A graphical calculus for the Jack inner product on symmetric functions

Alistair Savage University of Ottawa

Joint with: Anthony Licata (Australian National University) and Daniele Rosso (Indiana University Northwest)

Slides available online: alistairsavage.ca/talks

Paper: arXiv:1610.01862 (to appear in J. Comb. Theory A)

Alistair Savage (Ottawa)

Diagrammatic Jack inner product

Goal: Develop a graphical realization of the Jack inner product on symmetric functions.

Overview:

- Review of symmetric functions & bilinear forms
- e Heisenberg algebras
- Heisenberg categories
- Ilanar diagrammatics: closed and annular diagrams
- Oiagrammatic bilinear form
- 6 Further directions

Power-sum and monomial symmetric functions

Let Sym be the $\mathbb{C}\text{-algebra}$ of symmetric functions.

For $n \geq 1$, let

$$p_n = x_1^n + x_2^n + x_3^n + \cdots$$

be the *n*-th power sum.

For a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$, define the power-sum symmetric function

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_{\ell}}.$$

We also define the monomial symmetric function

$$m_{\lambda} = \sum_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \cdots ,$$

where the sum is over all permutations $\alpha = (\alpha_1, \alpha_2, \dots)$ of λ .

Jack inner products

Fact: The p_{λ} form a basis of Sym.

Result: We can define an inner product on Sym by specifying its values on the p_{λ} .

Jack inner product

Fix $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Define the Jack inner product by

$$\langle p_{\lambda}, p_{\mu} \rangle_{\alpha} = \delta_{\lambda,\mu} \alpha^{\ell(\lambda)} z_{\lambda},$$

where $\ell(\lambda)$ is the length of λ and

$$z_{\lambda} = \prod_{k \ge 1} k^{m_k(\lambda)} m_k(\lambda)!,$$

where $m_k(\lambda)$ is the number of parts of λ equal to k.

Aside: Form is uniquely determined by its values on the p_n and the fact that it is a Hopf pairing.

Alistair Savage (Ottawa)

Diagrammatic Jack inner product

Jack symmetric functions

Fact: The m_{λ} form a basis of Sym.

Dominance order: For partitions λ, μ we say

$$\mu \leq \lambda \iff \mu_1 + \dots + \mu_i \leq \lambda_1 + \dots + \lambda_i \text{ for all } i \geq 1.$$

Jack symmetric functions

The Jack symmetric functions J_{λ} are uniquely defined by the conditions

$$J_{\lambda} \in m_{\lambda} + \operatorname{Span}\{m_{\mu} \mid \mu < \lambda\},$$

$$(\mathbf{J}_{\lambda}, J_{\mu})_{\alpha} = 0 \text{ if } \lambda \neq \mu.$$

Aside: The Jack functions are obtained from the Macdonald symmetric functions via the specialization

$$q = t^{\alpha}, \qquad t \to 1.$$

When $\alpha=1,$ the Jack functions are scalar multiples of the Schur functions.

Alistair Savage (Ottawa)

The Heisenberg algebra

For the remainder of the talk, we fix $\alpha \in \mathbb{Z}$, $\alpha \neq 0$.

The Heisenberg algebra \mathfrak{h}_{α}

Let \mathfrak{h}_{α} be the \mathbb{C} -algebra generated by p_n^{\pm} , $n \in \mathbb{N}_+$, with relations

$$p_n^+ p_m^+ = p_m^+ p_n^+, \quad p_n^- p_m^- = p_m^- p_n^-, \quad p_n^- p_m^+ = p_m^+ p_n^- + \delta_{n,m} n \alpha.$$

As a vector space, we have

$$\mathfrak{h}_{\alpha}=\mathfrak{h}_{\alpha}^{+}\otimes\mathfrak{h}_{\alpha}^{-},$$

where

$$\mathfrak{h}_{\alpha}^{\pm} = \langle p_n^{\pm} \mid n \geq 1 \rangle \cong \mathsf{Sym}$$

are subalgebras.

