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Please do not write in the table below.

Question 1 2 3 4 5 6 Total
Maximum 3 6 5 4 5 4 27

Grade

Question 1. [3 points] Using only the first five axioms of the integers seen in class (as
well as the replacement property), prove that

a · 0 = 0 for all a ∈ Z.
Use only one axiom or definition per line of your proof, and state which axiom or definition
you are using at each step (by its name).

Solution: Suppose a ∈ Z. Then

a · (0 + 0) = a · 0 additive identity

=⇒ a · 0 + a · 0 = a · 0 distributivity

=⇒ (a · 0 + a · 0) +
(
− (a · 0)

)
= a · 0 +

(
− (a · 0)

)
replacement property

=⇒ a · 0 +
(
a · 0 +

(
− (a · 0)

))
= a · 0 +

(
− (a · 0)

)
associativity of addition

=⇒ a · 0 + 0 = 0 additive inverse

=⇒ a · 0 = 0. additive identity
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Question 2. [6 points] In this question you do not need to justify your answers, except
in part (d)(i).

(a) Complete the following sentence defining the ordering on the integers: “For a, b ∈ Z,
we write a < b if and only if. . .”

Solution: For a, b ∈ Z, we write a < b if and only if b− a ∈ N.

(b) Suppose n ∈ N. Complete the following definition of congruence modulo n: “For
x, y ∈ Z, x ≡ y if and only if. . .”

Solution: For x, y ∈ Z,

x ≡ y ⇐⇒ x− y is divisible by n.

(c) State the well-ordering principle.

Solution: Every nonempty subset of N has a smallest element.

(d) Let P be the following statement:

n ≥ 0 =⇒ n ∈ N.
(Here we assume n ∈ Z.)

(i) Is the statement P true or false? Explain your answer.

Solution: False, since 0 ≥ 0, but 0 /∈ N.

(ii) Write the converse of the statement P . Is the converse true or false?

Solution: The converse is

n ∈ N =⇒ n ≥ 0.

This is true.

(iii) Write the contrapositive of the statement P . Is the contrapositive true or false?

Solution: The contrapositive is

n /∈ N =⇒ n < 0.

This is false.
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Question 3. Consider the sequence (xj)
∞
j=1 defined recursively by

x1 = −5,

xn+1 = 3xn + 20, n ∈ N.
(a) [1 point] What is x4?

Solution: We have

x2 = 3(−5) + 20 = 5

x3 = 3 · 5 + 20 = 35

x4 = 3 · 35 + 20 = 125.

(b) [4 points] Prove that xn is divisible by 5 for all n ∈ N.

Solution: Base case: When n = 1, we have

x1 = −5 = 5(−1).

Thus the result holds for n = 1.

Induction step: Suppose that xn is divisible by 5 for some n ∈ N. Then there exists
m ∈ Z such that xn = 5m. Thus

xn+1 = 3xn + 20

= 3(5m) + 20

= 15m + 20

= 5(3m + 4).

Since m ∈ Z, we have that 3m + 4 ∈ Z. Hence xn+1 is divisible by 5, completing the
proof of the induction step.
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Question 4. [4 points] Using induction, prove that
n∑

k=6

1

k2 − 3k + 2
=

n− 5

4n− 4
for all n ∈ Z, n ≥ 6.

Solution: Base case: When n = 6, we have
n∑

k=6

1

k2 − 3k + 2
=

1

62 − 3 · 6 + 2
=

1

20
=

6− 5

4 · 6− 4
.

Thus the result is true for n = 6.

Induction step: Suppose the result is true for some n ∈ Z, n ≥ 6. Then we have
n+1∑
k=6

1

k2 − 3k + 2
=

n∑
k=6

1

k2 − 3k + 2
+

1

(n + 1)2 − 3(n + 1) + 2

=
n− 5

4n− 4
+

1

n2 − n

=
n− 5

4(n− 1)
+

1

n(n− 1)

=
n(n− 5) + 4

4n(n− 1)

=
n2 − 5n + 4

4n(n− 1)

=
(n− 4)(n− 1)

4n(n− 1)

=
n− 4

4n

=
(n + 1)− 5

4(n + 1)− 4
.

This proves the induction step.
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Question 5.

(a) [2 points] Suppose A and B are sets, and define

C = {x : (x, x) ∈ A×B}.
Prove that

C = A ∩B.

Solution: We have

x ∈ C ⇐⇒ (x, x) ∈ A×B

⇐⇒ x ∈ A and x ∈ B

⇐⇒ x ∈ A ∩B.

(b) [3 points] Suppose A,B ⊆ X. Prove that

(A ∪B){ = A{ ∩B{.

Solution: For x ∈ X, we have

x ∈ (A ∪B){ ⇐⇒ ¬
(
x ∈ A ∪B

)
⇐⇒ ¬

(
x ∈ A or x ∈ B

)
⇐⇒ x /∈ A and x /∈ B

⇐⇒ x ∈ A{ and x ∈ B{

⇐⇒ x ∈ A{ ∩B{.
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Question 6. [4 points] Define a relation ∼ on the set N× Z by

(a, b) ∼ (c, d) ⇐⇒ 3(a− c) + 5(d− b) = 0.

Prove that ∼ is an equivalence relation.

Solution: Reflexivity : Suppose (a, b) ∈ N× Z. Since

3(a− a) + 5(b− b) = 0

we have (a, b) ∼ (a, b).

Symmetry : Suppose (a, b), (c, d) ∈ N× Z such that (a, b) ∼ (c, d). Then

(a, b) ∼ (c, d) =⇒ 3(a− c) + 5(d− b) = 0

=⇒ (−1)
(
3(a− c) + 5(d− b)

)
= 0

=⇒ 3(c− a) + 5(b− d) = 0

=⇒ (c, d) ∼ (a, b).

Transitivity : Suppose (a, b), (c, d), (e, f) ∈ N×Z such that (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
So we have

3(a− c) + 5(d− b) = 0 and 3(c− e) + 5(f − d) = 0.

Adding these two equations together gives

3(a− c) + 5(d− b) + 3(c− e) + 5(f − d) = 0.

Simplifying then gives
3(a− e) + 5(f − b) = 0,

which implies that (a, b) ∼ (e, f).
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