5], [6], [7] is also a correct answer.

(b) Among the elements of \mathbb{Z}_7 , find all $[x] \in \mathbb{Z}_7$ that satisfy $([x] \odot [x]) \oplus [x] = [2]$. Show all your work to justify your answer!

Solution: We compute $([x] \odot [x]) \oplus [x]$ for the 7 values of $[x] \in \mathbb{Z}_7$:

[x]	$[x] \odot [x]$	$([x] \odot [x]) \oplus [x]$
[0]	[0]	[0]
[1]	[1]	[2]
[2]	[4]	[6]
[3]	[9] = [2]	[5]
[4]	[16] = [2]	[6]
[5]	[25] = [4]	[2]
[6]	[36] = [1]	[0]

So the elements that satisfy $([x] \odot [x]) \oplus [x] = [2]$ are [1] and [5].

(c) Does [10] have a multiplicative inverse in \mathbb{Z}_7 ? If so, find $[10]^{-1}$ and show that it is a multiplicative inverse. Your answer should be in terms of one of the canonical representatives.

Solution: Since $[10] \odot [5] = [15]$ and [15] = [1] in \mathbb{Z}_7 , we have $[10]^{-1} = [5]$.

Q9. [6 points] Consider the following subsets of real numbers:

$$A = \left\{ \frac{7n}{n+1} : n \in \mathbb{N} \right\} \qquad B = \left\{ 7 - \frac{6}{x} : x \in \mathbb{R}_{>0} \right\}$$

(a) Explain how and why the Completeness Axiom allows us to conclude that $\sup(A)$ exists.

Solution: The set A is nonempty since $\frac{7(1)}{1+1} \in A$.

Moreover, A is bounded above by 7 since, for all $n \in \mathbb{N}$, we have $\frac{7n}{n+1} < \frac{7n}{n} = 7$.

Since A is a nonempty subset of real numbers that is bounded above, the Completeness Axiom says that A must have a least upper bound. Thus, $\sup(A)$ exists.

(b) If it exists, find $\sup(B)$ and prove that it is a least upper bound for B. Otherwise, clearly justify why $\sup(B)$ does not exist.

Solution: We claim that $\sup(B) = 7$.

First, for all $x \in \mathbb{R}_{>0}$, we have $0 < \frac{6}{x}$. Thus, $7 - \frac{6}{x} < 7$. Thus, 7 is an upper bound for B.

Now, we claim that 7 is a least upper bound for B.

Suppose, to the contrary, that there is a smaller upper bound for B, say $\exists c \in \mathbb{R}$ such that $\forall b \in B, b \leq c < 7$.

 $\implies \forall x \in \mathbb{R}_{>0}, \qquad 7 - \frac{6}{x} \le c < 7.$ $\implies \forall x \in \mathbb{R}_{>0}, \qquad -\frac{6}{x} \le c - 7 << 0.$ $\implies \forall x \in \mathbb{R}_{>0}, \qquad \frac{6}{x} \ge 7 - c > 0.$ $\implies \forall x \in \mathbb{R}_{>0}, \qquad \frac{6}{7 - c} \ge x > 0.$

This shows that $\frac{6}{7-c}$ is an upper bound for $\mathbb{R}_{>0}$, which is a contradiction.

Therefore, no such c exists. We conclude that 7 is a least upper bound for B.

(c) Does $\min(A)$ exist? If so, find it and justify your answer. If not, fully justify your answer.

Solution: Yes, $\min(A) = \frac{7}{2}$. For all $n \in \mathbb{N}$, we have $\frac{7n}{n+1} \ge \frac{7n}{n+n} = \frac{7n}{2n} = \frac{7}{2}$. Thus, $\frac{7}{2}$ is a lower bound for A. Using n = 1, we see that $\frac{7(1)}{1+1} = \frac{7}{2} \in A$.

Therefore, $\min(A) = \frac{7}{2}$ by definition.