Action of \mathfrak{h}_α on Sym

 \mathfrak{h}_α acts naturally on Sym:

- p_n^+ acts by multiplication by p_n ,
- p_n^- is adjoint to p_n^+ :

$$\langle p_n^- \cdot f,g\rangle_\alpha = \langle f,p_ng\rangle_\alpha \quad \forall\, f,g\in {\rm Sym}.$$

This is called the Fock space representation of \mathfrak{h}_{α} .

Frobenius algebras

Frobenius algebras

A graded Frobenius algebra is a f.d. N-graded algebra

$$B = \bigoplus_{n \in \mathbb{N}} B_n,$$

with a trace map $\operatorname{tr} \colon B \to \mathbb{C}$ satisfying:

• tr is linear,

• the kernel of tr contains no nonzero left ideal.

Example

Let $B = \mathbb{C}[y]/(y^k)$, graded by degree.

Then ${\cal B}$ is a Frobenius algebra with trace map

$$\operatorname{tr}\left(a_0 + a_1 y + \dots + a_{k-1} y^{k-1}\right) = a_{k-1}.$$

The Heisenberg algebra \mathfrak{h}_B

For the rest of the talk, fix a graded Frobenius algebra

$$B = \bigoplus_{n=0}^{\delta} B_n, \quad B_{\delta} \neq 0.$$

Its graded dimension is

grdim
$$B = \sum_{n \in \mathbb{N}} q^n \dim B_n \in \mathbb{N}[q].$$

Simplifying assumption (for this talk): $B_0 = \mathbb{C}, \ \delta > 0.$

The Heisenberg algebra \mathfrak{h}_B

Let \mathfrak{h}_B be the $\mathbb{C}(q)$ -algebra generated by p_n^{\pm} , $n \in \mathbb{N}_+$, with relations

$$p_n^+ p_m^+ = p_m^+ p_n^+, \quad p_n^- p_m^- = p_m^- p_n^-, \quad p_n^- p_m^+ = p_m^+ p_n^- + \delta_{n,m} n \operatorname{grdim} B.$$

Note: $\mathfrak{h}_B|_{q=1} = \mathfrak{h}_{\alpha}$, with $\alpha = \dim B$.

Alistair Savage (Ottawa)

The Heisenberg category

We define a \mathbb{C} -linear strict monoidal category \mathcal{H}_B as follows:

The objects of \mathcal{H}_B are generated by two objects Q_+ and Q_- , together with their degree shifts.

So objects are sequences of Q_+ and $\mathsf{Q}_-,$ which a $\mathbb{Z}\text{-degree}$ shift:

$$\varnothing, \{2\}Q_+, \{-4\}Q_-Q_-Q_+Q_+Q_+Q_-, \text{ etc.}$$

The morphisms are \mathbb{C} -linear combinations of planar diagrams:

- \bullet oriented compact one-manifolds immersed into the plane strip $\mathbb{R}\times [0,1],$
- agree with the domain/codomain at the top/bottom of the diagram,
- up to isotopy, and
- modulo certain local relations.

Morphisms: planar diagrams

We have the identity morphisms:

$$\operatorname{id}_{\mathsf{Q}_{+}} = \uparrow \qquad \qquad \operatorname{id}_{\mathsf{Q}_{-}} = \downarrow$$

Strands are allowed to carry dots labeled by elements of B:

Collision of dots is given by multiplication in B:

Strands are allowed to cross:

Morphisms: grading

The morphism spaces are graded:

(Recall δ is the top degree of B.)

The degree of a morphism determines the relative degree shifts of the domain and codomain.

is a morphism

$$\{\deg b_1 + \deg b_2 + \deg b_3 + \delta\}\mathsf{Q}_-\mathsf{Q}_+\mathsf{Q}_+\mathsf{Q}_-\mathsf{Q}_+ \to \mathsf{Q}_+\mathsf{Q}_-\mathsf{Q}_+\mathsf{Q}_+$$

Alistair Savage (Ottawa)

Diagrammatic Jack inner product

Morphisms: local relations

The local relations we impose are:

Here \mathcal{B} is a basis of B and $\{b^{\vee} \mid b \in \mathcal{B}\}$ is the (right) dual basis:

$$\operatorname{tr}(bc^{\vee}) = \delta_{b,c}.$$

Remark: Grothendieck group categorification

Recall: The Karoubi envelope (or idempotent completion) is an "enlargement" of a category C, with one object for each idempotent morphism in C.

Let $\operatorname{Kar} \mathcal{H}_B$ be the Karoubi envelope of the graphical category \mathcal{H}_B .

Theorem (Rosso–S. 2015)

There is a natural algebra isomorphism

 $\mathfrak{h}_B \to \mathsf{split}$ Grothendieck group of $\operatorname{Kar} \mathcal{H}_B$.

Hence $\operatorname{Kar} \mathcal{H}_B$ categorifies \mathfrak{h}_B .

Natural action of \mathcal{H}_B

For $n \geq 1$, consider the wreath product algebra

 $B^{\otimes n} \rtimes S_n.$

As a vector space, $B^{\otimes n} \rtimes S_n = B^{\otimes n} \otimes \mathbb{C}S_n$.

The factors $B^{\otimes n}$ and $\mathbb{C}S_n$ are subalgebras, and

$$wb = (w \cdot b)w, \qquad b \in B^{\otimes n}, \ w \in S_n,$$

where $w \cdot b$ is action of w on b by permuting factors.

Action of \mathcal{H}_B on $\bigoplus_n B^{\otimes n} \rtimes S_n$ -mod

- Q_+ acts by induction $B^{\otimes n} \rtimes S_n$ -mod $\to B^{\otimes (n+1)} \rtimes S_{n+1}$,
- Q_- acts by restriction $B^{\otimes (n+1)} \rtimes S_{n+1} \to B^{\otimes n} \rtimes S_n$ -mod,
- planar diagrams are natural transformations between compositions of induction and restriction.

Alistair Savage (Ottawa)

Center of a monoidal category

Suppose $\ensuremath{\mathcal{C}}$ is an additive monoidal category.

Then C has an identity object 1:

 $X \otimes \mathbf{1} \cong X \cong \mathbf{1} \otimes X$ for all objects X in \mathcal{C} .

The center is naturally a ring, under sum and tensor product of morphisms.

Example

If R is a ring and $\mathcal C$ is the category of (R,R)-bimodules, then

 $Z(\mathcal{C}) = \operatorname{End}_{\mathcal{C}}(R) \cong Z(R).$

Alistair Savage (Ottawa)

Closed diagrams

The identity object of \mathcal{H}_B is \varnothing .

So the center $Z(\mathcal{H}_B)$ consists of linear combinations of closed diagrams.

Multiplication is given by juxtaposition.

This algebra is clearly commutative (since we consider diagrams up to isotopy).

Trace of a monoidal category

Suppose ${\mathcal C}$ is a ${\mathbb C}\text{-linear}$ monoidal category.

The trace (or zeroth Hochschild homology) is

$$\operatorname{Tr}(\mathcal{C}) = \left(\bigoplus_{x \in \operatorname{Ob} \mathcal{C}} \operatorname{End}_{\mathcal{C}}(x)\right) / \operatorname{Span}\{fg - gf \mid f \colon x \to y, \ g \colon y \to x\}.$$

Example

Suppose A is an algebra. Let ${\mathcal C}$ be the monoidal category with

- one object *,
- Hom_{\mathcal{C}}(\star, \star) = A,
- tensor product of morphisms given by the product in A.