- (d) Does $\max(B)$ exist? If so, find it and justify your answer. If not, fully justify your answer.
- Solution: Since $\sup(B)$ exists, if $\max(B)$ exists, then we'd have $\max(B) = \sup(B) = 7$. Since $7 \frac{6}{x} < 7$, for all $x \in \mathbb{R}_{>0}$, it follows that $7 \notin B$. Thus, $\max(B)$ does not exist.

Q10. [7 points] Consider the functions below:

f

$$\begin{array}{ll} : (\mathbb{R}_{>0} \times \mathbb{R}_{>0}) \to \mathbb{R}_{>0} & g : \mathbb{R}_{>0} \to \mathbb{R}_{>0} \times \mathbb{R}_{>0} \\ f(x,y) = 5xy & g(z) = \left(\frac{1}{5}, z\right) \end{array}$$

(a) Is f injective? If so prove it; otherwise provide a concrete counterexample and briefly explain.

- Solution: No, f is not injective. Counterexample: $(1,2), (2,1) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$. f(1,2) = 5(1)(2) = 5(2)(1) = f(2,1), but $(1,2) \neq (2,1)$.
 - (b) Is f surjective? If so prove it; otherwise provide a concrete counterexample and briefly explain.
- Solution: Yes, f is surjective. Proof. Let $y \in \mathbb{R}_{>0}$. Then $\left(\frac{1}{5}, y\right) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$ and we have $f\left(\frac{1}{5}, y\right) = 5\left(\frac{1}{5}\right)(y) = y$.

(c) Is g injective? If so prove it; otherwise provide a concrete counterexample and briefly explain.

Solution: Yes, g is injective. Let $z_1, z_2 \in \mathbb{R}_{>0}$.

Assume
$$g(z_1) = g(z_2)$$
.
Then $\left(\frac{1}{5}, z_1\right) = \left(\frac{1}{5}, z_2\right)$
 $\implies \frac{1}{5} = \frac{1}{5}$ and $z_1 = z_2$
 $\therefore z_1 = z_2$.

- (d) Is g surjective? If so prove it; otherwise provide a concrete counterexample and briefly explain.
- Solution: No, g is not surjective. Counterexample: $(1,1) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$ but $g(z) = (1,1) \iff (1/5,1) = (1,1)$ which is false. Thus, $\nexists z \in \mathbb{R}_{>0}$ such that g(z) = (1,1).
 - (e) Is g a left inverse of f? Justify your answer.

Solution: No, since f is not injective, f has no left inverse.

Alternatively, we can see that $g \circ f \neq id_{\mathbb{R}_{>0} \times \mathbb{R}_{>0}}$, since, for example, $g \circ f(1,1) = g(2) = (\frac{1}{5},2) \neq (1,1)$.

(f) Is g a right inverse of f? Justify your answer.

Solution: Yes! For all $z \in \mathbb{R}_{>0}$, we have

$$f \circ g(z) = f(g(z)) = f(\frac{1}{5}, z) = 5(\frac{1}{5})(z) = z.$$

Thus, $f \circ g = \operatorname{id}_{\mathbb{R}_{>0}}$.

Q11. [4 points] Find $\lim_{n\to\infty} \frac{7n}{n+55}$.

Rigorously prove your answer using the formal <u>definition</u> of a limit.

Solution: We claim that $\lim_{n \to \infty} \frac{7n}{n+55} = 7.$

Note, for all $n \in \mathbb{N}$, we have

$$\left|\frac{7n}{n+55} - 7\right| = \left|\frac{7n}{n+55} - \frac{7(n+55)}{n+55}\right| = \left|\frac{-55}{n+55}\right| = \frac{55}{n+55} < \frac{55}{n}.$$

Let $\varepsilon > 0$.

Since \mathbb{N} is not bounded above in \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{55}{\varepsilon}$. Consequently, $\frac{55}{N} < \varepsilon$. Assume $n \ge N$. Then

$$\left|\frac{7n}{n+55} - 7\right| = \frac{55}{n+1} < \frac{55}{n} \le \frac{55}{N} < \varepsilon.$$

Therefore, $\lim_{n \to \infty} \frac{7n}{n+55} = 7$, as claimed.