Then

$$\operatorname{Tr}(\mathcal{C}) = A / \operatorname{Span}\{ab - ba \mid a, b \in A\}$$

is the trace (or cocenter) of A.

Annular diagrams

The trace $Tr(\mathcal{H}_B)$ of \mathcal{H}_B can be identified the space of annular diagrams.

This is an algebra, with product given by nesting.

If A_1 and A_2 are annular diagrams, then A_1A_2 is the annular diagram obtained by placing A_2 in the center region of A_1 .

Diagrammatic action

The algebra $Tr(\mathcal{H}_B)$ of annular diagrams acts on the space $Z(\mathcal{H}_B)$ of closed diagrams.

Closures of permutations

Identify permutations with diagrams:

Given a permutation w, we can close off to the right to get a closed diagram or an annular diagram:

Key elements in the trace

More generally, any element of $\mathbb{C}S_n$ can be drawn as a linear combination of braid-like diagrams, on upward or downward strands.

Closing off to the right yields an annular diagram.

So to any $f \in \mathbb{C}S_n$, we have the associated annular diagram $[f^{\pm}]$. Let

$$P_{\lambda}^{\pm} = [w_{\lambda}^{\pm}],$$

where w_{λ} is a permutation of cycle type λ .

Question: Why is this well defined?

Alistair Savage (Ottawa)

Example of a diagrammatic proof

Lemma

If $w_1, w_2 \in S_n$ are conjugate, then $[w_1^{\pm}] = [w_2^{\pm}]$.

Proof.

Suppose $w_1 = ww_2w^{-1}$. Then

Theorem (Licata–Rosso–S. 2016)

We have an isomorphism of algebras

$$\operatorname{Tr}(\mathcal{H}_B) \cong \mathfrak{h}_B, \qquad P_{\lambda}^{\pm} \mapsto p_{\lambda}^{\pm}.$$

Note: We also have

$$\left[e_{\lambda}^{\pm}\right] \mapsto s_{\lambda}^{\pm},$$

where $e_{\lambda} \in \mathbb{C}S_n$ is the primitive idempotent corresponding to a partition λ and s_{λ} is the Schur function.

The diagrammatic bilinear form

Let $\operatorname{Tr}(\mathcal{H}_B)^{\pm}$ be the algebra of annular diagrams spanned by closing off endomorphisms of $(Q_{\pm})^n$ for $n \in \mathbb{N}$.

So

 $\operatorname{Tr}(\mathcal{H}_B)^+ =$ algebra of clockwise annular diagrams, $\operatorname{Tr}(\mathcal{H}_B)^- =$ algebra of counterclockwise annular diagrams.

Under the isomorphism $Tr(\mathcal{H}_B) \cong \mathfrak{h}_B$, we have

$$\operatorname{Tr}(\mathcal{H}_B)^{\pm} \mapsto \mathfrak{h}_B^{\pm} := \langle p_n^{\pm} \mid n \in \mathbb{N} \rangle \cong \operatorname{Sym}.$$

So a pairing

$$\operatorname{Tr}(\mathcal{H}_B)^- \times \operatorname{Tr}(\mathcal{H}_B)^+ \to \mathbb{C}$$

corresponds to a bilinear form on Sym.

Alistair Savage (Ottawa)

The diagrammatic bilinear form

Fact 1: The space $Z(\mathcal{H}_B)$ of closed diagrams is nonnegatively graded.

Fact 2: The only degree zero closed diagram is the empty diagram.

So we have the projection onto degree 0:

 $\mathbf{F}_0\colon Z(\mathcal{H}_B)\to\mathbb{C}.$

The diagrammatic pairing We define a pairing

> $\langle -, - \rangle_B \colon \operatorname{Tr}(\mathcal{H}_B)^- \times \operatorname{Tr}(\mathcal{H}_B)^+ \to \mathbb{C},$ $\langle x, y \rangle_B = \mathbf{F}_0((xy) \cdot \mathbf{1}_{\varnothing}),$

where 1_{\varnothing} is the empty diagram.

Alistair Savage (Ottawa)

Diagrammatic Jack inner product

The diagrammatic pairing

Graphically, $\langle x,y\rangle$ is obtained by

- placing the annular diagram y inside the annular diagram x,
- viewing the resulting annular diagram as a closed diagram,
- projecting onto degree zero.

Note: If $f, g \in \mathbb{C}S_n$, then the nested diagram $[f][g] \cdot 1_{\emptyset}$ is already in degree zero and \mathbf{F}_0 is unnecessary.

Alistair Savage (Ottawa)

Diagrammatic Jack inner product

Theorem (Licata–Rosso–S.)

Under the isomorphisms $Tr(\mathcal{H}_B)^{\pm} \cong$ Sym, the diagrammatic form corresponds to the Jack bilinear form at parameter

 $\alpha = \dim B.$

So we have a categorification of the Jack bilinear form, with the Jack parameter categorified by the graded Frobenius algebra B.

Example

Suppose $B = \mathbb{C}[y]/(y^k)$. Trace map is the coefficient of y^{k-1} .

The first power sum p_1 corresponds to the clockwise circle P_1^+ and counterclockwise circle P_1^- .

$$\langle P_1^-, P_1^+ \rangle_B = \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)}_{j=0} + \sum_{j=0}^{k-1} \underbrace{ y^{k-j-1}}_{j=0} \\ y^{k-1} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \end{array} \right)}_{=} \underbrace{ \left(\end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \end{array} \right)}_{=} \underbrace{ \left(\begin{array}{c} \end{array} \right)}_{=}$$

This agrees with the inner product of p_1 with itself in the Jack inner product at Jack parameter $k = \dim B$.

The full results are more general than presented in this talk.

The Frobenius algebra ${\cal B}$

- In general, B can be a graded Frobenius superalgebra.
- We don't need $B_0 = \mathbb{C}$.
- We only assume that all simple *B*-modules are of type *M* (i.e. not isomorphic to their parity shifts) and that the trace map is supersymmetric and even.
- The Jack parameter α corresponds to $\dim B_{\text{even}} \dim B_{\text{odd}}$.

Further directions I

More general Frobenius algebras

- The categories \mathcal{H}_B are defined for an arbitrary graded Frobenius superalgebra B.
- Allowing *B* to have simple modules of type *Q* (isomorphic to their own parity shifts) would result in the space of Schur *Q*-functions.
- Allowing the trace map to not be supersymmetric would introduce twisted Heisenberg algebras.

Connections to W-algebras

- $\operatorname{Tr}(\mathcal{H}_{\mathbb{C}})$ is isomorphic to a quotient of the W-algebra $W_{1+\infty}$ (Cautis-Licata-Lauda-Sussan)
- $Tr(\mathcal{H}_B)$ should be related to W-algebras associated to the lattice $K_0(B\operatorname{-mod})$.

Further directions II

Wreath product algebras

- \mathcal{H}_B acts on modules for wreath product algebras $B^{\otimes n} \rtimes S_n$.
- Thus, the Heisenberg algebra $Tr(\mathcal{H}_B) \cong \mathfrak{h}_B$ acts on the centers of these module categories.
- Can therefore use diagrammatics to study the centers of these categories.

Jack symmetric functions

- We have categorified the Jack inner product.
- Question: Can we categorify the Jack symmetric functions themselves?
- Find natural annular diagrams that correspond to these functions.

Geometry: Hilbert schemes

- Equivariant K-theory of the Hilbert scheme of points on \mathbb{C}^2 is related to the Macdonald ring of symmetric functions (Haiman).
- Equivariant homology related to Jack symmetric functions (Nakajima, Li–Qin–Wang).
- "K-theory versus homology" is analogous to "Grothendieck group versus trace".
- So current work should be related to these geometric constructions.